Time Dilation Confirmed in the Lab

Blah.

It sounds like science fiction, but the time you experience between two events depends directly on the path you take through the universe. In other words, Einstein’s theory of special relativity postulates that a person traveling in a high-speed rocket would age more slowly than people back on Earth.

Although few physicists doubt Einstein was right, it’s crucial to verify time dilation to the best possible accuracy. Now, an international team of researchers, including Nobel laureate Theodor Hänsch, director of the Max Planck optics institute, has done just this.

Tests of special relativity date back to 1938. But once we started going to space regularly, we had to learn to deal with time dilation on a daily basis. GPS satellites, for example, are basically clocks in orbit. They travel at a whopping speed of 14,000 kilometers per hour well above the Earth’s surface at a distance of 20,000 kilometers. So relative to an atomic clock on the ground they lose about 7 microseconds per day, a number that has to be taken into account for them to work properly.

To test time dilation to a much higher precision, Benjamin Botermann of Johannes Gutenberg-University, Germany, and colleagues accelerated lithium ions to one-third the speed of light. Here the Doppler shift quickly comes into play. Any ions flying toward the observer will be blue shifted and any ions flying away from the observer will be red shifted.

The level at which the ions undergo a Doppler shift depends on their relative motion, with respect to the observer. But this also makes their clock run slow, which redshifts the light from the observer’s point of view — an effect that you should be able to measure in the lab.

So the team stimulated transitions in the ions using two lasers propagating in opposite directions. Then any shifts in the absorption frequency of the ions are dependent on the Doppler effect, which we can easily calculate, and the redshift due to time dilation.

The team verified their time dilation prediction to a few parts per billion, improving on previous limits. The findings were published on Sept. 16 in the journal Physical Review Letters.

Assembly Completed on Powerful Delta IV Rocket Boosting Maiden Orion Capsule Test Flight

A United Launch Alliance technician monitors the core booster elements of a Delta IV Heavy rocket after being integrated in preparation for Exploration Flight Test-1 at Space Launch Complex 37 on Cape Canaveral Air Force Station. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL – Assembly of the powerful Delta IV rocket boosting the pathfinder version of NASA’s Orion crew capsule on its maiden test flight in December has been completed.

Orion is NASA’s next generation human rated vehicle that will eventually carry America’s astronauts beyond Earth on voyages venturing farther into deep space than ever before – beyond the Moon to Asteroids, Mars and other destinations in our Solar System.

The state-of-the-art Orion spacecraft is scheduled to launch on its inaugural uncrewed mission, dubbed Exploration Flight Test-1 (EFT-1), in December 2014 atop the Delta IV Heavy rocket. It replaces NASA’s now retired space shuttle orbiters.

The triple barreled Delta IV Heavy is currently the most powerful rocket in America’s fleet following the retirement of the NASA’s Space Shuttle program.

Engineers from the rocket’s manufacturer – United Launch Alliance (ULA) – took a major step forward towards Orion’s first flight when they completed the integration of the three primary core elements of the rockets first stage with the single engine upper stage.

These three RS-68 engines will power each of the attached Delta IV Heavy Common Booster Cores (CBCs) the will launch NASA’s maiden Orion on the EFT-1 mission in December 2014.   Credit: Ken Kremer/kenkremer.com
These three RS-68 engines will power each of the attached Delta IV Heavy Common Booster Cores (CBCs) that will launch NASA’s maiden Orion on the EFT-1 mission in December 2014. Credit: Ken Kremer/kenkremer.com

All of the rocket integration work and preflight processing took place inside ULA’s Horizontal Integration Facility (HIF), at Cape Canaveral Air Force Station in Florida.

Universe Today recently visited the Delta IV booster during an up close tour inside the HIF facility last week where the rocket was unveiled to the media in a horizontally stacked configuration. See my Delta IV photos herein.

The HIF building is located at Space Launch Complex 37 (SLC-37), on Cape Canaveral, a short distance away from the launch pad where the Orion EFT-1 mission will lift off on Dec. 4.

“The day-to-day processing is performed by ULA,” said Merri Anne Stowe of NASA’s Fleet Systems Integration Branch of the Launch Services Program (LSP), in a NASA statement.

“NASA’s role is to keep a watchful eye on everything and be there to help if any issues come up.”

The first stage is comprised of a trio of three Delta IV Common Booster Cores (CBCs).

Side view shows trio of Common Booster Cores (CBCs) with RS-68 engines powering the Delta IV Heavy rocket resting horizontally in ULA’s HIF processing facility at Cape Canaveral that will launch NASA’s maiden Orion on the EFT-1 mission in December 2014 from Launch Complex 37.   Credit: Ken Kremer/kenkremer.com
Side view shows trio of Common Booster Cores (CBCs) with RS-68 engines powering the Delta IV Heavy rocket resting horizontally in ULA’s HIF processing facility at Cape Canaveral that will launch NASA’s maiden Orion on the EFT-1 mission in December 2014 from Launch Complex 37. Credit: Ken Kremer/kenkremer.com

Each CBC measures 134 feet in length and 17 feet in diameter. They are equipped with an RS-68 engine powered by liquid hydrogen and liquid oxygen propellants producing 656,000 pounds of thrust. Together they generate 1.96 million pounds of thrust.

This past spring I visited the HIF after the first two CBCs arrived by barge from their ULA assembly plant in Decatur, Alabama, located about 20 miles west of Huntsville.

The first CBC booster was attached to the center booster in June. The second one was attached in early August, according to ULA.

“After the three core stages went through their initial inspections and processing, the struts were attached, connecting the booster stages with the center core,” Stowe said. “All of this takes place horizontally.”

The Delta IV cryogenic second stage testing and attachment was completed in August and September. It measures 45 feet in length and 17 feet in diameter. It is equipped with a single RL10-B-2 engine, that also burns liquid hydrogen and liquid oxygen propellant and generates 25,000 pounds of thrust.

“The hardware for Exploration Flight Test-1 is coming together well,” Stowe noted in a NASA statement.

“We haven’t had to deal with any serious problems. All of the advance planning appears to be paying off.”

This same Delta IV upper stage will be used in the Block 1 version of NASA’s new heavy lift rocket, the Space Launch System (SLS).

Be sure to read my recent article detailing the ribbon cutting ceremony opening the manufacture of the SLS core stage at NASA’s Michoud Assembly Facility in New Orleans, LA. The SLS will be the most powerful rocket ever built by humans, exceeding that of the iconic Saturn V rocket that sent humans to walk on the surface of the Moon.

Wide view of the new welding tool at the Vertical Assembly Center at NASA’s Michoud Assembly Facility in New Orleans at a ribbon-cutting ceremony Sept. 12, 2014.  Credit: Ken Kremer – kenkremer.com
Wide view of the new welding tool at the Vertical Assembly Center at NASA’s Michoud Assembly Facility in New Orleans at a ribbon-cutting ceremony Sept. 12, 2014. Credit: Ken Kremer – kenkremer.com

The Delta IV rocket will be rolled out to the SLC-37 Cape Canaveral launch pad this week.
Assembly of the Orion EFT-1 capsule and stacking atop the service module was also completed in September at the Kennedy Space Center (KSC).

I was also on hand at KSC when the Orion crew module/service module (CM/SM) stack was rolled out on Sept. 11, 2014, on a 36-wheel transporter from its high bay assembly facility in the Neil Armstrong Operations and Checkout Building.

NASA’s completed Orion EFT 1 crew module loaded on wheeled transporter during move to Launch Abort System Facility (LASF) on Sept. 11, 2014 at the Kennedy Space Center, FL.  Credit: Ken Kremer - kenkremer.com
NASA’s completed Orion EFT 1 crew module loaded on wheeled transporter during move to Launch Abort System Facility (LASF) on Sept. 11, 2014, at the Kennedy Space Center, FL. Credit: Ken Kremer – kenkremer.com

It was moved about 1 mile to its next stop on the way to SLC-37 – the KSC fueling facility named the Payload Hazardous Servicing Facility (PHFS). Read my Orion move story here.

The two-orbit, four and a half hour EFT-1 flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.

Stay tuned here for Ken’s continuing Orion, SLS, Boeing, Sierra Nevada, Orbital Sciences, SpaceX, commercial space, Curiosity, Mars rover, MAVEN, MOM and more Earth and planetary science and human spaceflight news.

Ken Kremer

NASA’s Orion EFT 1 crew module departs Neil Armstrong Operation and Checkout Building on Sept. 11, 2014 at the Kennedy Space Center, FL, beginning the long journey to the launch pad and planned liftoff on Dec. 4, 2014.  Credit: Ken Kremer - kenkremer.com
NASA’s Orion EFT 1 crew module departs Neil Armstrong Operation and Checkout Building on Sept. 11, 2014 at the Kennedy Space Center, FL, beginning the long journey to the launch pad and planned liftoff on Dec. 4, 2014. Credit: Ken Kremer – kenkremer.com
Space journalists including Ken Kremer/Universe Today pose with the Delta IV Heavy rocket resting horizontally in ULA’s HIF processing facility at Cape Canaveral that will launch NASA’s maiden Orion on the EFT-1 mission in December 2014 from Launch Complex 37.   Credit: Ken Kremer/kenkremer.com
Space journalists including Ken Kremer/Universe Today pose with the Delta IV Heavy rocket resting horizontally in ULA’s HIF processing facility at Cape Canaveral that will launch NASA’s maiden Orion on the EFT-1 mission in December 2014 from Launch Complex 37. Credit: Ken Kremer/kenkremer.com

MOM Eyes the Limb of Mars after History Creating Arrival

ISRO's Mars Orbiter Mission captures the limb of Mars with the Mars Color Camera from an altitude of 8449 km soon after achieving orbit on Sept. 23/24, 2014. . Credit: ISRO

India’s maiden interplanetary voyager, the Mars Orbiter Mission (MOM) has transmitted a breathtaking new image eyeing the limb of Mars and its atmosphere against the blackness of space.

The beautiful Martian image is only MOM’s second since successfully braking into orbit during the ‘history creating’ insertion maneuver days ago on Sept. 23/24.

The MOM orbiter was designed and developed by the Indian Space Research Organization (ISRO), India’s space agency, which released the image on Sept 25, about a day after MOM arrived.

The limb image was taken using MOM’s Mars Color Camera (MCC) from an altitude of 8449 kilometers and shows more of an ‘Orange Planet’ rather than a ‘Red Planet.’

“A shot of Martian atmosphere. I’m getting better at it. No pressure,” tweeted ISRO at MOM’s newly established twitter account after entering orbit.

The image has a spatial resolution of 439 meters and is centered around Lat: 20.01N and Lon:31.54E.

MOM’s goal is to study Mars atmosphere , surface environments, morphology, and mineralogy with a 15 kg (33 lb) suite of five indigenously built science instruments. It will also sniff for methane, a potential marker for biological activity.

“The view is nice up here,” ISRO tweeted.

MOM’s first image taken shortly after orbital arrival showed a heavily cratered region of the Red Planet taken by the MCC tri-color camera from a slightly lower altitude of 7300 kilometers with a spatial resolution of 376 meters.

ISRO's Mars Orbiter Mission captures its first image of Mars from a height of 7300 km. Credit: ISRO
ISRO’s Mars Orbiter Mission captures its first image of Mars from a height of 7300 km. Credit: ISRO

Following MOM’s successful Mars Orbital Insertion (MOI) maneuver, India became the newest member of an elite club of only four entities who have launched probes that successfully investigated Mars – following the Soviet Union, the United States and the European Space Agency (ESA).

Read my complete MOM meets Mars arrival story – here.

MOM is now circling Mars in a highly elliptical orbit whose nearest point to Mars (periapsis) is at 421.7 km and farthest point (apoapsis) at 76,993.6 km. The inclination of orbit with respect to the equatorial plane of Mars is 150 degree, as intended, ISRO reports.

The $73 million mission is expected to last at least six months.

MOM’s success follows closely on the heels of NASA’s MAVEN orbiter which also successfully achieved orbit barely two days earlier on Sept. 21 and could last 10 years or more.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

ESA’s Rosetta Mission sets November 12th as the Landing Date for Philae

Illustration of the Rosetta Missions Philae lander on final approach to a comet surface. (Photo: ESA)

ESA Rosetta mission planners have selected November 12th, one day later than initially planned, for the historic landing of Philae on a comet’s surface. The landing on 67P/Churyumov-Gerasimenko will be especially challenging for the washing machine-sized lander. While mission scientists consider their choice of comet for the mission to be an incredibly good one for scientific investigation and discovery, the irregular shape and rugged terrain also make for a risky landing. The whole landing is not unlike the challenge one faces in shooting a moving target in a carnival arcade game; however, this moving target is 20 kilometers below and it is also rotating.

At  8:35 GMT (3:35 AM EST), the landing sequence will begin with release of Philae by Rosetta at an altitude of 20 kilometers above the comet. The expected time of touchdown is seven hours later – 15:35 GMT (10:35 AM EST). During the descent, Philae’s ROLIS camera will take a continuous series of photos. The comet will complete more than half a rotation during the descent; comet P67’s rotation rate is 12.4 hours. The landing site will actually be on the opposite side of the comet when Philae is released and will rotate around, and if all goes as planned, meet Philae at landing site J.

Before November 12th, mission planners will maintain the option of landing at Site C. If the alternate site is chosen, the descent will begin at 13:04 GMT also on November 12 but from an altitude of 12.5 kilometers, a 4 hour descent time.

NAVCAM image of the comet on 21 September, which includes a view of primary landing site J. Click for more details and link to context image. (Credits: ESA/Rosetta/NAVCAM)
NAVCAM image of the comet on 21 September, which includes a view of primary landing site J. Click for more details and link to context image. (Credits: ESA/Rosetta/NAVCAM)

Rosetta will eject Philae with an initial velocity of approximately 2 1/2  kilometers per hour. Because the comet is so small, its gravity will add little additional speed to Philae as it falls to the surface. Philae is essentially on a ballistic trajectory and does not have any means to adjust its path.

The actions taken by Philae’s onboard computer begin only seconds from touchdown. It has a landing propulsion system but unlike conventional systems that slow down the vehicle for soft landing, Philae’s is designed to push the lander snugly onto the comet surface. There is no guarantee that Philae will land on a flat horizontal surface. A slope is probably more likely and the rocket will force the small lander’s three legs onto the slope.

A model of the comet P67/Churyumov-Gerasimenko created using images from the Rosetta OSIRIS narrow field camera. (Credit: ESA)
A model of the comet P67/Churyumov-Gerasimenko created using images from the Rosetta OSIRIS narrow field camera. Mouse click on the image to start the animated GIF. (Credit: ESA)

Landing harpoons will be fired that are attached to cables that will be pulled in to also help Philae return upright and attach to the surface. Philae could actually bounce up or topple over if the rocket system and harpoons fail to do their job.

The Philae Lander anchoring harpoon with the integrated MUPUS-accelerometer and temperature sensor. (Credit: "Philae Lander Fact Sheet", ESA)
The Philae Lander anchoring harpoon with the integrated MUPUS-accelerometer and temperature sensor. (Credit: “Philae Lander Fact Sheet”, ESA)

However, under each of the three foot pads, there are ice screws that will attempt to drill and secure Philae to the surface. This will depend on the harpoons and/or rockets functioning as planned, otherwise the action of the drills could experience resistance from hard ground and simply push the lander up rather than secure it down. Philae also has a on-board gyro to maintain its attitude during descent, and an impact dampener on the neck of the vehicle which attaches the main body to the landing struts.

Ten landing sites were picked, then down-selected to five, and then finally on September 15th, they selected Site J on the head of the smaller lobe – the head of the rubber duck, with site C as a backup. Uncertainty in the release and the trajectory of the descent to the comet’s surface means that the planners needed to find a square kilometer area for landing. But comet 67P/Churyumov-Gerasimenko simply offered no site with that much flat area clear of cliffs and boulders. Philae will be released to land at Site J which offers some smooth terrain but only about a quarter of the area needed to assure a safe landing. Philae could end up landing on the edge of a cliff or atop a large boulder and topple over.

A 'color' view of Comet 67P, from a September 24, 2014 NavCam image. Credits: ESA/Rosetta/NavCam - Processing by Elisabetta Bonora & Marco Faccin.
A ‘color’ view of Comet 67P, from a September 24, 2014 NavCam image. Credits: ESA/Rosetta/NavCam – Processing by Elisabetta Bonora & Marco Faccin.

The Rosetta ground control team will have no means of controlling and adjusting Philae during the descent. This is how it had to be because the light travel time for telecommunications from the spacecraft to Earth does not permit real-time control. The execution time and the command sequence will be delivered to Rosetta days before the November 12th landing. And ground control must maneuver Rosetta with Philae still attached to an exact point in space where the release of Philae must take place. Any inaccuracy in the initial release point will be translated all the way down to the surface and Philae would land some undesired distance away from Site J. However, ground controllers have a month and a half to practice simulations of the landing many times over with a model of the comet’s nucleus. With practice and more observational data between now and the landing, the initial conditions and model of the comet in the computer simulation will improve and raise the likelihood of a close landing to Site J.

Previous Universe Today articles on Rosetta’s Philae:

How do you land on a comet? Very carefully.

Rosetta’s Philae Lander: A Swiss Army Knife of Scientific Instruments

Comet’s Head Selected as Landing Site for Rosetta’s Historic Philae Lander

Busy Spaceport: There are Now Five Spaceships Parked at the Space Station

Five spacecraft are parked at the International Space Station including the Soyuz TMA-14M and Dragon which docked this week. Credit: NASA

Mars isn’t the only place in the Solar System that was busy this week with arriving spacecraft. While NASA’s MAVEN and ISRO’s MOM arrived in orbit around the Red Planet, the International Space Station also welcomed two arriving spacecraft, bringing the total of docked ships at the ISS to five.

Screenshot from NASA TV of the Soyuz-TMA14M arriving with just one solar panel deployed.
Screenshot from NASA TV of the Soyuz-TMA14M arriving with just one solar panel deployed.

Last night, the Expedition 41/42 crew arrived — peeling in on one solar panel on their Soyuz TMA-14M — with the first female cosmonaut to be part of an ISS crew, Elena Serova along with her crewmates cosmonaut Alexander Samokutyaev, and NASA astronaut Barry Wilmore. They took the Soyuz “fast track,” arriving at the station in just under six hours after launch. One of the craft’s solar panels jammed and couldn’t deploy, but the crew docked to Poisk docking compartment without indecent.

The arrival of Wilmore, Samokutyaev and Serova returns the station’s crew complement to six. Already on board are Commander Max Suraev of Roscosmos, Reid Wiseman of NASA and Alexander Gerst of the European Space Agency. They have been aboard the complex since May.

Suraev, Wiseman and Gerst will return home in November. At that time, Wilmore will become commander of the station for Expedition 42, and the remainder of the Expedition 42 crew will arrive in a new Soyuz.

Earlier this week, on September 23, the SpaceX Dragon capsule arrived with over 2.5 tons of science experiments and supplies for the crew.

Also docked to the space station is the Soyuz ship that will take Suraev, Wiseman and Gerst home, a Progress resupply ship and the European ATV-5 supply ship.

There are two more cargo missions targeted to launch to the space station before the end of the year. Orbital Sciences just announced October 20 as the next launch date for their Cygnus commercial space freighter. It will occupy the same Harmony node port as Dragon when it leaves in a few weeks. When Cygnus vacates the Harmony node port, SpaceX CRS-5 will replace it in December.

Have Astronomers Seen a Forming Planet in Action?

Image at 7 mm wavelength of the dusty disk around the star HD 169142 obtained with the Very Large Array (VLA) at 7 mm wavelength. The positions of the protoplanet candidates are marked with plus signs (+) (Osorio et al. 2014, ApJ, 791, L36). The insert in the upper right corner shows, at the same scale, the bright infrared source in the inner disk cavity, as observed with the Very Large Telescope (VLT) at 3.8 micron wavelength (Reggiani et al. 2014, ApJ, 792, L23).

Huge disks of dust and gas encircle many young stars. Some contain circular gaps — likely the result of forming planets carving out cavities along their orbital paths — that make the disks look more like ripples in a pond than flat pancakes.

But astronomers know only a few examples, including the archetypal disk surrounding Beta Pictoris, of this transitional stage between the original disk and the young planetary system. And they have never spotted a forming planet.

Two independent research teams think they’ve observed precisely this around the star HD 169142, a young star with a disk that extends up to 250 astronomical units (AU), roughly six times greater than the average distance from the Sun to Pluto.

Mayra Osorio from the Institute of Astrophysics of Andalusia in Spain and colleagues first explored HD 169142’s disk with the Very Large Array (VLA) in New Mexico. The 27 radio dishes configured in a Y-shape allowed the team to detect centimeter-sized dust grains. Then combining their results with infrared data, which traces the presence of microscopic dust, the group was able to see two gaps in the disk.

One gap is located between 0.7 and 20 AU, and the second larger gap is located between 30 and 70 AU. In our Solar System the first would begin at the orbit of Venus and end at the orbit of Uranus, while the second would begin at the orbit of Neptune, pass Pluto’s orbit, and extend beyond.

“This structure already suggested that the disk was being modified by two planets or sub-stellar objects, but, additionally, the radio data reveal the existence of a clump of material within the external gap, located approximately at the distance of Neptune’s orbit, which points to the existence of a forming planet,” said Mayra Osorio in a news release.

Maddalena Reggiani from the Institute for Astronomy in Zurich and colleagues then tried to search for infrared sources in the gaps using the Very Large Telescope. They found a bright signal in the inner gap, which likely corresponds to a forming planet or a young brown dwarf, an object that isn’t massive enough to kick start nuclear fusion.

The team was unable to confirm an object in the second gap, likely due to technical limitations. Any object with a mass less than 18 times Jupiter’s mass will remain hidden in the data.

Future observations will shed more light on the exotic system, hopefully allowing astronomers to better understand how planets first form around young stars.

Both papers have been published in the Astrophysical Journal Letters.

What Is This Bizarre Ball That The Curiosity Rover Found On Mars?

A "ball" of material on Mars taken by the Curiosity rover on Sol 746. Credit: NASA/JPL-Caltech/MSSS

It seems too round to be true — the Curiosity rover has found a ball-shaped object among the craggy rocks in its picture. This image was taken on Sol 746 of the rover’s mission on Mars, which so far has extended over two Earth years.

No, it’s not the leftover of a Martian baseball game and nor is it aliens. In fact, according to Discovery News (who is quoting NASA) it’s a kind of rock that shows evidence of water in the ancient past.

Ian O’Neill writes:

According to MSL scientists based at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Calif., the ball isn’t as big as it looks — it’s approximately one centimeter wide. Their explanation is that it is most likely something known as a “concretion.” Other examples of concretions have been found on the Martian surface before — take, for example, the tiny haematite concretions, or “blueberries”, observed by Mars rover Opportunity in 2004 — and they were created during sedimentary rock formation when Mars was abundant in liquid water many millions of years ago.

Curiosity is now at the base of Mount Sharp (Aeolis Mons) — its main science goal — and scientists are hoping to find more signs of habitable environments as the rover slowly prepares for the climb up the slope. Mission managers will need to be careful as the rover has battered wheels from rougher terrain than expected.

The rover already has found other evidence of water in its landing site of Gale Crater, such as this ancient lakebed that could have supported life.

India’s Bargain Mars Spacecraft Cost Less Than Many Space Movies

Artist's impression of India’s Mars Orbiter Mission (MOM). Credit: ISRO

India achieved a remarkable feat earlier this week — the nation became only one of a handful of countries to successfully send a probe to Mars. The $75 million mission has been hailed as an achievement by NASA and other space experts from around the world.

Just how remarkable is this bargain mission? As a tweet from travel writer Jon Tindale pointed out, MOM cost less than the 2000 Gary Sinise movie Mission To Mars. (Note that we came up with a different dollar figure below.)

Just for fun, we’ve compared MOM to several space movies below. All dollar figures are adjusted for inflation from budgets listed in the Internet Movie Database.

Avatar: $263 million ($237 million in 2009 dollars)

Wall-E: $199 million ($180 million in 2008 dollars)

The Fifth Element: $138 million ($93 million in 1997 dollars)

Mission to Mars: $124 million ($90 million in 2000 dollars)

Elysium: $117 million ($115 million in 2013 dollars)

Star Trek: The Motion Picture: $115 million ($35 million in 1979 dollars)

Gravity: $102 million ($100 million in 2013 dollars)

Apollo 13: $101.5 million ($62 million in 1995 dollars)

Dune (1984): $92 million ($40 million in 1984 dollars)

Close Encounters of the Third Kind: $76 million ($19.4 million in 1977 dollars)

2001: A Space Odyssey: $72 million ($10.5 million in 1968 dollars)

Mars Orbiter Mission: $70 million (2014 dollars)

The Right Stuff: $65 million ($27 million in 1983 dollars)

Serenity: $49 million ($40 million in 2005 dollars)

Star Wars (1977): $43 million ($11 million in 1977 dollars)

Outland: $42 million ($16 million in 1981 dollars)

Alien: $36 million ($11 million in 1979 dollars)

War of the Worlds (1953): $18 million ($2 million in 1953 dollars)

Silent Running: $6.2 million ($1.1 million in 1972 dollars)

Moon: $5.5 million ($5 million in 2009 dollars)

Apollo 18: $5.3 million ($5 million in 2011 dollars)

Cute Video Shows The Many Ways The Planets And Moons Can Kill You

A still from the Cyanide & Happiness animation "Don't Go To Space." Credit: Cyanide & Happiness / YouTube

While we’re huge advocates here for space exploration, there certainly is an inherent danger to leaving the Earth. In a humorous way, this new video from the comic Cyanide & Happiness shows why you want to be cautious when exploring space.

As the video shows you, the Moon is airless (which is especially painful if you can’t afford an expensive spacesuit), Venus will boil you alive and Jupiter will crush you under the weight of many, many Earth equivalents.

So is it safe to stay on Earth itself? Watch the video for the answer. Overall, this animation goes to show you how important mission planning is when it comes to protecting astronauts and spacecraft during long journeys through the solar system.