Photos: Readers Share Memories Of NASA’s Final Shuttle Launches

STS-135 Atlantis lifts off on July 8, 2011 with a crowd of people watching the event, the last launch of the shuttle program. Credit: Remco Timmermans

With the three-year anniversary this week of STS-135 — the final launch of the program — we invited readers of Universe Today to send in your pictures of shuttle experiences. We’ve been spoiled with several entries into our Flickr pool, which we’ve posted below.

Also, noted space tweep Remco Timmermans generously provided us with dozens of pictures, of which we chose just a few to represent his experiences at STS-135. That picture at the top gave us goosebumps. Down below you can see more of Remco’s shots (thank you!) and some of the best other shots that readers sent in.

NASA astronauts Mike Massimino (left) and Douglas Wheelock flank Elmo during a NASA tweetup in July 2011 for the last shuttle launch, STS-135. Credit: Remco Timmermans
NASA astronauts Mike Massimino (left) and Douglas Wheelock flank Elmo during a NASA tweetup in July 2011 for the last shuttle launch, STS-135. Credit: Remco Timmermans
A sign points to the NASA Tweetup location for STS-135, the final shuttle launch, in July 2011. Credit: Remco Timmermans
A sign points to the NASA Tweetup location for STS-135, the final shuttle launch, in July 2011. Credit: Remco Timmermans
Shuttle Atlantis prior to the last launch of the program, STS-135, in July 2011. Credit: Remco Timmermans
Shuttle Atlantis prior to the last launch of the program, STS-135, in July 2011. Credit: Remco Timmermans
Launch Pad 39A is illuminated by light prior to the launch of Atlantis for STS-135 in July 2011. Credit: Remco Timmermans
Launch Pad 39A is illuminated by light prior to the launch of Atlantis for STS-135 in July 2011. Credit: Remco Timmermans
The "Astrovan" (right) ferries the STS-135 crew to Launch Pad 39A prior to the July 8, 2011 launch, the last of the shuttle program. Credit: Remco Timmermans
The “Astrovan” (right) ferries the STS-135 crew to Launch Pad 39A prior to the July 8, 2011 launch, the last of the shuttle program. Credit: Remco Timmermans
One of the shuttle's external rocket boosters is towed back to port following the launch of STS-135 in July 2011, the last of the shuttle program. Source: Remco Timmermans
One of the shuttle’s external rocket boosters is towed back to port following the launch of STS-135 in July 2011, the last of the shuttle program. Source: Remco Timmermans

Thanks also to numerous other Universe Today contributors who posted pictures to our Flickr pool. We’ll include some samples below. Nathanial Burton-Bradford who provided a 3-D picture of Atlantis lifting off on its last flight (use red and blue glasses to view properly):

A 3-D picture of Atlantis lifting off on the last shuttle mission of the program, STS-135, on July 8, 2011. Credit:  Nathanial Burton-Bradford
A 3-D picture of Atlantis lifting off on the last shuttle mission of the program, STS-135, on July 8, 2011. Credit: Nathanial Burton-Bradford

Robert Karma provided several stunning pictures of STS-131, which featured Discovery, including one showing the shuttle rising high in the sky beside the American flag, and another with the moment the solid rocket boosters separated from Discovery:

STS-131 Discovery flies high in the sky following its launch Feb. 24, 2011. Credit: Robert Karma
STS-131 Discovery flies high in the sky following its launch Feb. 24, 2011. Credit: Robert Karma
The solid rocket boosters separate from Discovery during the flight of STS-131 on Feb. 24, 2011. Credit: Robert Karma
The solid rocket boosters separate from Discovery during the flight of STS-131 on Feb. 24, 2011. Credit: Robert Karma

Also, thanks to Ralph Hightower for providing this image of STS-135 on Flickr:

The STS-135 Atlantis launch viewed from the NASA Causeway in Florida on July 8, 2011. Credit:  Ralph Hightower
The STS-135 Atlantis launch viewed from the NASA Causeway in Florida on July 8, 2011. Credit: Ralph Hightower

Rosetta’s Comet Looks Like A Kidney Flying Through Space

The Rosetta spacecraft captured these pictures of its destination, Comet 67P/Churyumov-Gerasimenko, from 23,000 miles (37,000 kilometers) away on July 4, 2014. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Up for a little abstract art, anyone? The latest images of the nucleus of Rosetta’s comet makes it look like the celestial object is a kidney. Or perhaps a bean. But regardless of what you “see” in the shape, scientists agree that the comet’s heart certainly isn’t round.

It’s a tantalizing view as the spacecraft speeds towards Comet 67P/Churyumov-Gerasimenko for an August rendezvous. These pictures were taken just a few days ago from 23,000 miles (37,000 kilometers) away, and the spacecraft is drawing noticeably nearer every week. What will a closer view reveal?

“Irregular, elongated, and structured shapes are not uncommon for small bodies such as asteroids and comets,” stated the Max Planck Institute for Solar System Research in a release. “Of the five cometary nuclei that have been visited by spacecraft in close flybys so far, all are far from spherical.”

To illustrate, we’ve put some examples below of the other comets that have had close-up views:

Jets can be seen streaming out of the nucleus, or main body, of comet Hartley 2 in this image from NASA's EPOXI mission. The nucleus is approximately 2 kilometers (1.2 miles) long and .4 kilometers (.25 miles) across at the narrow "neck."  Credit: NASA/JPL-Caltech/UMD
Jets can be seen streaming out of the nucleus, or main body, of comet Hartley 2 in this image from NASA’s EPOXI mission. The nucleus is approximately 2 kilometers (1.2 miles) long and .4 kilometers (.25 miles) across at the narrow “neck.” Credit: NASA/JPL-Caltech/UMD
Halley's Comet, as seen by the European Giotto probe. Credit: Halley Multicolor Camera Team, Giotto Project, ESA
Halley’s Comet, as seen by the European Giotto probe. Credit: Halley Multicolor Camera Team, Giotto Project, ESA
NASA's Stardust-NExT mission took this image of comet Tempel 1 at 8:39 p.m. PST (11:39 p.m. EST) on Feb 14, 2011. The comet was first visited by NASA's Deep Impact mission in 2005. Credit: NASA/JPL-Caltech/Cornell. Image brightened and enhanced to show additional detail.
NASA’s Stardust-NExT mission took this image of comet Tempel 1 at 8:39 p.m. PST (11:39 p.m. EST) on Feb 14, 2011. The comet was first visited by NASA’s Deep Impact mission in 2005. Credit: NASA/JPL-Caltech/Cornell. Image brightened and enhanced to show additional detail.
comet Borrelly's 5-mile (8-kilometer) long nucleus taken from more than 2,000 miles (3,400 kilometers) away. Picture from NASA's Deep Space 1 probe. Credit: NASA/JPL
Comet Borrelly’s 5-mile (8-kilometer) long nucleus taken from more than 2,000 miles (3,400 kilometers) away. Picture from NASA’s Deep Space 1 probe. Credit: NASA/JPL
The nucleus of Comet 81P/Wild taken by NASA's Stardust probe in 2004. Credit: NASA
The nucleus of Comet 81P/Wild taken by NASA’s Stardust probe in 2004. Credit: NASA

The new pictures from Rosetta come shortly after the spacecraft caught its comet tumbling through space. It’s not really known for sure what the nucleus will look like, although several artists have lent their ideas over the years. Luckily, the European Space Agency probe will give us a very close-up view of the comet, as it plans to deploy a lander called Philae to land on the comet’s surface in November.

Both Rosetta and Philae successfully awoke from hibernation earlier this year and all systems appear to be working well so far as they get ready for the close-up encounter with the comet. The spacecraft have been flying through space for about a decade, and will remain with Comet 67P/Churyumov-Gerasimenko as it sweeps to its closest approach to the sun in 2015, between the orbits of Earth and Mars.

Blast! Sun Pops Off A Moderate Solar Flare. Could Others Follow Soon?

A moderate solar flare erupts on the sun July 8, 2014 in this image from NASA's Solar Dynamics Observatory. Credit: NASA/SDO

With a watchful NASA spacecraft capturing its moves, the Sun sent off a “mid-level” solar flare on Tuesday (July 8) that you can watch (over and over again) in the video above. The Solar Dynamics Observatory caught the explosion around 12:20 p.m. EDT (4:20 p.m. UTC), which led into a coronal mass ejection that sent a surge of solar material into space.

Solar flares can be disruptive to Earth communications and also cause auroras in the atmosphere. In this case, the M6 solar flare created “short-lived impacts to high frequency radio communications on the sunlit side of Earth … as a result,” wrote the National Oceanic and Atmospheric Administration in a forecast July 8.

In this case, however, the coronal mass ejection (seen by the Solar Dynamics Observatory) is not expected to hit Earth. But with the Sun around its maximum of solar activity in the 11-year cycle, other eruptions could head into space in the coming days. M is considered a moderate flare and X the strongest kind.

“Solar activity is low, but the quiet is unlikely to persist,” wrote SpaceWeather.com in an update published today (July 10). “There are three sunspots with unstable magnetic fields capable of strong eruptions: AR2108, AR2109, AR2113. NOAA forecasters estimate a 75% chance of M-flares and 15% chance of X-flares on July 10th.”

This flare caused a surge in shortwave activity that you can hear in this audio file, recorded by New Mexico amateur astronomer Thomas Ashcraft. “Radio bursts such as these are sparked by shock waves moving through the sun’s atmosphere,” SpaceWeather added. “Set in motion by flares, these shock waves excite plasma instabilitties that emit static-y radio waves.”

The Planetary Society’s Solar Sail Will Hitch a Ride to Space on a Falcon Heavy

The Planetary Society's LightSail-1 solar sailing spacecraft is scheduled to ride a SpaceX Falcon Heavy rocket to orbit in 2016 with its parent satellite, Prox-1. Credit: Josh Spradling/The Planetary Society.

In a live webcast, The Planetary Society CEO Bill Nye announced that its long-awaited LightSail solar sail mission will launch to Earth orbit on a SpaceX Falcon Heavy, currently scheduled for an April 2016 liftoff. LightSail-1 and its parent satellite, Prox-1, will be on the same launch vehicle as the U.S. Air Force’s Space Test Program 2 (STP-2) mission. If successful, it will be the first CubeSat to demonstrate controlled solar sailing.

“It’s fantastic that at last we have a launch date for this pioneering mission,” said Nye.

The Planetary Society has raised over $4 million for the mission, but according to Jason Davis from TPS, the launch costs will be paid by the USAF and Georgia Institute of Technology, which developed the Prox-1, a technology demonstration for using small satellites to autonomously inspect other spacecraft.

LightSail will go to an orbit about 720 km above Earth, stored inside the Prox-1, which was developed by the Georgia Institute of Technology to demonstrate new technologies enabling two spacecraft to work in close proximity. After ejecting LightSail, the largely student-built Prox-1 will track and image LightSail, including the sail deployment.

Here’s the LightSail-1 mission trailer:

According to TPS, cubesats utilize a standard design based on 10-centimeter (about 4-inch) cubes. LightSail is three cubes, or just 30 centimeters long. Tucked inside this tiny package are four ultra-thin Mylar sails that will be deployed a few weeks after orbital insertion. The reflective wings will expand to 32 square meters (344 square feet), making LightSail easily visible to naked eye observers on Earth.

There might be a test flight of a prototype LightSail-A on a smaller rocket, perhaps in 2015. This flight will only reach low earth orbit, where the atmosphere is too thick for a solar sail to function, but it will allow the LightSail team to check the operation of vital systems in the extreme environment of space. That team includes faculty and students at California Polytechnic State University in San Luis Obispo.

While the test flight would only stay in orbit for a week or so, the 2016 main LightSail mission should remain in orbit for several years.

Solar sails are not new, and have already been launched and deployed in space, but have had limited success. The Japanese Ikaros satellite unfurled a 14-meter solar sail back in 2010. NASA launched the Nanosail-D spacecraft in 2011 and is expected to launch the Sunjammer solar sail in early 2015.

A spacecraft propelled by a solar sail uses the sail to capture photons emitted from the Sun. Over time, the buildup of the solar photons provides enough thrust for a small spacecraft to travel in space. Solar sails could one day be an alternative to conventional propellant-based spacecraft.

The Planetary Society has a long history of solar sail activity. In June 2005, the Society attempted to launch Cosmos 1, which would have been the first solar sail in space. The failure of a Russian booster doomed that effort, but then proceeded with fundraising for the Lightsail mission.

Find out more details about the LightSail mission at the Planetary Society, and here’s Fraser with more details about solar sails:

NameExoWorlds, an IAU Worldwide Contest to Name Alien Planets, Continues Controversy

This artist’s view shows an extrasolar planet orbiting a star (the white spot in the right).
This artist’s view shows an extrasolar planet orbiting a star (the white spot in the right). Image Credit: IAU/M. Kornmesser/N. Risinger (skysurvey.org)

The International Astronomical Union has unveiled a worldwide contest, NameExoWorlds, which gives the public a role in naming planets and their host stars beyond the solar system.

It’s the latest chapter in a years-long controversy over how celestial objects, including exoplanets, are classified and named.

Although the IAU has presided over the long process of naming astronomical objects for nearly a century, until last year they didn’t feel the need to include exoplanets on this long list.

As late as March 2013, the IAU’s official word on naming exoplanets was: “The IAU sees no need and has no plan to assign names to these objects at the present stage of our knowledge.” Since there was seemingly going to be so many exoplanets, the IAU saw it too difficult to name them all.

Other organizations, however, such as the SETI institute and the space company Uwingu leapt at the opportunity to engage the public in providing names for exoplanets. Their endeavors have been widely popular with the general public, but generated discussion about how ‘official’ the names would be.

The IAU issued a later statement in April 2014 (which Universe Today covered with vigor) and claimed that these two campaigns had no bearing on the official naming process. By August 2014, the IAU had introduced new rules for naming exoplanets, drastically changing their stance and surprising many.

Now in partnership with Zooniverse, a citizen-science organization, the IAU has drawn up a list of 305 well-characterized exoplanets in 206 solar systems. Starting in September, astronomy organizations can register for the opportunity to select planets for naming.

In October, the IAU plans to ask the registered organizations to vote for the 20 to 30 worlds on the list that they want to name. The exact number will depend on the number of registered groups. In December, those groups can propose names for the worlds that get the most votes. Groups can only propose names in accordance with the following set of rules. A name must be:

—   16 characters or less in length

—   Preferably one word

—   Pronounceable (in some language)

—   Non-offensive

—   Not too similar to an existing name of an astronomical object

Starting in March 2015, the list of proposed names will be put up to an Internet vote. The winners will be validated by the IAU, and announced during a ceremony at the IAU General Assembly in Honolulu in August 2015.

The popular name for a given exoplanet won’t replace the scientific name. But it will carry the IAU seal of approval.

Astronomer Alan Stern, principal investigator of the New Horizons mission to Pluto and CEO of Uwingu told Universe Today’s Senior Editor, Nancy Atkinson, that he was not surprised by the IAU’s new statement. “To my eye though, it’s just more IAU elitism, they can’t seem to get out of their elitist rut thinking they own the Universe.”

“Uwingu’s model is in our view far superior — people can directly name planets around other stars, with no one having to approve the choices,” Stern continued. “With 100 billion plus planets in the galaxy, why bother with committees of elites telling people what they do and don’t approve of?”

If nothing else, the controversy has sparked multiple venues to name exoplanets and more importantly learn about these alien worlds.

‘Vulnerable’ Earth-Like Planets Could Survive With Friction: Study

Flexible planets: NASA is studying how planets in eccentric orbits flex due to tidal forces. At left is a planet with a thick ice shell, and at right a terrestrial-type planet. Credit: NASA's Goddard Space Flight Center

If you’re a potentially habitable world orbiting in a zone where liquid water can exist — and then a rude gas giant planet happens to disturb your orbit — that could make it difficult or impossible for life to survive.

But even in the newly eccentric state, a new study based on simulations shows that the orbit can be made more circular again quite quickly, taking only a few hundred thousand years to accomplish. The key is the tidal forces the parent star exerts on the planet as it moves in its orbit, flexing the interior and slowing the planet down to a circular orbit.

“We found some unexpected good news for planets in vulnerable orbits,” stated Wade Henning, a University of Maryland scientist who led the work and who is working at NASA’s Goddard Space Flight Center in Maryland. “It turns out these planets will often experience just enough friction to move them out of harm’s way and into safer, more-circular orbits more quickly than previously predicted.

The transition period wouldn’t be pretty, since NASA states the planets “would be driven close to the point of melting” or have a “nearly melted layer” on them. The interior could also host magma oceans, depending on how intense the friction is. But a softer planet flexes more easily, allowing it to generate heat, bleed that energy off into space and gradually settle into a circular orbit. When tidal heating ceases, then life could possibly take hold.

This artists' rendition shows a super-Earth, or low mass exoplanet, orbiting close to its parent star. Credit:  Keck Observatory
This artists’ rendition shows a super-Earth, or low mass exoplanet, orbiting close to its parent star. Credit: Keck Observatory

Another possibility is the eccentric orbit itself may be enough to keep life happy, at least for a while. If the planet is colder and stiffer, and orbiting far from its star, it’s possible the tidal flexing would serve as an energy source for life to survive.

Think of a situation like Europa near Jupiter, where some scientists believe the moon could have a subsurface ocean heated by interactions with the gas giant.

The model covers planets that are between the size of Earth and 2.5 times larger, and future studies will aim to see how layers in the planet change over time.

Source: NASA

A New Image of Europa Emerges

Europa's icy, cracked surface imaged by NASA's Galileo spacecraft Credit: NASA/JPL-Caltech/SETI Institute

Eureka – it’s Europa! And a brand-new image of it, too! (Well, kinda sorta.)

The picture above, showing the icy moon’s creased and cracked surface, was made from images acquired by NASA’s Galileo spacecraft during its exploration of Jupiter and its family of moons in 1997 and 1998. While the data itself isn’t new per se the view seen here has never been released by JPL, and so it’s new to you! (And to me too.)

Europa's bizarre surface features suggest an actively churning ice shell above a salty liquid water ocean.  Credit: JPL
Europa’s bizarre surface features suggest an actively churning ice shell above a salty liquid water ocean. Credit: JPL

The original high-resolution images were acquired on Nov. 6, 1997, in greyscale and colorized with data acquired during a later pass by Galileo in 1998. The whiter areas are regions of relatively pure water ice, while the rusty red bands are where ice has mixed with salts and organic compounds that have oozed up from deeper within Europa.

Read more: Hydrogen Peroxide Could Feed Life on Europa

The entire image area measures about 101 by 103 miles across (163 km x 167 km).

Europa has long been one of the few places we know of outside our own planet where life could very well have evolved and potentially still exist. Getting a peek below the icy moon’s frozen crust — or even a taste of the recently-discovered water vapor spraying from its south pole — is all we’d need to further narrow down the chances that somewhere, something could be thriving in Europa’s subsurface seas. Get a planetary scientist’s perspective in a video interview with Dr. Mike Brown here.

Launched in October 1989, the Galileo spacecraft arrived at Jupiter in December 1995. Through primary and extended missions Galileo explored the giant planet and its family of moons until plunging into Jupiter’s atmosphere on September 21, 2003. Learn more about Galileo here, and check out some of the amazing images it acquired on the CICLOPS imaging diary page here.

Source: NASA’s Planetary Photojournal

Something In Big Dipper ‘Blob’ Is Sending Out Cosmic Rays, Study Says

A map of cosmic ray concentrations in the northern sky, showing a "hotspot" (red) in the location of the Big Dipper. Credit: K. Kawata, University of Tokyo Institute for Cosmic Ray Research

Behind the Big Dipper is something pumping out a lot of extremely high-energy cosmic rays, a new study says. And as astronomers try to learn more about the nature of these emanations — maybe black holes, maybe supernovas — newer work hints that it could be related to how the universe is structured.

It appears that the particles come from spots in the cosmos where matter is densely packed, such as in “superclusters” of galaxies, the researchers stated, adding this is promising progress for tracking down the source of the cosmic rays.

“This puts us closer to finding out the sources – but no cigar yet,” stated University of Utah physicist Gordon Thomson, co-principal investigator for the Telescope Array that performed the observations. “All we see is a blob in the sky, and inside this blob there is all sorts of stuff – various types of objects – that could be the source,” he added. “Now we know where to look.”

The study examined the highest-energy cosmic rays that are about 57 billion billion electron volts (5.7 times 10 to the 19th power), picking that type because it is the least affected by magnetic field lines in space. As cosmic rays interact with the magnetic field lines, it changes their direction and thus makes it harder for researchers to figure out where they came from.

Astrophoto: Ursa Major and Big Dipper Among the Red Clouds by Rajat Sahu
Ursa Major and Big Dipper Among the Red Clouds. Credit: Rajat Sahu

Scientists used a set of 500 detectors called the Telescope Array, which is densely packed in a 3/4 mile (1.2 kilometer) square grid in the desert area of Millard County, Utah. The array recorded 72 cosmic rays between May 11, 2008 and May 4, 2013, with 19 of those coming from the “hotspot” — a circle 40 degrees in diameter taking up 6% of the sky. (Researchers are hoping for funding for an expansion to probe this area in more detail.)

It’s possible the hotspot could be a fluke, but not very possible, the researchers added: there’s a 1.4 in 10,000 chance. And they’re keeping themselves open to many types of sources: “Besides active galactic nuclei and gamma ray emitters, possible sources include noisy radio galaxies, shock waves from colliding galaxies and even some exotic hypothetical sources such as the decay of so-called ‘cosmic strings’ or of massive particles left over from the big bang that formed the universe 13.8 billion years ago,” the researchers stated.

Cosmic rays were first discovered in 1912 and are believed to be hydrogen nuclei or the centers of nuclei from heavier elements like iron or oxygen. The highest-energy ones in the study may come from protons alone, but that’s not clear yet.

The paper is available in preprint version on Arxiv, and has been accepted for publication in Astrophysical Journal Letters.

Source: University of Utah

Supermassive Black Hole Blasting Molecular Hydrogen Solves Outstanding Mystery

An artist's conception of a supermassive black hole's jets. Credit: NASA / Dana Berry / SkyWorks Digital
An artist's conception of a supermassive black hole's jets. Credit: NASA / Dana Berry / SkyWorks Digital

The supermassive black holes in the cores of most massive galaxies wreak havoc on their immediate surroundings. During their most active phases — when they ignite as luminous quasars — they launch extremely powerful and high-velocity outflows of gas.

These outflows can sweep up and heat material, playing a pivotal role in the formation and evolution of massive galaxies. Not only have astronomers observed them across the visible Universe, they also play a key ingredient in theoretical models.

But the physical nature of the outflows themselves has been a longstanding mystery. What physical mechanism causes gas to reach such high speeds, and in some cases be expelled from the galaxy?

A new study provides the first direct evidence that these outflows are accelerated by energetic jets produced by the supermassive black hole.

Using the Very Large Telescope in Chile, a team of astronomers led by Clive Tadhunter from Sheffield University, observed the nearby active galaxy IC 5063. At locations in the galaxy where its jets are impacting regions of dense gas, the gas is moving at extraordinary speeds of over 600,000 miles per hour.

“Much of the gas in the outflows is in the form of molecular hydrogen, which is fragile in the sense that it is destroyed at relatively low energies,” said Tadhunter in a press release. “I find it extraordinary that the molecular gas can survive being accelerated by jets of highly energetic particles moving at close to the speed of light.

As the jets travel through the galactic matter, they disrupt the surrounding gas and generate shock waves. These shock waves not only accelerate the gas, but also heat it. The team estimates the shock waves heat the gas to temperatures high enough to ionize the gas and dissociate the molecules. Molecular hydrogen is only formed in the significantly cooler post-shock gas.

“We suspected that the molecules must have been able to reform after the gas had been completely upset by the interaction with a fast plasma jet,” said Raffaella Morganti from the Kapteyn Institute Groningen University. “Our direct observations of the phenomenon have confirmed that this extreme situation can indeed occur. Now we need to work at describing the exact physics of the interaction.”

In interstellar space, molecular hydrogen forms on the surface of dust grains. But in this scenario, the dust is likely to have been destroyed in the intense shock waves. While it is possible for molecular hydrogen to form without the aid of dust grains (as seen in the early Universe) the exact mechanism in this case is still unknown.

The research helps answer a longstanding question — providing the first direct evidence that jets accelerate the molecular outflows seen in active galaxies — and asks new ones.

The results were published in Nature and are available online.

The Waters Of Mars: New Map Shows Something Unexpected

A portion of a 2014 Mars map showing the area east of Hellas basin, at midsoutherly latitudes. Credit: USGS

Where did the water on Mars come from, and where did it go? This plot (sort of) formed the basis of one of the best Doctor Who episodes of the modern era, but in all seriousness, it is also driving scientists to examine the Red Planet over and over again.

This means revisiting older information with newer data to see if everything still matches up. From time to time, it doesn’t. The latest example came when scientists at the U.S. Geological Survey created a map of the canyon systems of Waikato Vallis and Reull Vallis, which are in the midsoutherly latitudes of Mars.

They previously believed the canyons were connected, but updating the data from an understanding based on 1980s Viking data revealed a different story.

“These canyons are believed to have formed when underground water was released from plains materials to the surface, causing the ground to collapse. The water could have been stored within the plains in localized aquifers or as ice, which could have melted due to the heat from nearby volcanoes,” the U.S. Geological Survey stated.

Part of the floor of Reull Vallis, a valley east of Hellas Basin on Mars. Picture taken by Mars Global Surveyor. Credit: NASA/JPL/Malin Space Science Systems
Part of the floor of Reull Vallis, a valley east of Hellas Basin on Mars. Picture taken by Mars Global Surveyor. Credit: NASA/JPL/Malin Space Science Systems

But the newer data — looking at information from the Mars Reconnaissance Orbiter, Mars Odyssey, Mars Global Surveyor — revealed the canyons are quite separate, demarcated by a zone called Eridania Planitia in between.

“Careful estimates of the ages of the canyons and the plains reveal a sequence of events starting with the water released from Waikato Vallis, which would have been stored for a time in the plains as a shallow lake. As Reull Vallis was forming separately, the canyon breached a crater rim that was holding back the water in the lake; the lake drained gradually, which can be seen by many smaller channels incised on the floor of Reull Vallis.”

The map was co-produced by Scott Mest and David Crown, who are both of the Planetary Science Institute. You can view the entire map and related materials here.

Source: Planetary Science Institute