The Nicaragua Crater: The Result of a Meteorite Impact or Not?

The suspect crater on the outskirts of Managua. Credit: AP/BBC News

By now, you’ve seen the pictures.

As astronomers tracked the close pass of Near Earth Asteroid 2014 RC this weekend, reports came out of Nicaragua that a possible meteorite struck near the capital of Managua.

Details are still sketchy, but government sources cite reports of a loud bang and ground tremor late Saturday night on September 6th. Later images circulating late Sunday evening showed a crater 12 metres wide and 5.5 metres deep on a remote section of the international airport at Managua, which also hosts a local air force installation.

A closer look at the Managua crater. Credit: AFP/BBC News.
A closer look at the Managua crater. Credit: AFP/BBC News.

Reports state that the impact went off “like a bomb,” and Wilfried Strauch of the Nicaragua Institute of Earth Studies has already gone on record as being “convinced it was a meteorite.” Investigators are currently scouring the alleged impact site for debris.

This has also sparked a lively discussion across forums and social media: is the crater the result of an extraterrestrial impactor?

Of course, cosmic coincidences can and do happen. Last year, the close passage of asteroid 2012 DA14 was upstaged by the explosion of a 20-metre asteroid over the city of Chelyabinsk on the very same day. And though the two were conclusively proven to be unrelated, they did serve to raise general human awareness that, yes, large threatening rocks do indeed menace the Earth. And ironically, the aforementioned asteroid 2014 RC was about the same size as the Chelyabinsk asteroid, which snuck up on the Earth undetected from a sunward direction.

But Ron Baalke, a software engineer at the Jet Propulsion Laboratory has posted an update to the close pass by asteroid 2014 RC on the NASA’s Near Earth Object website, saying, “Since the explosion in Nicaragua occurred a full 13 hours before the close passage of asteroid 2014 RC, these two events are unrelated.”

Baalke also noted that “no eyewitness accounts or imagery have come to light of the fireball flash or debris trail that is typically associated with a meteor of the size required to produce such a crater.”

The epic airburst over Chelyabinsk as captured via dashcam.
The epic airburst over Chelyabinsk as captured via dashcam. (Still from video).

There are a few other problems with the Managua crater, though of course, we’d love to be proven wrong. Many observers have noted that the crater does not appear to look fresh, and the trees and soil around it appear to be relatively undisturbed. A first visual impression of the site looks more like a ground slump or sinkhole than an impact, or perhaps an excavation. Others have also noted the similarity of the crater with a military blast, a very good possibility with an air force base nearby.

Meteorite Men’s own Geoff Notkin has voiced doubts as to the authenticity of the meteor crater on Twitter.

Of course, it’s possible (though unlikely) that the impactor struck the site from straight overhead, leaving the area around it undisturbed. As with meteor showers, an impactor striking the Earth before local midnight would be coming at the planet from behind at a lower combined velocity.

Color me skeptical on this one. Still, we’ve been wrong before, and it’s always a boon for science when a new meteorite fall turns out to be real. Many have already cited the similarities between the Managua crater and the Carancas event in 2007 in Peru near Lake Titicaca that was initially considered dubious as well.

But again, it’s highly improbable that the Managua event is related to 2014 RC, however, which made its closest pass over the southern hemisphere near New Zealand many hours later at 18:18 UT on Sept 7th. We ran a recent simulation of the pass in Starry Night from the vantage point of the asteroid, and you’ll note that Central America is well out of view:

It’s also curious that no still images or video of the Managua event have yet to surface. This is strange, as it occurred on a Saturday night near a capital city of 2.4 million. The weather over Managua was partly cloudy that night, and generally, a security camera or two usually catches sight of the fireball.

We also did a check through any upcoming space junk reentries, which also proved to be a poor fit for a potential suspect. The next slated reentry is a BREEZE-M Tank with the NORAD ID of 2011-074D associated with the 2011 launch of AMOS-5. This object was not overhead around the time of the Managua event, and is predicted to reenter on September 9th at 15:15 UT +/- 14 hours.

And the same goes for the launch of AsiaSat-6 by SpaceX on Saturday night, as launches from the Cape head out eastward across the Atlantic and away from the Gulf of Mexico region.

A look at 2014 RC on the night of September 6th. Credit Gialuca Masi and the Virtual Telescope project.
A look at 2014 RC on the night of September 6th. Credit: Gianluca Masi and the Virtual Telescope Project.

Unfortunately, images and video would go a long way towards gauging a direction and final orbit of a suspect meteorite. The discovery of meteoritic debris at the site would also serve to clinch the link between the crater and a cosmic impactor as well. Or perhaps, news of the impending passage of NEO asteroid 2014 RC and the recent pass of 2014 RA the weekend prior had already primed the general public to suspect a meteor strike as an explosion was heard late in the evening… we’ve lived near bombing ranges, and are familiar with the sound of late night explosions ourselves.

An aerial view of Pingualuit crater in northern Quebec. Credit: NASA/Denis Sarrazin and the Pingualuit Crater Lakes project.
Target Earth… An aerial view of Pingualuit crater in northern Quebec. Credit: NASA/Denis Sarrazin and the Pingualuit Crater Lakes project.

To be sure, the universe is a dangerous place, and errant rocks from above do on occasion have it out for any unwary species that gets in their way.

So we’ll open it up for discussion: what do you think happened on Saturday night near Managua? Was it a meteorite, or another case of a “meteor-wrong?”

 

China’s Yutu Rover Is Still Alive, Reports Say, As Lunar Panorama Released

A still from CCTV showing part of a panorama from the Yutu rover. Credit: CCTV/YouTube

It hasn’t been an easy few lunar months for the Yutu rover, which reportedly had problems positioning its solar panels in March while exploring the lunar surface. That said, reports are emerging that the rover is still alive. Along with those reports came a new panorama released in time for the Moon Festival in that country.

As you can see in the video above, the new panorama shows the Chang’e-3 lander and the tracks of the Yutu rover in the Mare Imbrium (Sea of Rains). The duo landed on the Moon on Dec. 14, 2013, with the rover on the top. Yutu then drove on its six wheels on to the surface only about seven hours after the touchdown happened.

The act was hailed as an accomplishment for China, which is the third nation to make a soft landing on the moon after the Soviet Union and the United States. It also was the first to touch down on the moon in more than a generation, as other lunar programs have focused on orbiters (such as NASA’s Lunar Reconnaissance Orbiter, which remains in operation above.)

According to the Twitter account UHF Satcom, the X-band carrier signal for Yutu was strongly audible from Earth yesterday (Sept. 7), although the lander was not audible.

Wanna Trip To Space? To Raise Money, Mars One Is Offering A Lynx Joyride

XCOR Aerospace's Lynx suborbital vehicle is designed to fly to 328,000 feet (Credit: XCOR)

Private trips to space are pricey, but from time to time contests come up that offer even those of modest means the chance to get there.

Take Mars One’s latest publicity campaign, which is to offer a chance for a trip upon the (so-far-unflown-in-space) Lynx spacecraft in exchange for donating to the organization, which plans to launch a one-way human trip to Mars in the next decade.

“The campaign will provide funding for a 2015 Earth mission, which is a simulation project to replicate the future Mars human settlement here on Earth, as well as the 2018 Mars mission to Mars,” Mars One stated.

The campaign, called “Ticket To Rise“, is essentially a fundraising campaign for Mars One. The group is selling memberships, selfies of photographs with Mars in the background (during a 2018 mission), T-shirts and at the high end, coins or attendance at VIP events.

Artist's conception of Mars One human settlement. Credit: Mars One/Brian Versteeg
Artist’s conception of Mars One human settlement. Credit: Mars One/Brian Versteeg

The Mars One plan to bring people to the planet has generated lots of publicity among the media, amid skepticism that the funding and technology could be available to bring people to the Red Planet starting in 2024. The organization began whittling down applicants this year and as of May, said there are now 705 “potential Mars settlers” remaining.

If successful, Mars One hopes to bring settlers to the Red Planet every two years, four people at a time, and leave them there to establish a colony. The organization says there are “no new technology developments” needed to get people to Mars, and that it has gone to “major aerospace companies around the world” to figure out what needs to be done.

The XCOR Lynx spacecraft is one of a small number of vehicles competing for the chance to bring wealthy people into space. From time to time, the company has partnered with other entities (such as men’s grooming company AXE) to run contests to drum up interest in their product, which so far is unflown in space.

Rosetta’s Cloudy Comet Shroud Spotted From The Ground, While Spacecraft Picks Up Dust Grains

A composite image of Rosetta's target (Comet 67P/Churyumov–Gerasimenko) obtained by the Very Large Telescope. Credit: C. Snodgrass/ESO/ESA

This picture shows it is possible to look at Rosetta’s comet from Earth, but what a lot of work it requires! The picture you see above is a composite of 40 separate images taken by the Very Large Telescope (removing the background stars).

Despite the fact that Rosetta is right next to Comet 67P/Churyumov–Gerasimenko, ground-based observatories are still useful because they provide the “big picture” on what the comet looks like and how it is behaving. It’s an observational challenge, however, as the comet is still more than 500 million kilometers (310 million miles) from the Sun and hard to see.

On top of that, the European Space Agency says the comet is sitting in a spot in the sky where it is difficult to see it generally, as the Milky Way’s prominent starry band is just behind. But what can be seen is spectacular.

“Although faint, the comet is clearly active, revealing a dusty coma extending at least 19 000 km [11,800 miles] from the nucleus,” ESA stated. “The comet’s dusty veil is not symmetrical as the dust is swept away from the Sun – located beyond the lower-right corner of the image – to begin forming a tail.”

And that dust is beginning to show up in Rosetta’s grain collector, as you can see below!

Rosetta's dust collector, Cometary Secondary Ion Mass Analyser (COSIMA), collected its first grains from Comet 67P/Churyumov–Gerasimenko in August 2014. This image shows before and after images of the collection. Credit: ESA/Rosetta/MPS for COSIMA Team MPS/CSNSM/UNIBW/TUORLA/IWF/IAS/ESA/ BUW/MPE/LPC2E/LCM/FMI/UTU/LISA/UOFC/vH&S
Rosetta’s dust collector, Cometary Secondary Ion Mass Analyser (COSIMA), collected its first grains from Comet 67P/Churyumov–Gerasimenko in August 2014. This image shows before and after images of the collection. Credit: ESA/Rosetta/MPS for COSIMA Team MPS/CSNSM/UNIBW/TUORLA/IWF/IAS/ESA/
BUW/MPE/LPC2E/LCM/FMI/UTU/LISA/UOFC/vH&S

Rosetta’s Cometary Secondary Ion Mass Analyser (COSIMA) picked up several dust grains in August, which you can see in the image, and are now looking at the target plate more closely to figure out more about the dust grains.

“Some will be selected for further analysis: the target plate will be moved to place each chosen grain under an ion gun which will then ablate the grain layer by layer. The material is then analyzed in a secondary ion mass spectrometer to determine its composition,” ESA stated.

All of these results were presented today (Sept. 8) at the European Planetary Science Congress 2014.

Guide to Tonight’s Big Harvest Moon

"The Harvest Moon", a circa 1833 oil painting by Samuel Palmer. Closely spaced moonrises meant extra light to bring in the crops in the days before electric lighting.

Tonight, September 8, the Harvest Moon rises the color of a fall leaf and spills its light across deserts, forests, oceans and cities. The next night it rises only a half hour later. And the next, too. The short gap of time between successive moonrises gave farmers in the days before electricity extra light to harvest their crops, hence the name.

The Harvest Moon is the full moon that falls closest to the autumnal equinox, the beginning of northern autumn. As the moon orbits the Earth, it moves eastward about one fist held at arm’s length each night and rises about 50 minutes later. You can see its orbital travels for yourself by comparing the moon’s nightly position to a bright star or constellation. 

This full Moon is also a Proxigean or Perigee Full “Supermoon” (find out more about that here), which means the Moon is in a spot in its elliptical orbit where it is closer to Earth near the time it is full, making it look up to 15% larger than average full Moon.

Around the time of Harvest Moon, the full moon's path is tilted at a shallow angle to the eastern horizon making with successive moonrises only about a half hour apart instead of the usual 50 minutes. Source: Stellarium
Around the time of Harvest Moon, the full moon’s path is tilted at a shallow angle to the eastern horizon making with successive moonrises only about a half hour apart instead of the usual 50 minutes. Source: Stellarium

50 minutes is the usual gap between moonrises. But it can vary from 25 minutes to more than an hour depending upon the angle the moon’s path makes to the eastern horizon at rise time. In September that path runs above the horizon at a shallow angle. As the moon scoots eastward, it’s also moving northward this time of year.

This northward motion isn’t as obvious unless you watch the moon over the coming week. Then you’ll see it climb to the very top of its monthly path when it’s high overhead at dawn. The northward motion compensates for the eastward motion, keeping the September full moon’s path roughly parallel to the horizon with successive rise times only ~30 minutes apart.

The angle of the moon’s path to the horizon makes all the difference in moonrise times. At full phase in spring, the path tilts steeply southward, delaying successive moonrises by over an hour. In September, the moon’s path is nearly parallel to the horizon with successive moonrises just 20+ minutes apart. Times are shown for the Duluth, Minn. region. Illustration: Bob King
The angle of the moon’s path to the horizon makes all the difference in moonrise times. At full phase in spring, the path tilts steeply southward, delaying successive moonrises by over an hour. In September, the moon’s path is nearly parallel to the horizon with successive moonrises just 30+ minutes apart. Times are shown for the Duluth, Minn. region. Illustration: Bob King

Exactly the opposite happened 6 months earlier this spring, when the moon’s path met the horizon at a steep angle. While it traveled the identical distance each night then as now, its tilted path dunked it much farther below the horizon night to night. The spring full moon moves east and south towards its lowest point in the sky. Seen from the northern hemisphere, that southward travel adds in extra time for the moon to reach the horizon and rise each successive night.

If all this is a bit mind-bending, don’t sweat it. Click HERE to find when the moon rises for your town and find a spot with a great view of the eastern horizon. You’ll notice the moon is orange or red at moonrise because the many miles of thicker atmosphere you look through when you gaze along the horizon scatters the shorter bluer colors from moonlight, tinting it red just as it does the sun.

A series of photos of the full moon setting over Earth's limb taken by from space by NASA astronaut Don Pettit on April 16, 2003. Refraction causes a celestial object's light to be bent upwards, so it appears higher than it actually is. The bottom half of the moon, closer to the horizon, is refracted strongest and "pushed" upward into the top half, making it look squished. Credit: NASA
A series of photos of the full moon setting over Earth’s limb taken by from space by NASA astronaut Don Pettit on April 16, 2003. Refraction causes a celestial object’s light to be bent upwards, so it appears higher than it actually is. The bottom half of the moon, closer to the horizon, is refracted strongest and “pushed” upward into the top half, making it look squished. Credit: NASA

The moon will also appear squished due to atmospheric refraction. Air is densest right at the horizon and refracts or bends light more strongly than the air immediately above it. Air “lifts” the bottom of the moon – which is closer to the horizon – more than the top, squishing the two halves together into an egg or oval shape.

How we perceive the moon's size may have much to do with what's around it. In this illustration, most of us seen the bottom moon as smaller, but they're both exactly the same size. Crazy, isn't it? Credit: NASA
How we perceive the moon’s size may have much to do with what’s around it. In this illustration, most of us seen the bottom moon as smaller, but they’re both exactly the same size. Crazy, isn’t it? Credit: NASA

You may also be entranced Monday night by the Moon Illusion, where the full moon appears unnaturally large when near the horizon compared to when viewed higher up. No one has come up with a complete explanation for this intriguing aspect of our perception, but the link above offers some interesting hypotheses.

Can you see craters with your naked eye? Yes! Try tonight through Wednesday night. Plato is the trickiest. Credit: Bob King
Can you see craters with your naked eye? Yes! Try tonight through Wednesday night. Plato is the trickiest. Credit: Bob King

Finally, full moon is an ideal time to see several lunar craters with the naked eye. They’re not the biggest, but all, except Plato, are surrounded by bright rays of secondary impact craters that expand their size and provide good contrast against the darker lunar “seas”. Try with your eyes alone first, and if you have difficulty, use binoculars to get familiar with the landscape and then try again with your unaided eyes.

In contrast to the other craters, Plato is dark against a bright landscape. It’s a true challenge – I’ve tried for years but still haven’t convinced myself of seeing it. The others are easier than you’d think. Good luck and clear skies!

If you don’t have clear skies, Slooh will broadcast the “Super Harvest Moon” live from the Institute of Astrophysics of the Canary Islands, off the coast of Africa. Slooh’s live coverage will begin at 6:30 PM PDT / 9:30 PM EDT /01:30 UTC (8/9) – International times here. Slooh hosts are Geoff Fox and Slooh astronomer Bob Berman. Viewers can ask questions during the show by using hashtag #Sloohsupermoon. Watch below:

Sweet Success for SpaceX with Second Successful AsiaSat Launch This Summer

SpaceX Falcon 9 launch of AsiaSat 6 communications satellite at 1 a.m. EDT on Sept. 7, 2014 from Cape Canaveral. Florida. Credit: John Studwell/AmericaSpace

Shortly after midnight this morning, Sunday, Sept. 7, SpaceX scored a major success with the spectacular night time launch of the commercial AsiaSat 6 satellite from Cape Canaveral, Florida, that briefly turned night into day along the Florida Space Coast.

A SpaceX Falcon 9 rocket carrying the AsiaSat 6 communications satellite blasted off at 1 a.m. EDT today from Space Launch Complex 40 on Cape Canaveral Air Force Station at the opening of the launch window.

The two stage, 224 foot-tall (68.4 meter-tall) Falcon 9 rocket performed flawlessly, soaring to space and placing the five ton AsiaSat 6 into a geosynchronous transfer orbit.

SpaceX confirmed a successful spacecraft separation about 32 minutes after liftoff and contact with the satellite following deployment at about 1:30 a.m. EDT.

The Falcon 9 delivered AsiaSat 6 satellite into a 185 x 35,786 km geosynchronous transfer orbit at 25.3 degrees.

Stunning “streak” effect, with high-level clouds illuminated, during first-stage flight of SpaceX Falcon 9 rocket with AsiaSat 6 on Sept. 7, 2014 from Cape Canaveral, FL. Credit: John Studwell/AmericaSpace
Stunning “streak” effect, with high-level clouds illuminated, during first-stage flight of SpaceX Falcon 9 rocket with AsiaSat 6 on Sept. 7, 2014 from Cape Canaveral, FL. Credit: John Studwell/AmericaSpace

Sunday’s liftoff marked a sweet success for SpaceX since it was the second successive launch of an AsiaSat communications satellite in about a month’s time. AsiaSat is a telecommunications operator based in Hong Kong.

The first launch of the two satellite series with AsiaSat 8 took place from Cape Canaveral on Aug. 5.

The launch was webcast live by SpaceX on the firm’s website.

The private satellites will serve markets in Southeast Asia and China.

Thailand’s leading satellite operator, Thaicom, is a partner of AsiaSat on AsiaSat 6 and will be using half of the satellite’s capacity to provide services under the name of THAICOM 7, according to the press kit.

SpaceX Falcon 9 launch of AsiaSat 6 communications satellite at 1 a.m. EDT on Sept. 7, 2014 from Cape Canaveral. Florida.  Credit: Alan Walters/AmericaSpace
SpaceX Falcon 9 launch of AsiaSat 6 communications satellite at 1 a.m. EDT on Sept. 7, 2014 from Cape Canaveral. Florida. Credit: Alan Walters/AmericaSpace

The AsiaSat 6 launch was originally scheduled for Aug. 26, just 3 weeks after AsiaSat 8, but was postponed at the last minute after the detonation of a Falcon 9R test rocket at a SpaceX test site in Texas.

SpaceX CEO Elon Musk said the team needed to recheck the rocket systems to insure a successful blastoff since both rockets use Merlin 1D engines, but are configured with different software.

The Falcon 9 first stage is loaded with liquid oxygen (LOX) and rocket-grade kerosene (RP-1) propellants and powered by nine Merlin 1D engines that generate about 1.3 million pounds of liftoff thrust.

The second stage is powered by a single, Merlin 1D vacuum engine.

SpaceX Falcon 9 soars to space with AsiaSat 6 communications satellite at 1 a.m. EDT on Sept. 7, 2014 from Cape Canaveral. Florida.  Credit: Alan Walters/AmericaSpace
SpaceX Falcon 9 soars to space with AsiaSat 6 communications satellite at 1 a.m. EDT on Sept. 7, 2014 from Cape Canaveral. Florida. Credit: Alan Walters/AmericaSpace

Today’s liftoff was critical in clearing the path for the next SpaceX launch – the CRS-4 cargo resupply mission for NASA bound for the International Space Station (ISS).

The Falcon 9 launch of the cargo Dragon on the CRS-4 mission is currently targeted for no earlier than Sept. 19. But a firm launch date has not been set.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

The official AsiaSat 6 mission patch
The official AsiaSat 6 mission patch

Speed Demon Asteroid Sprints Safely Past Earth Today

Asteroid 2014 RC photographed 30 minutes before closest approach to Earth today. During this one-minute-long time exposure the asteroid covered more than 3/4 degree of sky. Credit: Ernesto Guido, Nick Howes, Martino Nicolini

Earth-approaching asteroid 2014 RC ripped pass Earth today, got its orbit refashioned by our planet’s gravity and now bids us adieu. I thought you’d like to see how fast this ~60-foot-wide (20-meter) space rock moved across the sky. The team of observers at Remanzacco Observatory in Italy  photographed it remotely with a telescope set up in Australia. 30 minutes before closest approach to Earth of 25,000 miles (40,000 km), 2014 RC was traveling at the rate of 49.5 arc minutes (1.6 times the diameter of the full moon) per minute.

2014 RC accelerates across the sky from 4 a.m. to 4 p.m EDT in this path created by Gianluca Masi using SkyX Pro software and the latest positions from JPL.
2014 RC accelerates across the sky from 4 a.m. to 4 p.m EDT in this path created by Gianluca Masi using SkyX Pro software and the latest positions from JPL. he asteroid’s intrinsic speed was not exceptional, but because it came so close to Earth, it covered a huge swath of sky in a hurry.

At the time, the asteroid glowed at magnitude +11.2, bright enough to see in a 4.5 inch telescope even in the bright moonlit sky at the time. Let’s try to get a feel for its speed. Just to keep 2014 RC centered in the field of view, you’d have to continually move the telescope to follow it as it you were tracking an airplane or satellite. What a thrill it must have been for observers in Australia and New Zealand who got the ride of their life across the heavens hanging onto this fleet rock with their eyeballs. In an hour’s time, centered on closest approach, the asteroid traveled approximately 48º. That more than twice the length of the constellation Orion!

The orbit of 2014 RC occasionally brings it close to Earth as it did today September 7, 2014. Credit: NASA/JPL-Caltech
The orbit of 2014 RC occasionally brings it close to Earth as it did today September 7, 2014 when it passed less than 1/10 the distance of the moon to the Earth. The asteroid orbits the sun every 1.5 years. Credit: NASA/JPL-Caltech

As  2014 RC blew by, its orbit was bent by Earth’s gravity and sent on a new trajectory. If this sounds familiar, we deliberately performed the same maneuver with the Voyager I and II spacecraft back in the late 1970s and early 1980s. A rare planetary alignment allowed scientists to swing the probes near Jupiter and Saturn to gain speed and shape their orbits for future encounters. Such gravity assist maneuvers are now commonplace.

The dot behind the hubbub. Gianluca Masi, who runs the Virtual Telescope Project, tracked 2014 RC during his time exposure, so it shows up as a tiny dot instead of a streak. Credit: Gianluca Masi
Space rock exposed! Gianluca Masi, who runs the Virtual Telescope Project, tracked 2014 RC during his time exposure, so it shows up as a tiny dot instead of a streak. Credit: Gianluca Masi

No doubt 2014 RC will approach Earth again, but no threatening encounters are in the cards for at least 100 years. For now we’re grateful it passed safely while inspiring wonder at what the solar system can throw at us.

Update: here’s an additional set of images from Peter Lake from Australia. You can see more on his blog here.

Three 30 second exposures at different times during Asteroid 2014 RC's pass by Earth on September 7, 2014. Credit and copyright: Peter Lake.
Three 30 second exposures at different times during Asteroid 2014 RC’s pass by Earth on September 7, 2014. Credit and copyright: Peter Lake.

MAVEN Mars Orbiter Ideally Poised to Uniquely Map Comet Siding Spring Composition – Exclusive Interview with Principal Investigator Bruce Jakosky

MAVEN is NASA’s next Mars Orbiter and will investigate how the planet lost most of its atmosphere and water over time. Credit: NASA

MAVEN to conduct up close observations of Comet Siding Spring during Oct. 2014
MAVEN is NASA’s next Mars Orbiter and will investigate how the planet lost most of its atmosphere and water over time. Credit: NASA
Story updated[/caption]

NASA’s MAVEN Mars Orbiter is “ideally” instrumented to uniquely “map the composition of Comet Siding Spring” in great detail when it streaks past the Red Planet during an extremely close flyby on Oct. 19, 2014 – thereby providing a totally “unexpected science opportunity … and a before and after look at Mars atmosphere,” Prof. Bruce Jakosky, MAVEN’s Principal Investigator of CU-Boulder, CO, told Universe Today in an exclusive interview.

The probes state-of-the-art ultraviolet spectrograph will be the key instrument making the one-of-a-kind compositional observations of this Oort cloud comet making its first passage through the inner solar system on its millions year orbital journey.

“MAVEN’s Imaging Ultraviolet Spectrograph (IUVS) is the ideal way to observe the comet coma and tail,” Jakosky explained.

“The IUVS can do spectroscopy that will allow derivation of compositional information.”

“It will do imaging of the entire coma and tail, allowing mapping of composition.”

Comet: Siding Spring. The images above show -- before and after filtering -- comet C/2013 A1, also known as Siding Spring, as captured by Wide Field Camera 3 on NASA's Hubble Space Telescope.  Image Credit: NASA, ESA, and J.-Y. Li (Planetary Science Institute)
Comet: Siding Spring
The images above show — before and after filtering — comet C/2013 A1, also known as Siding Spring, as captured by Wide Field Camera 3 on NASA’s Hubble Space Telescope. Image Credit: NASA, ESA, and J.-Y. Li (Planetary Science Institute)

Moreover the UV spectrometer is the only one of its kind amongst NASA’s trio of Martian orbiters making its investigations completely unique.

“IUVS is the only ultraviolet spectrometer that will be observing the comet close up, and that gives the detailed compositional information,” Jakosky elaborated

And MAVEN, or the Mars Atmosphere and Volatile Evolution, is arriving just in the nick of time to fortuitously capture this fantastically rich data set of a pristine remnant from the solar system’s formation.

The spacecraft reaches Mars in less than 15 days. It will rendezvous with the Red Planet on Sept. 21 after a 10 month interplanetary journey from Earth.

Furthermore, since MAVEN’s purpose is the first ever detailed study of Mars upper atmosphere, it will get a before and after look at atmospheric changes.

“We’ll take advantage of this unexpected science opportunity to make observations both of the comet and of the Mars upper atmosphere before and after the comet passage – to look for any changes,” Jakosky stated.

How do MAVEN’s observations compare to NASA’s other orbiters Mars Odyssey (MO) and Mars Reconnaissance Orbiter (MRO), I asked?

“The data from the other orbiters will be complementary to the data from IUVS.”

“Visible light imaging from the other orbiters provides data on the structure of dust in the coma and tail. And infrared imaging provides information on the dust size distribution.”

IUVS is one of MAVENS’s nine science sensors in three instrument suites targeted to study why and exactly when did Mars undergo the radical climatic transformation.

How long will MAVEN make observations of Comet C/2013 A1 Siding Spring?

“We’ll be using IUVS to look at the comet itself, about 2 days before comet nucleus closest approach.”

“In addition, for about two days before and two days after nucleus closest approach, we’ll be using one of our “canned” sequences to observe the upper atmosphere and solar-wind interactions.”

“This will give us a detailed look at the upper atmosphere both before and after the comet, allowing us to look for differences.”

Describe the risk that Comet Siding Spring poses to MAVEN, and the timing?

“We have the encounter with Comet Siding Spring about 2/3 of the way through the commissioning phase we call transition.”

“We think that the risk to the spacecraft from comet dust is minimal, but we’ll be taking steps to reduce the risk even further so that we can move on toward our science mission.”

“Throughout this entire period, though, spacecraft and instrument health and safety come first.”

This graphic depicts the orbit of comet C/2013 A1 Siding Spring as it swings around the sun in 2014. On Oct. 19, 2014 the comet will have a very close pass at Mars. Its nucleus will miss Mars by about 82,000 miles (132,000 kilometers).   Credit: NASA/JPL-Caltech
This graphic depicts the orbit of comet C/2013 A1 Siding Spring as it swings around the sun in 2014. On Oct. 19, 2014 the comet will have a very close pass at Mars. Its nucleus will miss Mars by about 82,000 miles (132,000 kilometers). Credit: NASA/JPL-Caltech

What’s your overall hope and expectation from the comet encounter?

“Together [with the other orbiters], I’m hoping it will all provide quite a data set!

“From Mars, the comet truly will fill the sky!” Jakosky gushed.

The comet’s nucleus will fly by Mars at a distance of only about 82,000 miles (132,000 kilometers) at 2:28 p.m. ET (18:28 GMT) on Oct. 19, 2014. That’s barely 1/3 the distance from the Earth to the Moon.

What’s the spacecraft status today?

“Everything is on track.”

Maven spacecraft trajectory to Mars. Credit: NASA
Maven spacecraft trajectory to Mars on Sept. 4, 2014. Credit: NASA

The $671 Million MAVEN spacecraft’s goal is to study Mars upper atmosphere to explore how the Red Planet lost most of its atmosphere and water over billions of years and the transition from its ancient, water-covered past, to the cold, dry, dusty world that it has become today.

MAVEN soared to space over nine months ago on Nov. 18, 2013 following a flawless blastoff from Cape Canaveral Air Force Station’s Space Launch Complex 41 atop a powerful Atlas V rocket and thus began a 10 month interplanetary voyage from Earth to the Red Planet.

It is streaking to Mars along with ISRO’s MOM orbiter, which arrives a few days later on September 24, 2014.

So far it has traveled 95% of the distance to the Red Planet, amounting to over 678,070,879 km (421,332,902 mi).

As of Sept. 4, MAVEN was 205,304,736 km (127,570,449 miles) from Earth and 4,705,429 km (2,923,818 mi) from Mars. Its Earth-centered velocity is 27.95 km/s (17.37 mi/s or 62,532 mph) and Sun-centered velocity is 22.29 km/s (13.58 mi/s or 48,892 mph) as it moves on its heliocentric arc around the Sun.

One-way light time from MAVEN to Earth is 11 minutes and 24 seconds.

MAVEN is NASA’s next Mars orbiter and launched on Nov. 18, 2014 from Cape Canaveral, Florida. It will study the evolution of the Red Planet’s atmosphere and climate. Universe Today visited MAVEN inside the clean room at the Kennedy Space Center. With solar panels unfurled, this is exactly how MAVEN looks when flying through space and circling Mars and observing Comet Siding Spring. Credit: Ken Kremer/kenkremer.com
MAVEN is NASA’s next Mars orbiter and launched on Nov. 18, 2014 from Cape Canaveral, Florida. It will study the evolution of the Red Planet’s atmosphere and climate. Universe Today visited MAVEN inside the clean room at the Kennedy Space Center. With solar panels unfurled, this is exactly how MAVEN looks when flying through space and circling Mars and observing Comet Siding Spring. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing MAVEN, MOM, Rosetta, Opportunity, Curiosity, Mars rover and more Earth and planetary science and human spaceflight news.

Ken Kremer

NASA’s Mars bound MAVEN spacecraft launches atop Atlas V booster at 1:28 p.m. EST from Space Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Image taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center.  Credit: Ken Kremer/kenkremer.com
NASA’s Mars bound MAVEN spacecraft launches atop Atlas V booster at 1:28 p.m. EST from Space Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Image taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center. Credit: Ken Kremer/kenkremer.com
NASA’s MAVEN Mars orbiter, chief scientist Prof. Bruce Jakosky of CU-Boulder and Ken Kremer of Universe Today inside the clean room at the Kennedy Space Center on Sept. 27, 2013. MAVEN launches to Mars on Nov. 18, 2013 from Florida. Credit: Ken Kremer/kenkremer.com
NASA’s MAVEN Mars orbiter, chief scientist Prof. Bruce Jakosky of CU-Boulder and Ken Kremer of Universe Today inside the clean room at the Kennedy Space Center on Sept. 27, 2013. MAVEN launched to Mars on Nov. 18, 2013 from Florida. Credit: Ken Kremer/kenkremer.com

What Would It Be Like To Fall Into A Black Hole?

This artist’s impression shows the surroundings of the supermassive black hole at the heart of the active galaxy NGC 3783 in the southern constellation of Centaurus (The Centaur). Credit: ESO/M. Kornmesser

Let’s say you happened to fall into the nearest black hole? What would you experience and see? And what would the rest of the Universe see as this was happening?

Let’s say you decided to ignore some of my previous advice. You’ve just purchased yourself a space dragon from the Market on the Centauri Ringworld, strapped on your favorite chainmail codpiece and sonic sword and now you’re going ride head first into the nearest black hole.

We know it won’t take you to another world or galaxy, but what would you experience and see on your way to your inevitable demise? And what would the rest of the Universe see as this was happening, and would they point and say “eewwwwww”?

If you were falling toward a black hole, most of the time you would simply feel weightless, just as if you were playing Bowie songs and floating in a most peculiar way in the International Space Station. The gravity of a black hole is just like the gravity of any other large mass, as long as you don’t get too close. But, as we’ve agreed, you’re ignoring my advice and flying dragon first into this physics nightmare. As you get closer, the gravitational forces on various parts of your and your dragon’s body would be different. Technically this is always true, but you wouldn’t notice it… at least at first.

Suppose you were falling feet first toward a black hole. As you got closer, your feet would feel a stronger force than your head, for example. These differences in forces are called tidal forces. Because of the tidal forces it would feel as if you are being stretched head to toe, while your sides would feel like they are being pushed inward. Eventually the tidal forces would become so strong that they would rip you apart. This effect of tidal stretching is sometimes boringly referred to as spaghettification.

I’ve made up some other names for it, such as My Own Private String Cheese Incident, “the soft-serve effect” and “AAAHHHHH AHHHH MY LEGS MY LEGS!!!”.

So, let’s summarize. You wouldn’t survive falling toward a black hole because you wouldn’t listen. Why won’t you ever listen?

A friend watching you fall toward a black hole would never see you reach the black hole. As you fall towards it, gravity would cause any light coming from you to be redshifted. So as you approached the black hole you would appear more and more reddish, and your image would appear dimmer and dimmer. Your friend would see you redden and dim as you approach, but never quite reach, the event horizon of the black hole. If they could still see you past this point, there would be additional red from the inside of you clouding up the view.

Artist's conception of the event horizon of a black hole. Credit: Victor de Schwanberg/Science Photo Library
Artist’s conception of the event horizon of a black hole. Credit: Victor de Schwanberg/Science Photo Library

Hypothetically, if you could survive crossing the event horizon of a black hole, what
would you see then? Contrary to popular belief, you would not see the entire future of the universe flash before you.

What you would see is the darkness of the black hole fill your view and as you approached the event horizon you would see stars and galaxies on the edge of your view being gravitationally lensed by the black hole. The sky would simply appear more and more black until you reach the event horizon.

Many people think that it is at the event horizon where you would be ripped apart, and at the event horizon all sorts of strange things occur. Unfortunately, this goes along with those who suspect black holes are actually some sort of portal. For a solar mass black hole, the tidal forces near the event horizon can be quite large, but for a supermassive black hole they aren’t very large at all.

In fact, the larger the black hole, the weaker the tidal forces near its event horizon. So if you happened to be near a supermassive black hole, you could cross the event horizon without really noticing. Would you still be totally screwed? YOU BETCHA!

What do you think? If you could drop anything into a black hole, what would it be? Tell us in the comments below.