One answer to the Fermi Paradox is the idea of the Great Filter; the possibility that something wipes out 100% of intelligent civilizations. That why we’ve never discovered any aliens… they’re all dead. Is that our future too?
In a previous episode, I presented the idea of the Fermi Paradox. If space is huge, like space huge, not aircraft carrier huge, and there are billions upon billions of stars, AND there seem to be lots of habitable planets around those stars, where are all the damn aliens?
Or perhaps I should say “eine grosse Aurora!” ESA astronaut Alexander Gerst made this time-lapse of a “massive aurora” as seen from the Space Station on August 24. The entire video is beautiful, showing not just a view of the ghostly green aurora but also plenty of stars, airglow, the graceful rotation of the ISS’ solar arrays, and finally the blooming light of dawn – one of sixteen the crew of the Station get to witness every day.
Then again, I’m now wondering: what is the mass of an aurora? Hmm…
This year, the noctilucent cloud season has been especially eventful, and this new timelapse from Swedish astrophotographer Göran Strand shows these “night-shining” clouds covering the entire sky over the course of 2 hours.
“On the 27th of July 2014 I saw some of the most beautiful Noctilucent Clouds I’ve ever seen,” Göran said via email. “They emerged shortly after sunset and after a while they covered the entire sky.”
In the movie you can see an all-sky timelapse view that shows how these clouds changed during the evening.
See some gorgeous still photos from that night, below:
Noctilucent clouds are wispy, glowing tendrils of high-altitude ice crystals that shine long after the Sun has set. They appear in upper latitudes only and form about 83 km (51 miles) up in the atmosphere. The icy clouds are illuminated by the Sun when it is just below the horizon, giving the clouds their “night-shining” properties.
Also called polar mesospheric clouds, these are the highest cloud formations in the atmosphere. They’ve been associated with rocket launches and space shuttle re-entries, and another theory is that they might also be associated with meteor activity.
The universe is stunning. Images from even the most modest telescopes can unveil its brilliant beauty. But couple that with a profound reason — our ability to question and understand the physical laws that dominate that brilliant beauty — and the image transforms into something much more spectacular.
Take ESO’s latest image of two dramatic star formation regions in the southern Milky Way. John Herschel first observed the cluster on the left in 1834, during his three-year expedition to systematically survey the southern skies near Cape Town. He described it as a remarkable object and thought it might be a globular cluster. But future studies (and not to mention more dramatic images from larger telescopes) enriched our understanding, demonstrating that it was not an old globular but a young open cluster.
The Wide Field Imager at ESO’s La Silla Observatory in Chile recently captured the image again. The bright region on the left is the star cluster NGC 3603, located 20,000 light-years away in the Carina-Sagittarius spiral arm of the Milky Way galaxy. The bright region on the right is a collection of glowing gas clouds known as NGC 3576, located only 10,000 light-years away.
Stars are born in enormous clouds of gas and dust, largely hidden from view. But as small pockets in these clouds collapse under the pull of gravity, they become so hot they ignite nuclear fusion, and their light clears away — and brightens — the surrounding gas and dust.
Nearby regions of hydrogen gas are heated, and therefore partially ionized, by the ultraviolet radiation given off by the brilliant hot young stars. These regions, better known as HII regions, can measure several hundred light-years in diameter, and the one surrounding NGC 3603 has the distinction of being the most massive known in our galaxy.
Not only is NGC 3603 known for having the most massive HII region, it’s known for having the highest concentration of massive stars that have been discovered in our galaxy so far. At the center lies a Wolf-Rayet star system. These stars begin their lives at 20 times the mass of the Sun, but evolve quickly while shedding a considerable amount of their matter. Intense stellar winds blast the star’s surface into space at several million kilometers per hour.
Where NGC 3603 is notable for its extremes, NGC 3576 is notable for its extremities — the two huge curved objects in the outreaches of the cluster. Often described as the curled horns of a ram, these odd filaments are the result of stellar winds from the hot, young stars within the central regions of the nebula. The stars have blown the dust and gas outwards across a hundred light-years.
Additionally, the two dark silhouetted areas near the top of the nebula are known as Bok globules, dusty regions found near star formation sights. These dark clouds absorb nearby light and offer potential sites for the future formation of stars. They may further sculpt the dramatic landscape above, which is the smallest slice of our stunning universe
India’s maiden foray to Mars is now just one month out from the Red Planet and closing in fast on the final stages of the history making rendezvous culminating on September 24, 2014.
As of Aug. 22, 2014, the Mars Orbiter Mission, or MOM, was just 9 million kilometers away from Mars and the crucial Mars Orbital Insertion (MOI) engine firing that places India’s first interplanetary voyager into orbit around the 4th planet from the Sun.
MOM was designed and developed by the Indian Space Research Organization’s (ISRO) at a cost of $69 Million and marks India’s maiden foray into interplanetary flight.
So far it has traveled a total distance of 602 million km in its heliocentric arc towards Mars, says ISRO. It is currently 189 million km away from Earth. Round trip radio signals communicating with MOM take 20 minutes and 47 seconds.
After streaking through space for some ten and a half months, the 1,350 kilogram (2,980 pound) MOM probe will fire its 440 Newton liquid fueled main engine to brake into orbit around the Red Planet on September 24, 2014 – where she will study the atmosphere and sniff for signals of methane.
The do or die MOI burn on September 24 places MOM into an 377 km x 80,000 km elliptical orbit around Mars.
ISRO space engineers are taking care to precisely navigate MOM to keep it on course during its long heliocentric trajectory from Earth to Mars through a series of in flight Trajectory Correction Maneuvers (TMSs).
The last TCM was successfully performed on June 11 by firing the spacecraft’s 22 Newton thrusters for a duration of 16 seconds. TCM-1 was conducted on December 11, 2013 by firing the 22 Newton Thrusters for 40.5 seconds.
Engineers determined that a TCM planned for August was not needed.
The final TCM firing is planned in September 2014.
Engineers also completed the checkout of the medium gain antenna in August, “which will be used to communicate with Earth during the critical MOI” maneuver, ISRO reported.
The probe is being continuously monitored by the Indian Deep Space Network (IDSN) and NASA JPL’s Deep Space Network (DSN) to maintain it on course.
MOM was launched on Nov. 5, 2013 from India’s spaceport at the Satish Dhawan Space Centre, Sriharikota, atop the nations indigenous four stage Polar Satellite Launch Vehicle (PSLV) which placed the probe into its initial Earth parking orbit.
Six subsequent orbit raising maneuvers raised its orbit and culminated with a liquid fueled main engine firing on Dec. 1, 2013. The Trans Mars Injection(TMI) maneuver that successfully placed MOM on its heliocentric trajectory to the Red Planet.
MOM is streaking to Mars along with NASA’s MAVEN orbiter, which arrives at Mars about two days earlier.
MOM and MAVEN will join Earth’s fleet of 3 current orbiters from NASA and ESA as well as NASA’s pair of sister surface rovers Curiosity and Opportunity.
If all goes well, India will join an elite club of only four who have launched probes that successfully investigated the Red Planet from orbit or the surface – following the Soviet Union, the United States and the European Space Agency (ESA).
MOM’s main objective is a demonstration of technological capabilities and it will also study the planet’s atmosphere and surface.
The probe is equipped with five indigenous instruments to conduct meaningful science – including a multi color imager and a methane gas sniffer to study the Red Planet’s atmosphere, morphology, mineralogy and surface features. Methane on Earth originates from both geological and biological sources – and could be a potential marker for the existence of Martian microbes.
ISRO is also working to determine if MOM can gather scientific measurements of
Comet C/2013 A1 Siding Spring during an extremely close flyby with the Red Planet on Oct. 19, 2014.
MAVEN and NASA’s other Mars probes will study the comet.
Stay tuned here for Ken’s continuing MOM, MAVEN, Opportunity, Curiosity, Mars rover and more planetary and human spaceflight news.
NASA’s Curiosity rover will skip drilling into a possible 4th rock target and instead resume the trek to Mount Sharp after finding it was unfortunately a slippery rock at the edge of a Martian valley of slippery sands and was therefore too risky to proceed with deep drilling and interior sampling for chemical analysis.
After pounding into the “Bonanza King” rock outcrop on Wednesday, Aug. 20, to evaluate its potential as Curiosity’s 4th drill target on Mars and seeing that it moved on impact, the team decided it was not even safe enough to continue with the preliminary ‘mini-drill’ operation that day.
So they cancelled the entire drill campaign at “Bonanza King” and decided to set the rover loose to drive onwards to her mountain climbing destination.
“We have decided that the rocks under consideration for drilling, based on the tests we did, are not good candidates for drilling,” said Curiosity Project Manager Jim Erickson of NASA’s Jet Propulsion Laboratory, Pasadena, California, in a statement.
“Instead of drilling here, we will resume driving toward Mount Sharp.”
Bonanza King was an enticing target because the outcrop possessed thin, white, cross-cutting mineral veins which could indicate that liquid water flowed here in the distant past. Water is a prerequisite for life as we know it.
Loose, unstable rocks pose a prospective hazard to the 1 ton robots hardware and health if they become dislodged during impact by the percussive drill located at the end of the robotic arm.
It’s worth recalling that whirling rocks during the nailbiting Red Planet touchdown two years ago on Aug. 6, 2012, inside Gale Crater are suspected to have slightly damaged Curiosity’s REMS meteorological instrument station.
Each drill target must pass a series of tests. And the prior three at more extensive outcrops all met those criteria. By comparison, imagery showed Bonanza King was clearly part of a much smaller outcrop. See our Bonanza King photo mosaics herein.
“One step in the procedure, called “start hole,” uses the hammering action of the percussive drill to create a small indentation in the rock. During this part of the test, the rock moved slightly, the rover sensed that instability in the target, and protective software properly halted the procedure,” according to a NASA statement.
This pale, flat Martian rock thus failed to pass the team’s safety criteria for drilling when it budged.
Bonanza King sits in an bright outcrop on the low ramp at the northeastern end of a spot leading in and out of an area called “Hidden Valley” which lies between Curiosity’s August 2012 landing site in Gale Crater and her ultimate destinations on Mount Sharp which dominates the center of the crater.
Just days ago, the rover team commanded a quick exit from “Hidden Valley” to backtrack out of the dune filled valley because of fears the six wheeled robot could get stuck in slippery sands extending the length of a football field.
“Hidden Valley” looked like it could turn into “Death Valley.”
As Curiosity tested the outcrop, the rover team was simultaneously searching for an alternate safe path forward to the sedimentary layers of Mount Sharp because she arrived at Hidden Valley after recently driving over a field of sharp edged rocks in the “Zabriskie Plateau” that caused further rips and tears in the already damaged 20 inch diameter aluminum wheels.
It will take a route skirting the north side of the sandy-floored valley taking care to steer away from the pointiest rocks.
“After further analysis of the sand, Hidden Valley does not appear to be navigable with the desired degree of confidence,” Erickson said. “We will use a route avoiding the worst of the sharp rocks as we drive slightly to the north of Hidden Valley.”
To date, Curiosity’s odometer totals over 5.5 miles (9.0 kilometers) since landing inside Gale Crater on Mars in August 2012. She has taken over 179,000 images.
Curiosity still has about another 2 miles (3 kilometers) to go to reach the entry way at a gap in the treacherous sand dunes at the foothills of Mount Sharp sometime later this year.
Hidden Valley gives a foretaste of the rippely slippery sand dune challenges lurking ahead!
Mount Sharp is a layered mountain that dominates most of Gale Crater and towers 3.4 miles (5.5 kilometers) into the Martian sky and is taller than Mount Rainier.
“Getting to Mount Sharp is the next big step for Curiosity and we expect that in the Fall of this year,” Dr. Jim Green, NASA’s Director of Planetary Sciences at NASA Headquarters, Washington, DC, told me in an interview marking the 2nd anniversary since touchdown on Aug. 6.
“Drilling on the crater floor will provide needed geologic context before Curiosity climbs the mountain.”
The team may go back to its original plan to drill at the potential science destination known as “Pahrump Hills” which was changed due to the route change forced by the slippery sands in Hidden Valley.
Read an Italian language version of this story by my imaging partner Marco Di Lorenzo – here
Stay tuned here for Ken’s continuing Rosetta, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, Dream Chaser, commercial space, MAVEN, MOM, Mars and more planetary and human spaceflight news.
No injuries are reported after a SpaceX rocket prototype detonated in Texas today (Aug. 22) after an anomaly was found in the rocket, the company said in a statement.
“Today’s test was particularly complex, pushing the limits of the vehicle further than any previous test,” SpaceX said in a statement (which you can read in full below the jump.) “As is our practice, the company will be reviewing the flight record details to learn more about the performance of the vehicle prior to our next test.”
The company said it would provide more updates as it found information. SpaceX founder Elon Musk issued a brief statement of his own on Twitter:
Three engine F9R Dev1 vehicle auto-terminated during test flight. No injuries or near injuries. Rockets are tricky …
Earlier today, in McGregor, Texas, SpaceX conducted a test flight of a three-engine version of the F9R test vehicle (successor to Grasshopper.) During the flight, an anomaly was detected in the vehicle and the flight termination system automatically terminated the mission.
Throughout the test and subsequent flight termination, the vehicle remained in the designated flight area. There were no injuries or near injuries. An FAA representative was present at all times.
With research and development projects, detecting vehicle anomalies during the testing is the purpose of the program. Today’s test was particularly complex, pushing the limits of the vehicle further than any previous test. As is our practice, the company will be reviewing the flight record details to learn more about the performance of the vehicle prior to our next test.
SpaceX will provide another update when the flight data has been fully analyzed.
Here are some recent Universe Today stories on the rocket:
Reid Wiseman, NASA astronaut and part-time master of Vine videos, has done it again. This time he’s showing off a flame experiment on the International Space Station called the Flame Extinguishment Experiment-2 (FLEX-2).
“Ignition, jellyfish of fire, warp-drive finish!” wrote Wiseman on Vine yesterday (Aug. 22). He also posted a slow-motion capture of flames in action, which you can see below the jump. FLEX-2, as the name implies, is the second flame experiment on board the International Space Station. NASA states the goal is to understand how small fuel droplets burn in space.
“The FLEX-2 experiment studies how quickly fuel burns, the conditions required for soot to form, and how mixtures of fuels evaporate before burning. Understanding these processes could lead to the production of a safer spacecraft as well as increased fuel efficiency for engines using liquid fuel on Earth,” the agency wrote.
Here’s a bit of good news: the Serooskerken meteorite, which was stolen from the Sonnenborgh Museum and Observatory in Utrecht, Netherlands on Monday night, has been recovered. It was found in a bag left in some bushes alongside a tennis court and turned in to the police.
It’s not quite “game, set, match” though; unfortunately the meteorite was broken during the theft. (See a photo here via Twitter follower Marieke Baan.) Still, the Sonnenborgh Museum director is glad to have the pieces back, which he said will remain useful for research and can still be exhibited. (Source)
The Serooskerken meteorite was recovered from a fall in the Dutch province of Zeeland on August 28, 1925. Classified as a diogenite (HED) it is thought to have originated from the protoplanet Vesta, the second most massive object in the main asteroid belt between the orbits of Mars and Jupiter (and the previous target of NASA’s Dawn mission.) It is one of only five meteorite specimens ever recovered in the Netherlands.
The meteorite was one of several items reported stolen from the Sonnenborgh Museum on the night of August 18-19, 2014.
Talk about recycling! Twenty-five years after Voyager 2 zinged past Neptune’s moon Triton, scientists have put together a new map of the icy moon’s surface using the old data. The information has special relevance right now because the New Horizons spacecraft is approaching Pluto fast, getting to the dwarf planet in less than a year. And it’s quite possible that Pluto and Triton will look similar.
Triton has an exciting history. Scientists believed it used to be a lone wanderer until Neptune captured it, causing tidal heating that in turn created fractures, volcanoes and other features on the surface. While Triton and Pluto aren’t twins — this certainly didn’t happen to Pluto — Pluto also has frozen volatiles on its surface such as carbon monoxide, methane and nitrogen.
What you see in the map is a slightly enhanced version of Triton’s natural colors, bearing in mind that Voyager’s sensors are a little different from the human eye. Voyager 2 only did a brief flyby, so only about half the planet has been imaged. Nonetheless, the encounter was an exciting time for Paul Schenk, a planetary scientist at the Lunar and Planetary Institute in Houston. He led the creation of the new Triton map, and wrote about the experience of Voyager 2 in a blog post.
“Triton is a near twin of Pluto,” wrote Schenk. “Triton and Pluto are both slightly smaller than Earth’s Moon, have very thin nitrogen atmospheres, frozen ices on the surface (carbon monoxide, carbon dioxide, methane and nitrogen), and similar bulk composition (a mixture of ices, including water ice, and rock. Triton however was captured by Neptune long time ago and has been wracked by intense heating ever since. This has remade its surface into a tortured landscape of overturned layers, volcanism, and erupting geysers.”
He also added speculation about what will be seen at Pluto. Will it be a dead planet, or will geology still be affecting its surface? How close will Triton be to Pluto, particularly regarding its volcanoes? Only a year until we know for sure.