Get Hypnotized: The Sun Never Sets In The First Vine Video From Space

Still from the first Vine video from space showing the Sun never setting on the International Space Station. Video taken in June 2014. Credit: Reid Wiseman/Vine

Isn’t there something so soothing about watching the Sun go around and around in this short video? This is the first Vine video from space. Vine is a social website that publishes short videos (around six seconds), and it’s used to great illustration in this message beamed from the International Space Station.

Going around Earth usually takes the space station around 90 minutes, but NASA astronaut Reid Wiseman explained that at this time of year, it is flying parallel with the “terminator line” — the location where the Sun rises or sets on Earth.

This left the space station in 24-hour sunlight, providing some great marathon space station watching for those people wanting to wave at the guys from the ground. According to Universe Today writer Bob King, the marathon wraps up tomorrow, so be sure to keep your eyes peeled for the space station from your location.

Why is the Moon Leaving Us?

Why is the Moon Leaving Us?

Goodbye Moon. Every year, the Moon slips a few centimeters away from us, slowing down our day. Why is the Moon drifting away from us, and how long will it take before the Earth and the Moon are tidally locked to each other?

We had a good run, us and the Moon. Grab your special edition NASA space tissues because today we’re embarking on a tale of orbital companionship, childhood sweethearts and heartache.

You could say we came from the same part of town. A long time ago the Mars-sized object Theia, collided with the Earth and the Moon was formed out of the debris from the collision.

We grew up together. Counting from the very beginning, this relationship has lasted for 4.5 billion years. We had some good times. Some bad times. Gravitationally linked, arm in arm, inside our solar family sedan traversing the galaxy.

But now, tragedy. The Moon, OUR Moon, is moving on to brighter horizons. We used to be much closer when we were younger and time seemed to fly by much faster. In fact, 620 million years ago, a day was only 21 hours long. Now they’ve dragged out to 24 hours and they’re just getting longer, and the Moon is already at a average distance of 384,400 km. It almost feels too far away.

If we think back far enough to when we were kids, there was a time when a day was just 2 – 3 hours long, and the Moon was much closer. It seemed like we did everything together back then. But just like people, massive hunks of rock and materials flying through space change, and their relationships change as well.

Our therapist told us it wasn’t a good idea to get caught up on minutiae, but we’ve done some sciencing using the retroreflector experiments placed by Apollo astronauts, and it looks as though the Moon has always had one foot out the door.

Today it’s drifting away at 1-2 cm/year. Such heartache! We just thought it seemed like the days were longer, but it’s not just an emotional effect of seeing our longtime friend leaving us, there’s a real physical change happening. Our days are getting 1/500th of a second longer every century.

I can’t help but blame myself. If only we knew why. Did the Moon find someone new? Someone more attractive? Was it that trollop Venus, the hottest planet in the whole solar system? It’s really just a natural progression. It’s nature. It’s gravity and tidal forces.

And no, that’s not a metaphor. The Earth and the Moon pull at each other with their gravity. Their shapes get distorted and the pull of this tidal force creates a bulge. The Earth has a bulge facing towards the Moon, and the Moon has a more significant bulge towards the Earth.

A series of photos combined to show the rise of the July 22, 2013 ‘super’ full moon over the Rocky Mountains, shot near Vail, Colorado, at 10,000ft above sea level in the White River National Forest. Moon images are approximately 200 seconds apart. Credit and copyright: Cory Schmitz
A series of photos combined to show the rise of the July 22, 2013 ‘super’ full moon over the Rocky Mountains, shot near Vail, Colorado, at 10,000ft above sea level in the White River National Forest. Moon images are approximately 200 seconds apart. Credit and copyright: Cory Schmitz

These bulges act like handles for gravity, which slows down their rotation. The process allowed the Earth’s gravity to slow the Moon to a stop billions of years ago. The Moon is still working on the Earth to change its ways, but it’ll be a long time before we become tidally locked to the Moon.

This slowing rotation means energy is lost by the Earth. This energy is transferred to the Moon which is speeding up, and as we’ve talked about in previous episodes the faster something orbits, the further and further it’s becomes from the object it’s orbiting.

Will it ever end? We’re so attached, it seems like it’ll take forever to figure out who’s stuff belongs to who and who gets the dog. Fear not, there is an end in sight. 50 billion years from now, 45 billion years after the Sun has grown weary of our shenanigans and become a red giant, when the days have slowed to be 45 hours long, the Moon will consider itself all moved into its brand new apartment ready to start its new life.

What about the neighbors down the street? How are the other orbital relationships faring. I know there’s a lot of poly-moon-amory taking place out there in the Solar System. We’re not the only ones with Moons tidally locked. There’s Phobos and Deimos to Mars, many of the moons of Jupiter and Saturn are, and Pluto and Charon are even tidally locked to each other, forever. Now’s that’s real commitment. So, in the end. The lesson here is people and planets change. The Moon just needs its space, but it still wants to be friends.

What do you think? If you were writing a space opera about the Earth and the Moon break-up, what was it that finally came between them? Tell us in the comments below.

Ground Control To Laser Tom! Space Video Beamed To Earth In 3.5 Seconds

Artist's conception of how the Optical Payload for Lasercomm Science (OPALS) beams information from the International Space Station. Credit: NASA

What’s the first thing you would say to Earth if you were sending a message from space? Well, the old computer expression “Hello, World!” seems apt. That in fact was the content of the video message sent by laser from an experiment on the International Space Station that aims to speed up communications in space.

Laser could change communications with spacecraft forever. For half a century we’ve been used to puttering around with radio waves, receiving a few bits of information at a time, which makes transmitting images and videos from distant planets an exercise of patience.

Enter the OPALS (Optical Payload for Lasercomm Science) payload, which transmitted the video (which you can watch above) at a maximum of 50 megabits per second — the standard speed for many home Internet connections. The testbed technology could speed up comms about 10 to 1,000 times faster than traditional radio, which would definitely get science information to the ground faster. The tradeoff is you have to be extremely precise.

“Because the space station orbits Earth at 17,500 mph [28,200 km/h], transmitting data from the space station to Earth requires extremely precise targeting,” NASA stated. “The process can be equated to a person aiming a laser pointer at the end of a human hair 30 feet away and keeping it there while walking.”

OPALS did this by communicating with a laser beacon at the Table Mountain Observatory in Wrightwood, California. The transmission took 148 seconds, and the video message itself only took 3.5 seconds for each copy to come to Earth — compared with 10 minutes under traditional methods!

Laser communication has been tested as far away as the moon; for example, in 2013 NASA’s Lunar Reconnaissance Orbiter transmitted the Mona Lisa via laser.

You can read more technical details of the laser messaging goodness from the space station in this past Universe Today story.

Source: Jet Propulsion Laboratory

Carnival of Space #357

Carnival of Space. Image by Jason Major.
Carnival of Space. Image by Jason Major.

Welcome, come in to the 357th Carnival of Space! The carnival is a community of space science and astronomy writers and bloggers, who submit their best work each week for your benefit. I’m Susie Murph, part of the team at Universe Today and now, on to this week’s stories!

We’re going to start off with a double blast from the past, courtesy of CosmoQuest! This week, they’re featuring Stuart Robbins’s blog post from January 13, 2012, titled “Perspective on the Apollo 15 Landing Site.” He explores the region of the Moon that is the current home of the MoonMappers images that YOU are still mapping and exploring today – the Apollo 15 landing site area. It’s a neat place and we can study a lot of things there. Due to a quirk of optics and angles, you can even imagine you’re flying towards it.

Next, we stay with Cosmoquest’s Moon Mappers as they highlight the interesting discovery that the groundbreaking Soviet Lunakhod 2 lunar rover traveled farther than earlier estimated on it’s mission in 1972. Visit MoonMappers at Cosmoquest for more great stories!

Moving through history, we travel over to io9’s Space blog for a history of the American Space Shuttle disasters is a grim reminder of the danger of space travel. Just released is Major Malfunction, a documentary on the two Shuttle catastrophes. Major malfunction is an understatement for the destruction of Space Shuttle Challenger moments after launch in 1986, and the loss of Space Shuttle Columbia during re-entry in 2003.

Next at io9, we visit Mars to view the magnificent Draa, which are ancient landforms created from waves of sand. Check out the article and it’s images here.

We also have another article from io9, which new astronaut Reid Wiseman recounts his first adventurous days in space.

Now we’ll jump over for some gorgeous views from the Chandra X-Ray Observatory! One of their new images is a glorious view of the Whirlpool spiral galaxy which radiates with fantastic points of x-ray light. These image is breath-taking!

Want more gorgeous images? Visit Brownspaceman.com to see his discussion of the Tulip Nebula, which is a composite image which also maps the emissions from this incredible nebula.

Next, we head over to the Meridani Journalfor coverage of a major find in the search for exoplanets. A new world which is more than twice as large as Earth and about 17 times heavier has been discovered, a sort of “mega-Earth” as some have referred to it.

The NextBigFuture Blog lives up to it’s name by bringing us two interesting stories from Elon Musk and his company SpaceX. First, he points out that the key is reusability. Musk said the crewed Dragon is designed to land softly back on Earth and be rapidly turned around for another flight — possibly on the same day. Spacex is aiming for 10 flights without any significant refurbishment for the Dragon v2. The thing that will have to be refurbished is the main heat shield. Further improved heat shield materials [later versions of PICA-X] would mean Spacex could aim for 100 reusable flights.

We then head over to the Urban Astronomer, where recent observations of a very near pair of brown dwarf objects has led to something new: We’re watching the weather on stars themselves!

Finally, we return to Universe Today for some interesting potential missions. First, the B612 Foundation’s privately-funded Sentinel mission, once launched and placed in orbit around the Sun in 2018, will hunt for near-Earth asteroids down to about 140 meters in size using the most advanced infrared imaging technology, without government red tape to hamper the mission. Next, the NASA Innovative Advanced Concepts office announced a dozen far-flung drawing-board proposals that have received $100,000 in Phase 1 funding for the next 9-12 months, one of which is a balloon for exploring Titan. We’re looking forward to hearing about these projects and many others in the coming years.

That’s it for this week’s Carnival! See you all next time!

And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.

Moon-Forming Crash Left A ‘Signal’ In Planet Earth

The Moon sets above the Continental Divide in Colorado from 86,000 feet. Taken June 27, 2013 on a meteorological balloon launched from Boulder, Colorado. Credit and copyright: Patrick Cullis.

What physical evidence exists of a huge collision that formed our Moon and nearly blew the Earth apart, about 4.5 billion years ago? This is the leading theory for how the Moon came to be, but given it happened so long ago the physical evidence is scarce.

Readers may recall the story from last week talking about how oxygen in Moon rocks shows evidence of this crash. This week, there’s a new study  from the same conference that focuses on the other side of the puzzle piece: what can we see on planet Earth? Turns out there might be a “signal” showing us the way.

As the theory goes, the colliding body — which some researchers call “Theia” — would have created a cloud of fragments surrounding our planet that eventually coalesced into the Moon.

The new research says that evidence of this collision would have showed up in the mantle, a layer of the Earth’s interior, and could explain a puzzling difference in isotopes (types) of certain elements that was known before.

“The energy released by the impact between the Earth and Theia would have been huge, certainly enough to melt the whole planet,” stated research lead Sujoy Mukhopadhyay, an associate professor at Harvard University.

Layers of the Earth
Layers of the Earth

“But we believe that the impact energy was not evenly distributed throughout the ancient Earth. This means that a major part of the impacted hemisphere would probably have been completely vaporized, but the opposite hemisphere would have been partly shielded, and would not have undergone complete melting.”

The team said that the impact did not completely stir the mantle, which would explain why the ratio of isotopes of helium and nitrogen inside the shallow part of the mantle is much higher than the deep mantle.

They also analyzed two isotopes of xenon. Scientists know already that the material on the surface has a lower isotope ratio to what is inside, but what is new is comparing these isotopes pointed to an age of the collision: about 100 million years after the Earth formed.

The research was presented today at the Goldschmidt conference in Sacramento, California.

Source: Goldschmidt

Space Seed: How To Spread Earth’s Life Across The Universe

A 'Blue Marble' image of the Earth taken from the VIIRS instrument aboard NASA's most recently launched Earth-observing satellite - Suomi NPP. This composite image uses a number of swaths of the Earth's surface taken on January 4, 2012. Credit: NASA/NOAA/GSFC/Suomi NPP/VIIRS/Norman Kuring.

Earth’s lifespan for life is finite. In about five billion years, our Sun will transform into a red giant and make our planet uninhabitable, to put it lightly, as our closest star gets bigger and swallows up Mercury and Venus. But perhaps there is a way to help our life colonize other spots in the universe.

One researcher’s vision would see microbes from our planet being sent to distant planetary systems in formation and seeding the area with exports from Earth.

The idea is of course highly theoretical and requires careful thought of the ethics (what if our life destroys others?) and technology (how to get the microbes out there)? But it’s something that Michael Mautner, a chemistry researcher at the Virginia Commonwealth University College of Humanities and Sciences, is considering.

“I suggest we give life a chance,” he said in an interview with Universe Today.

These are the steps that Mautner suggests for those considering his method of spreading life into the universe.

Artist’s impression of a baby star still surrounded by a protoplanetary disc in which planets are forming.  Credit: ESO
Artist’s impression of a baby star still surrounded by a protoplanetary disc in which planets are forming. Credit: ESO

1. Think long-term. Many planets or systems are under formation, dozens if not hundreds of light-years away from us. We can send hardy microorganisms to start new life there, but travelling will take many thousands of years. This new life can then take millions or perhaps billions of years to evolve, some to intelligent life that can spread life further in the galaxy. Planning on such time-scales is key to our cosmological future.

2. Find a habitable system. One idea could be to look for a habitable planet; he observed that the Kepler space telescope has made great strides in showing us potentially habitable worlds from afar. As telescope technology improves, finding these worlds will be easier. That said, there’s a risk that any Earth-borne life could obliterate any native life there. His solution is to find star systems under formation instead: “There hasn’t been enough time for life, especially advanced life-forms, to start there,” he says.

Kepler-62f, an exoplanet that is about 40% larger than Earth. It's located about 1,200 light-years from our solar system in the constellation Lyra. Credit: NASA/Ames/JPL-Caltech
Kepler-62f, an exoplanet that is about 40% larger than Earth. It’s located about 1,200 light-years from our solar system in the constellation Lyra. Credit: NASA/Ames/JPL-Caltech

3. Aim carefully. A planet would take a very precise aiming system, he acknowledges, but aiming for larger star-forming interstellar clouds where a planetary systems are being formed, would be easier for current technology.

4. Freeze the microbes. Transit in cold interstellar space will put the microbes into deep hibernation and also make them more radiation-resistant: “the challenge is to maybe be able to bio- engineer microbes that can survive for that period,” Mautner points out. He added that there are plenty of examples on Earth of extremophiles surviving harsh environments, such as outside in satellites in or in hot vents near the bottom of the ocean. And microbes are also capable of hibernating. They could then be woken up when they get to a region near planetary systems that allows for liquid water, in conditions that could let them grow.

Could humans follow in their wake? Mautner says he would be happy for humans to go, but it could take thousands of years or more to make the journey. He doesn’t rule out the possibility of cryogenics making that trip more possible, and says there is a “fair chance” that it could work.

For more information on Mautner’s research and related concepts, consult this research paper, the Interstellar Panspermia Society, this page on “Astro Ecology” and this Q&A with Mautner at Victoria College’s website.

What do you think of the concept? Let us know in the comments.

Jaw-Dropping Sunset Timelapse from Sweden

The setting Sun as it passed over the church of a small village called Ås. You can clearly see two sunspots visible on the Sun (#2079 and #2077), both about the size of one Earth diameter. Credit and copyright: Göran Strand.

This is not your basic sunset timelapse! It combines a close-up view of the Sun with a solar telescope along with the landscape in the foreground. Astrophotographer Göran Strand from Sweden has been planning this photoshoot for a year, and it turned out spectacularly.

“Yesterday I went out to shoot a sunset I’ve planed since last summer,” Göran said via email. “This time of the year, the Sun passes right behind a big radar tower if you stand at the Swedish National Biathlon Arena in Östersund. The radar tower is located about 8 km away from the arena in a small village called Ås. I shoot the movie using my solar telescope to capture the structures on the Sun. The timing was perfect and the Sun looked really nice since it was full of sunspots and big filaments.”

Note the size of the Earth inserted for reference.

Below is a beautiful image taken a few days earlier by Göran of the setting Sun:

See more of Göran’s work at his website, Facebook, or Twitter.

How Do You Make A Space Weather Forecast For Venus?

Artist's concept of Venus Express. Credit: ESA

Here’s another marvel of technology: there are people on Earth who are formulating solar weather forecasts … for Venus. While that sounds counterintuitive — isn’t the sun far away from that planet? — it actually does have a big effect on the planet’s atmosphere. And with Venus Express taking the plunge into the planet’s atmosphere, it’s important to know how the sun is behaving to predict its effect.

As the spacecraft skims the top of the planet’s atmosphere, it’s possible that if an extreme weather event occurs, this could change the orbit from what would be predicted.

“The space weather reports will … allow us to better understand anomalous behaviour that we may subsequently observe on the spacecraft,” stated Adam Williams, Venus Express’ deputy spacecraft operations manager.

“And in extreme cases, we would be more ready to react to a serious situation. For example, if our startrackers were to be overloaded by radiation.”

We’re used to regular solar weather reports on Earth, but getting them ready for Venus — a first — is a bit more difficult. The European Space Agency is using observatories such as the Solar Dynamics Observatory, the Solar and Heliospheric Observatory and the Proba-2 spacecraft, just like it does for Earth forecasts.

On August 31, 2012 a long filament of solar material that had been hovering in the sun's atmosphere, the corona, erupted out into space at 4:36 p.m. EDT. The coronal mass ejection, or CME, traveled at over 900 miles per second.
On August 31, 2012 a long filament of solar material that had been hovering in the sun’s atmosphere, the corona, erupted out into space at 4:36 p.m. EDT. The coronal mass ejection, or CME, traveled at over 900 miles per second.

Venus presents an extra challenge, however, because it’s 59 degrees ahead of Earth in its orbit (as things stand right now) and there are no spacecraft in between the Sun and Venus to see how conditions change as particles head toward the planet. The updates are being issued through ESA’s Space Weather Coordination Centre in Belgium.

By the way, we’re also lucky enough to get weather forecasts for another planet — Mars! Malin Space Science Systems provides weekly weather reports from the Red Planet through the Mars Color Imager (MARCI) on the Mars Reconnaissance Orbiter. Here’s part of its report from between May 26 and June 1. (Be sure to click through the link to watch a recent video of Mars rotating).

Dust storm frequency increased this week in the southern tropical latitudes west and north of Argyre with local storms of varying size and duration observed in Aonia, Solis, Syria, and Tharsis. Dust haze resulting from these storms was present in the western portions of Valles Marineris. Other storm activity occurred in Noachis, as well as in the northern hemisphere off the residual north polar cap. Diffuse water ice clouds were present over Utopia and equatorial latitudes. At southern mid-to-high latitudes, seasonal frost was present up to approximately 55 degrees south latitude. Other than occasional diffuse water ice clouds over Meridiani, skies were relatively storm free over the Opportunity rover site at Endeavor Crater and the Curiosity rover site at Gale Crater.

Curiosity Captures Stunning New Mount Sharp Panorama ‘On The Go’

Curiosity rover panorama of Mount Sharp captured on June 6, 2014 (Sol 651) during traverse inside Gale Crater. Note rover wheel tracks at left. She will eventually ascend the mountain at the ‘Murray Buttes’ at right later this year. Assembled from Mastcam color camera raw images and stitched by Marco Di Lorenzo and Ken Kremer. Credit: NASA/JPL/MSSS/Marco Di Lorenzo/Ken Kremer-kenkremer.com

Curiosity rover panorama of Mount Sharp captured on June 6, 2014 (Sol 651) during traverse inside Gale Crater. Note rover wheel tracks at left. She will eventually ascend the mountain at the ‘Murray Buttes’ at right later this year. Assembled from Mastcam color camera raw images and stitched by Marco Di Lorenzo and Ken Kremer. Credit: NASA/JPL/MSSS/Marco Di Lorenzo/Ken Kremer-kenkremer.com
Story updated[/caption]

Within the past Martian day on Friday, June 6, NASA’s rover Curiosity captured a stunning new panorama of towering Mount Sharp and the treacherous sand dunes below which she must safely traverse before reaching the mountains foothills – while ‘On The Go’ to her primary destination.

See our brand new Mount Sharp photo mosaic above – taken coincidentally by humanity’s emissary on Mars on the 70th anniversary of D-Day on Earth.

Basically she’s eating desiccated dirt while running a Martian marathon.

Having said ‘Goodbye Kimberley’ after drilling her third bore hole deep into a cold red slab of enticing bumpy textures of Martian sandstone in the name of science, our intrepid mega rover Curiosity is trundling along with all deliberate speed towards the inviting slopes of sedimentary rocks at the base of mysterious Mount Sharp which hold clues to the habitability of the Red Planet.

The sedimentary layers of Mount Sharp, which reaches 3.4 miles (5.5 km) into the Martian sky, is the six wheeled robots ultimate destination inside Gale Crater because it holds caches of water altered minerals.

Such minerals could possibly mark locations that sustained potential Martian microbial life forms, past or present, if they ever existed.

Mars was far wetter and warmer – and more conducive to the origin of life – billions of years ago.

Curiosity’s panoramic view departing Mount Remarkable and ‘The Kimberley Waypoint’ where rover conducted 3rd drilling campaign inside Gale Crater on Mars. The navcam raw images were taken on Sol 630, May 15, 2014, stitched and colorized. Credit: NASA/JPL-Caltech/Ken Kremer – kenkremer.com/Marco Di Lorenzo
Curiosity’s panoramic view departing Mount Remarkable and ‘The Kimberley Waypoint’ where rover conducted 3rd drilling campaign inside Gale Crater on Mars. The navcam raw images were taken on Sol 630, May 15, 2014, stitched and colorized. Credit: NASA/JPL-Caltech/Ken Kremer – kenkremer.com/Marco Di Lorenzo

The 1 ton robot is driving on a path towards the Murray Buttes which lies across the dunes on the right side of Mount Sharp as seen in our photo mosaic above, with wheel tracks on the left side.

She will eventually ascend the mountain at the ‘Murray Buttes’ after crossing the sand dunes.

Curiosity still has roughly another 4 kilometers of driving to go to reach the foothills of Mount Sharp sometime later this year.

Approximately four weeks ago, Curiosity successfully completed her 3rd drilling campaign since landing at the science waypoint region called “The Kimberley” on May 5, Sol 621, into the ‘Windjana’ rock target at the base of a 16 foot tall ( 5 Meter) hill called Mount Remarkable.

Composite photo mosaic shows deployment of NASA Curiosity rovers robotic arm and two holes after drilling into ‘Windjana’ sandstone rock on May 5, 2014, Sol 621, at Mount Remarkable as missions third drill target for sample analysis by rover’s chemistry labs.  The navcam raw images were stitched together from several Martian days up to Sol 621, May 5, 2014 and colorized.   Credit: NASA/JPL-Caltech/Ken Kremer - kenkremer.com/Marco Di Lorenzo
Composite photo mosaic shows deployment of NASA Curiosity rovers robotic arm and two holes after drilling into ‘Windjana’ sandstone rock on May 5, 2014, Sol 621, at Mount Remarkable as missions third drill target for sample analysis by rover’s chemistry labs. The navcam raw images were stitched together from several Martian days up to Sol 621, May 5, 2014 and colorized. Credit: NASA/JPL-Caltech/Ken Kremer – kenkremer.com/Marco Di Lorenzo

The fresh hole drilled into “Windjana” was 0.63 inch (1.6 centimeters) in diameter and about 2.6 inches (6.5 centimeters) deep and resulted in a mound of dark grey colored drill tailings piled around. It looked different from the initial holes drilled at Yellowknife Bay in the spring of 2013.

Windjana lies some 2.5 miles (4 kilometers) southwest of Yellowknife Bay.

Curiosity then successfully delivered pulverized and sieved samples to the pair of onboard miniaturized chemistry labs; the Chemistry and Mineralogy instrument (CheMin) and the Sample Analysis at Mars instrument (SAM) – for chemical and compositional analysis.

Before departing, Curiosity blasted the hole multiple times with her million watt laser on the Mast mounted Chemistry and Camera (ChemCam) instrument , leaving no doubt of her capabilities or intentions.

And she completed an up close examination of the texture and composition of ‘Windjana’ with the MAHLI camera and spectrometers at the end of her 7-foot-long (2 meter) arm to glean every last drop of science before moving on.

“Windjana” is named after a gorge in Western Australia.

While ‘On the Go’ to Mount Sharp, the rover is keeping busy with science activities by investigating the newly cored Martian material.

“Inside Curiosity we continue to analyse the Kimberley samples with CheMin and SAM,” wrote mission team member John Bridges in an update.

To date, Curiosity’s odometer totals 3.8 miles (6.1 kilometers) since landing inside Gale Crater on Mars in August 2012. She has taken over 154,000 images.

Stay tuned here for Ken’s continuing Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, commercial space, MAVEN, MOM, Mars and more planetary and human spaceflight news.

Ken Kremer

Curiosity’s Panoramic view of Mount Remarkable at ‘The Kimberley Waypoint’ where rover conducted 3rd drilling campaign inside Gale Crater on Mars. The navcam raw images were taken on Sol 603, April 17, 2014, stitched and colorized. Credit: NASA/JPL-Caltech/Ken Kremer – kenkremer.com/Marco Di Lorenzo.  Featured on APOD - Astronomy Picture of the Day on May 7, 2014
Curiosity’s Panoramic view of Mount Remarkable at ‘The Kimberley Waypoint’ where rover conducted 3rd drilling campaign inside Gale Crater on Mars. The navcam raw images were taken on Sol 603, April 17, 2014, stitched and colorized. Credit: NASA/JPL-Caltech/Ken Kremer – kenkremer.com/Marco Di Lorenzo
Featured on APOD – Astronomy Picture of the Day on May 7, 2014
The Mars Hand Lens Imager on NASA's Curiosity Mars rover provided this nighttime view of a hole produced by the rover's drill and, inside the hole, a line of scars produced by the rover's rock-zapping laser. The hole is 0.63 inch (1.6 centimeters) in diameter.  The camera used its own white-light LEDs to illuminate the scene on May 13, 2014.  Credit:  NASA/JPL-Caltech/MSSS
The Mars Hand Lens Imager on NASA’s Curiosity Mars rover provided this nighttime view of a hole produced by the rover’s drill and, inside the hole, a line of scars produced by the rover’s rock-zapping laser. The hole is 0.63 inch (1.6 centimeters) in diameter. The camera used its own white-light LEDs to illuminate the scene on May 13, 2014. Credit: NASA/JPL-Caltech/MSSS