Can Radio Waves Lead to Exomoons?

An artist's conception of a distance exomoon blocking out a star's light. Credit: Dan

I firmly believe that our next greatest discovery will be detecting an exomoon in orbit around a distant exoplanet. Although no one has been able to confirm an exomoon — yet — the hunt is on.

Now, a research team thinks following a trail of radio wave emissions may lead astronomers to this groundbreaking discovery.

The difficulty comes in trying to spot an exomoon using existing methods. Some astronomers think that hidden deep within the wealth of data collected by NASA’s Kepler mission are miniscule signatures confirming the presence of exomoons.

If an exomoon transits the star immediately before or just after the planet does, there will be an added dip in the observed light. Although astronomers have searched through Kepler data, they’ve come up empty handed.

So the team, led by Ph.D. student Joaquin Noyola, from the University of Texas at Arlington, decided to look a little closer to home. Specifically, Noyola and colleagues analyzed the radio wave emissions that result from the interaction between Jupiter, and it’s closest moon, Io.

During its orbit, Io’s ionosphere interacts with Jupiter’s magnetosphere — a layer of charged plasma that protects the planet from radiation — to create a frictional current that emits radio waves. Finding similar emissions near known exoplanets could be the key to predicting where moons exist.

“This is a new way of looking at these things,” said Noyola’s thesis advisor, Zdzislaw Musielak, in a press release. “We said, ‘What if this mechanism happens outside of our Solar System?’ Then, we did the calculations and they show that actually there are some star systems that if they have moons, it could be discovered in this way.”

The team even pinpointed two exoplanets — Gliese 876b, which is about 15 light-years away, and Epsilon Eridani b, which is about 10.5 light-years away — that would be good targets to begin their search.

With such a promising discovery on the horizon, theoretical astronomers are beginning to address the factors that may deem these alien moons habitable.

“Most of the detected exoplanets are gas giants, many of which are in the habitable zone,” said coauthor Suman Satyal, another Ph.D. student at UT Arlington. “These gas giants cannot support life, but it is believed that the exomoons orbiting these planets could still be habitable.”

Of course one look at Io shows the drastic effects a nearby planet may have on its moon. The strong gravitational pull of Jupiter distorts Io, causing its shape to oscillate, which generates enormous tidal friction. This effect has led to over 400 active volcanoes.

But a moon at a slightly further distance could certainly be habitable. A second look at Europa — Jupiter’s second-most inner satellite — demonstrates this facet. It’s possible that life could very well exist under Europa’s icy crust.

Exomoons may be frequent, habitable abodes for life. But only time will tell.

The findings have been published in the Aug. 10 issues of the Astrophysical Journal and are available online.

Spacecraft Stormchasing: Titan Clouds Swirl As Saturn Moon Approaches Northern Summer

Clouds swirl near Titan's north pole in this annotated still image from the Cassini mission. Credit: NASA/JPL-Caltech/Space Science Institute

Swoosh! At long last, and later than models predicted, clouds are starting to appear on Titan’s nothern hemisphere. The region is just starting to enter a seven-year-long summer, and scientists say this could be an indication of coming summer storms there.

This moon of Saturn is of particular interest to astrobiologists because it has hydrocarbons (like ethane and methane), which are organic molecules that are possible precursors to the chemistry that made life possible. But what is also neat about Titan is it has its own weather system and liquid cycle — which makes it closer to Earth than to our own, nearly atmosphere-less Moon.

“The lack of northern cloud activity up til now has surprised those studying Titan’s atmospheric circulation,” wrote Carolyn Porco, the imaging lead for Cassini, in a message distributed to journalists.

“Today’s reports of clouds, seen a few weeks ago, and other recent indicators of seasonal change, are exciting for what they imply about Titan’s meteorology and the cycling of organic compounds between northern and southern hemispheres on this unusual moon, the only one in our solar system covered in liquid organics.”

Clouds swirl near Titan's north pole in this annotated still image from the Cassini mission. Credit: NASA/JPL-Caltech/Space Science Institute
Clouds swirl near Titan’s north pole in this annotated still image from the Cassini mission. Credit: NASA/JPL-Caltech/Space Science Institute

The pictures were taken by the Cassini spacecraft, which has been orbiting Saturn and its moons since 2004. The satellite arrived at the system in time to see clouds forming in the southern hemisphere, but the moon has been nearly bereft of clouds since a large storm occurred in 2010.

This particular cloud system occurred over Ligeia Mare, which is near Titan’s north pole, and included gentle wind speeds of about seven to 10 miles per hour (11 to 16 kilometers per hour.)

The sequence takes place between July 20 and 22, with most of the pictures separated by about 1-2 hours (although there is a 17.5-hour jump between frames 2 and 3.)

Sources: NASA Jet Propulsion Laboratory and Cassini Imaging Central Laboratory for Operations (CICLOPS)

Awesome Video of a Satellite in Orbit

Image of the TechDemoSat-1 in orbit, taken minutes after separation of the satellite from the Soyuz-2 launcher and shows a view of the Earth from Space, with the spacecraft's Antenna Pointing Mechanism in view. Credit: SSTL.

Here’s a great video from a camera mounted on the exterior of the TechDemoSat-1, an in-orbit technology demonstration mission from the UK. It launched on July 8, 2014 on a Soyuz-2, and the video shows the satellite moments after separation from the upper stage. The satellite even took a selfie, below.

The video shows the satellite’s rotation and reveals a spectacular vista of “blue marble” Earth (visible is cloudy skies over the Pacific, south of French Polynesia).

It’s interesting to note that some identified flying objects zip past the field of view: At :25 seconds, the Fregat upper stage of the Soyuz-2 rocket appears as a gold object passing away from the satellite left to right at a distance of approximately 60 meters. At :34 seconds a white “dot” crosses the frame left to right – which has been identified as one of the other satellites that shared the ride into orbit with TechDemoSat-1.

“It is very rare to see actual footage of our satellites in orbit,” said Sir Martin Sweeting, Executive Chairman of Surrey Satellite Technology Ltd (SSTL), the company behind the mission, “and so viewing the video taken from TechDemoSat-1 moments after separation from the rocket has been a hugely rewarding and exciting experience for everyone at SSTL. We are delighted with the progress of commissioning the TechDemoSat-1 platform, and are looking forward to the next phase – the demonstration of a range of new technologies being flown on this innovative mission.”

The satellite is roughly the size of a refrigerator but wieghs just 150kg. TechDemoSat (TDS-1) carries eight separate payloads from UK academia and industry plus other payloads from SSTL for product development. Find out more here from SSTL.

Some Of Comet ISON’s Organic Materials Arose In An Unexpected Place

Comet ISON was one of the two comets studied by scientists using the Atacama Large Millimeter/submillimeter Array (ALMA). The diagram shows where it was located in the solar system at the time of observations. 3-D images of its coma (atmosphere) revealed organic compounds. Credit: B. Saxton (NRAO/AUI/NSF); NASA/ESA Hubble; M. Cordiner, NASA, et al.

While Comet ISON’s breakup around Thanksgiving last year disappointed many amateur observers, its flight through the inner solar system beforehand showed scientists something neat: it was carrying organic materials with it.

A group examined the molecules surrounding the comet in its coma (atmosphere) and, along with observations of Comet Lemmon, created a 3-D model that you can see above. Among other results, this revealed the presence of formaldehyde and HNC (hydrogen, nitrogen and carbon). The formaldehyde was expected, but the spot where HNC was found came as a surprise.

Scientists used to think that HNC is produced from the nucleus, but the research revealed that it actually happens when larger molecules or organic dust breaks down in the coma.

“Understanding organic dust is important, because such materials are more resistant to destruction during atmospheric entry, and some could have been delivered intact to early Earth, thereby fueling the emergence of life,” stated Michael Mumma, a co-author on the study who is director of the Goddard Center for Astrobiology. “These observations open a new window on this poorly known component of cometary organics.”

Observation were made possible using the powerful Atacama Large Millimeter/submillimeter Array (ALMA). The array of 66 radio telescopes in Chile allows astronomers to map molecules and peer past dust clouds in star systems under formation, among other things. ALMA was completed last year and is the largest telescope of its type in the world.

The array’s resolution allowed scientists to probe for these molecules in moderately bright comets, which is also new. Previously, these types of studies were limited to “blockbuster” visitors such as Comet Hale-Bopp in the 1990s, NASA sated.

The study, which was led by the Goddard Center for Astrobiology’s Martin Cordiner at NASA’s Goddard Space Flight Center, was published in Astrophysical Journal Letters. The research is also available in preprint version on Arxiv.

Source: NASA

Europe’s Last ATV Cargo Ship Docks Safely At Space Station

The European Space Agency cargo ship Georges Lemaître, the last automated transfer vehicle, docked safely at the International Space Station Aug. 12, 2014. Credit: NASA/Twitter

It took two weeks to get there, but all indications is it was worth the wait. The final automated transfer vehicle of the European Space Agency successfully docked with the International Space Station today (Aug. 12) at 9:30 a.m. EDT (1:30 p.m. UTC) — right on time.

The cargo vehicle has about seven tons of stuff on board, ranging from science experiments to fresh food. The astronauts always enjoy it when fruit and other new food arrives in these shipments, given so many of their meals are freeze-dried.

Also on board was a new rendezvous system manufactured by Canadian company Neptec, which is testing out new ways of docking for future cargo vehicles. And when it’s time for Georges Lemaître to leave the station around January 2015, sensors inside will monitor its planned destruction to make future cargo vehicles better equipped to survive re-entry.

Georges Lemaître left Earth July 29 from French Guiana, as did its four predecessors. The series of ATVs started in March 2008 when Jules Verne departed to resupply the Expedition 16 crew. The other vehicles were called Johannes Kepler, Edoardo Amaldi and Albert Einstein.

The new vehicle will be opened up on Wednesday. It will be a busy week for cargo vehicles at the station, as the privately constructed Cygnus spacecraft (from Orbital Sciences) is expected to leave the station on Friday at 6:40 a.m. EDT (10:40 a.m. UTC). Both Alexander Gerst (ESA) and Reid Wiseman (NASA) will release Cygnus using Canadarm2, a robotic arm on station.

How did Supermassive Black Holes Grow so Massive so Quickly?

Artist concept of matter swirling around a black hole. (NASA/Dana Berry/SkyWorks Digital)

Black holes one billion times the Sun’s mass or more lie at the heart of many galaxies, driving their evolution. Although common today, evidence of supermassive black holes existing since the infancy of the Universe, one billion years or so after the Big Bang, has puzzled astronomers for years.

How could these giants have grown so massive in the relatively short amount of time they had to form? A new study led by Tal Alexander from the Weizmann Institute of Science and Priyamvada Natarajn from Yale University, may provide a solution.

Black holes are often mistaken to be monstrous creatures that suck in dust and gas at an enormous rate. But this couldn’t be further from the truth (in fact the words “suck” and “black hole” in the same sentence makes me cringe). Although they typically accumulate bright accretion disks — swirling disks of gas and dust that make them visible across the observable Universe — these very disks actually limit the speed of growth.

First, as matter in an accretion disk gets close to the black hole, traffic jams occur that slow down any other infalling material. Second, as matter collides within these traffic jams, it heats up, generating energy radiation that actually drives gas and dust away from the black hole.

A star or a gas stream can actually be on a stable orbit around the black hole, much as a planet orbits around a star. So it is quite a challenge for astronomers to think of ways that would make a black hole grow to supermassive proportions.

Luckily, Alexander and Natarajan may have found a way to do this: by placing the black hole within a cluster of thousands of stars, they’re able to operate without the restrictions of an accretion disk.

Black holes are generally thought to form when massive stars, weighing tens of solar masses, explode after their nuclear fuel is spent. Without the nuclear furnace at its core pushing against gravity, the star collapses. While the inner layers fall inward to form a black hole of only about 10 solar masses, the outer layers fall faster, hitting the inner layers, and rebounding in a huge supernova explosion. At least that’s the simple version.

 A small black hole gains mass: Dense cold gas (green) flows toward the center of a stellar cluster (red cross in blue circle) with stars (yellow); the erratic path of the black hole through the gas (black line) is randomized by the surrounding stars Prof. Tal Alexander’s research is supported by the European Research Council.
The erratic path of the black hole through the gas (black line) is randomized by the surrounding stars (yellow circles). Meanwhile, dense cold gas (green arrows) flows toward the center of the cluster (red cross). Credit: Weizmann Institute of Science.

The team began with a model of a black hole, created from this stellar blast, embedded within a cluster of thousands of stars. A continuous flow of dense, cold, opaque gas fell into the black hole. But here’s the trick: the gravitational pull of many nearby stars caused it to zigzag randomly, preventing it from forming an accretion disk.

Without an accretion disk, not only is matter more able to fall into the black hole from all sides, but it isn’t slowed down in the accretion disk itself.

All in all, the model suggests that a black hole 10 times the mass of the Sun could grow to more than 10 billion times the mass of the Sun by one billion years after the Big Bang.

The paper was published Aug. 7 in Science and is available online.

Coma Dust Collection Science starts for Rosetta at Comet 67P/Churyumov-Gerasimenko

Rosetta NAVCAM image taken on 10 August 2014 from a distance of about 110 km from comet 67P/Churyumov-Gerasimenko. The comet nucleus is about 4 km across. Credit: ESA/Rosetta/NAVCAM

With the historic arrival of the European Space Agency’s (ESA) Rosetta spacecraft at destination Comet 67P/Churyumov-Gerasimenko flawlessly accomplished on August 6, 2014 after a decade long journey, ground breaking up close science at this bizarre world has begun while the team diligently and simultaneously searches for a landing site for the attached Philae comet lander.

Rosetta started collecting cometary dust from the coma encircling the comet’s nucleus with the onboard COSIMA instrument on Sunday, August 10, 2014 as the spacecraft orbits around and ahead of the icy wanderer from a distance of approximately 100 kilometers (62 miles). See coma image below.

Hopes are high that unprecedented science discoveries await at this alien world described as a “Scientific Disneyland,” by Mark McCaughrean, senior scientific adviser to ESA’s Science Directorate, during ESA’s live arrival day webcast. “It’s just astonishing.”

COSIMA stands for Cometary Secondary Ion Mass Analyser and is one of Rosetta’s suite of 11 state-of-the-art science instruments with a combined mass of 165 kg.

Its purpose is to conduct the first “in situ” analysis of the grains of dust particles emitted from the comets nucleus and determine their physical and chemical characteristics, including whether they are organic or inorganic – in essence what is cometary dust material made of and how it differs from the surface composition.

COSIMA will collect the coma dust using 24 specially designed ‘target holders’ – the first of which was opened to study the comets environment on Aug. 10. Since the comet is not especially active right now, the team plans to keep the target holder open for at least a month and check the progress of any particle collections on a weekly basis.

COSISCOPE image of the first target taken on 19 July 2014 (before the exposure, on 10 August, for cometary dust collection). The 1x1 cm target consists of a gold plate covered with a thin layer (30 µm) of gold nanoparticles (“gold black”). Illumination is by two LEDs, from the right side in this case. The bright dots on the vertical strip on the right side are used for target identification and for defining the coordinate system. Credits: ESA/Rosetta/MPS for COSIMA Team MPS/CSNSM/UNIBW/TUORLA/IWF/IAS/ESA/BUW/MPE/LPC2E/LCM/FMI/UTU/LISA/UOFC/vH&S
COSISCOPE image of the first target taken on 19 July 2014 (before the exposure, on 10 August, for cometary dust collection). The 1×1 cm target consists of a gold plate covered with a thin layer (30 µm) of gold nanoparticles (“gold black”). Illumination is by two LEDs, from the right side in this case. The bright dots on the vertical strip on the right side are used for target identification and for defining the coordinate system. Credits: ESA/Rosetta/MPS for COSIMA Team MPS/CSNSM/UNIBW/TUORLA/IWF/IAS/ESA/BUW/MPE/LPC2E/LCM/FMI/UTU/LISA/UOFC/vH&S

In fact the team says the coma environment “is still comparable to a high-quality cleanroom”at this time.

But everyone expects that to change radically as Rosetta continues escorting Comet 67P as it loops around the sun, getting closer and warming the surface every day and until reaching perihelion in August 2015.

COSIMA is managed by the Max Planck Institute for Solar System Research (Max-Planck-Institut für Sonnensystemforschung ) in Katlenburg-Lindau, Germany, with Principal Investigator Martin Hilchenbach.

There are also substantial contributions from the Institut d’Astrophysique Spatiale in France, Finnish Meteorological Institute, Osterreichisches Forschungszentrum Seibersdorf and more.

The target holders measure about one square centimeter and were developed by the Universität der Bundeswehr in Germany.

Each of these targets measures one square centimeter and is comprised of a gold plate covered with a thin 30 µm layer of gold nanoparticles (“gold black”) which the team says should “decelerate and capture cometary dust particles impacting with velocities of ~100 m/s.”

The target will be illuminated by a pair of LED’s to find the dust particles. The particles will be analyzed by COSIMA’s built in mass spectrometer after being located on the target holder by the French supplied COSISCOPE microscopic camera and ionized by a beam of indium ions.

Photo of the COSIMA (Cometary Secondary Ion Mass Analyser) instrument on Rosetta.  Credit: Max Planck Institute for Solar System Research/ESA
Photo of the COSIMA (Cometary Secondary Ion Mass Analyser) instrument on Rosetta. Credit: Max Planck Institute for Solar System Research/ESA

The team expects any grains found on the first target to be analyzed by mid-September 2014.

“COSIMA uses the method of Secondary Ion Mass Spectrometry. They will be fired at with a beam of Indium ions. This will spark individual ions (we say secondary ions) from their surfaces, which will then be analysed with COSIMA’s mass spectrometer,” according to a description from the COSIMA team.

The mass spec has the capability to analyze the elemental composition in an atomic mass range of 1 to 4000 atomic mass units, determine isotopic abundances of some key elements, characterize organic components and functional groups, and conduct mineralic and petrographic characterization of the inorganic phases, all of which will inform as as never before about solar system chemistry.

Comets are leftover remnants from the formation of the solar system. Scientists believe they delivered a vast quantity of water to Earth. They may have also seeded Earth with organic molecules – the building blocks of life as we know it.

Any finding of organic molecules and their identification by COSIMA will be a major discovery for Rosetta and ESA and inform us about the origin of life on Earth.

Data obtained so far from Rosetta’s VIRTIS instrument indicates the comets surface is too hot to be covered in ice and must instead have a dark, dusty crust.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

…….

Read my Rosetta series here:

What’s Ahead for Rosetta – ‘Finding a Landing Strip’ on Bizarre Comet 67P/Churyumov-Gerasimenko

Rosetta Arrives at ‘Scientific Disneyland’ for Ambitious Study of Comet 67P/Churyumov-Gerasimenko after 10 Year Voyage

Rosetta on Final Approach to Historic Comet Rendezvous – Watch Live Here

Rosetta Probe Swoops Closer to Comet Destination than ISS is to Earth and Reveals Exquisite Views

Rosetta Orbiter less than 500 Kilometers from Comet 67P Following Penultimate Trajectory Burn

Rosetta Closing in on Comet 67P/Churyumov-Gerasimenko after Decade Long Chase

ESA’s Rosetta Spacecraft nears final approach to Comet 67P/Churyumov-Gerasimenko in late July 2014. This collage of imagery from Rosetta combines Navcam camera images at right taken nearing final approach from July 25 (3000 km distant) to July 31, 2014 (1327 km distant), with OSIRIS wide angle camera image at left of comet’s expanding coma cloud on July 25. Images to scale and contrast enhanced to show further detail. Credit: ESA/Rosetta/NAVCAM/OSIRIS/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA   Collage/Processing: Marco Di Lorenzo/Ken Kremer
ESA’s Rosetta Spacecraft nears final approach to Comet 67P/Churyumov-Gerasimenko in late July 2014. This collage of imagery from Rosetta combines Navcam camera images at right taken nearing final approach from July 25 (3000 km distant) to July 31, 2014 (1327 km distant), with OSIRIS wide angle camera image at left of comet’s expanding coma cloud on July 25. Images to scale and contrast enhanced to show further detail. Credit: ESA/Rosetta/NAVCAM/OSIRIS/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA Collage/Processing: Marco Di Lorenzo/Ken Kremer

Perigee “Super” Moon Images from Around the World

The supermoon of August 10, 2014 rising behind Mt. Rundle and Banff, Alberta, Canada as shot from the Mt. Norquay viewpoint looking south over the valley. Credit and copyright: Alan Dyer.

Wow! The astrophotographers out there are getting artsy! Take a look at some of the most artistic images of the full Moon we’ve seen yet.

The August 10 full Moon was a so-called “super” Moon — and it was the “super-est” of a trio of full Moons being at perigee, or its closest approach to the Earth in its orbit. It was just 356,896 kilometers distant at 17:44 UTC, less than an hour from Full. You can see a comparison shot of the perigee and apogee Moons this year immediately below. Find all the technical details here, but enjoy a gallery of great images from around the world

A comparison the between two 'extreme' full Moons of 2014:  the perigee Full Moon of August 10th, and the apogee full Moon of January 16. As seen from Central Italy. Credit and copyright: Giuseppe Petricca.
A comparison the between two ‘extreme’ full Moons of 2014: the perigee Full Moon of August 10th, and the apogee full Moon of January 16. As seen from Central Italy. Credit and copyright: Giuseppe Petricca.
The August 10, 2014 'super' Moon. Credit and copyright: Robbie Ambrose.
The August 10, 2014 ‘super’ Moon. Credit and copyright: Robbie Ambrose.
Supermoon timelapse composite on August 10 near the ship mast at Barnegat Light on Long Beach Island, New Jersey. Credit and copyright: FrankM301 on Flickr.
Supermoon timelapse composite on August 10 near the ship mast at Barnegat Light on Long Beach Island, New Jersey. Credit and copyright: FrankM301 on Flickr.

A cloudy look at the perigee Moon of August 10, 2014 along side the Desde el Obelisco, Malecón de Santo Domingo, Dominican Republic. Credit and copyright: Goku Abreu.
A cloudy look at the perigee Moon of August 10, 2014 along side the Desde el Obelisco, Malecón de Santo Domingo, Dominican Republic. Credit and copyright: Goku Abreu.

'Super' Moon, August 10, 2014, taken with Nikon D80 from Ottawa, Canada. Credit and copyright: Andrew Symes.
‘Super’ Moon, August 10, 2014, taken with Nikon D80 from Ottawa, Canada. Credit and copyright: Andrew Symes.

Super Moon (and a companion) rising over Brixton, South London. 10/08/2014. Credit and copyright: Owen Llewellyn.
Super Moon (and a companion) rising over Brixton, South London. 10/08/2014. Credit and copyright: Owen Llewellyn.
Camaro and Full Moon - Aug 9, 2014. Taken from the Cairns Wharf in Australia at dusk using an iPhone 5. Three frames; two exposures each. Credit and copyright: Joseph Brimacombe.
Camaro and Full Moon – Aug 9, 2014.Taken from the Cairns Wharf in Australia at dusk using an iPhone 5. Three frames; two exposures each. Credit and copyright: Joseph Brimacombe.

It was prom night in Cairns… so the fancy cars were out. See Joseph’s other “prom supermoon” image here.

People watch the nearly 'super' Moon rise on August 9, 2014 near a lighthouse.  Credit and copyright:  Will Nourse.
People watch the nearly ‘super’ Moon rise on August 9, 2014 near a lighthouse. Credit and copyright: Will Nourse.
Perigee Full Moon mosaic from August 10, 2014 (a first attempt at a mosaic!) Credit and copyright: Mary Spicer.
Perigee Full Moon mosaic from August 10, 2014 (a first attempt at a mosaic!) Credit and copyright: Mary Spicer.
Perigee Moon rise over London on August 10, 2014. Credit and copyright: Sculptor Lil.
Perigee Moon rise over London on August 10, 2014. Credit and copyright: Sculptor Lil.
The perigee Moon from Toronto, Canada at 8:35 pm EDT. Credit and copyright: Rick Ellis.
The perigee Moon from Toronto, Canada at 8:35 pm EDT. Credit and copyright: Rick Ellis.
A full Moon flyby, as seen from Paris, France. Credit and copyright: Sebastien Lebrigand.
A full Moon flyby, as seen from Paris, France. Credit and copyright: Sebastien Lebrigand.

Even NASA got into the “super Moon” astrophoto craze. NASA photographer Bill Ingalls took this beautiful image at The Peace Monument on the grounds of the United States Capitol, in Washington D.C. :

A perigree full moon or supermoon is seen over the The Peace Monument on the grounds of the United States Capitol, Sunday, August 10, 2014, in Washington. A supermoon occurs when the moon’s orbit is closest (perigee) to Earth at the same time it is full. Credit: (NASA/Bill Ingalls)
A perigree full moon or supermoon is seen over the The Peace Monument on the grounds of the United States Capitol, Sunday, August 10, 2014, in Washington. A supermoon occurs when the moon’s orbit is closest (perigee) to Earth at the same time it is full. Credit: (NASA/Bill Ingalls)

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Help a Universe Today Writer Share Stories About Our Search For Earth-like Planets

An array of Earth-like planets. Image Credit: NASA

Since 1995, astronomers have detected thousands of worlds orbiting nearby stars, sparking a race to find the one that most resembles Earth. The discovery of habitable exoplanets and even extraterrestrial life is often referred to as the Holy Grail of science. So with the gold rush of exoplanet discoveries these days, it’s pretty tempting in news articles to lose readers in a fantastical narrative.

This month I’m launching a project on Beacon — a new independent platform for journalism — that will go behind the sensational headlines covering the search for Earth 2.0.

But I can’t do it without your help. In order to commit to writing about this on a regular basis, I need to raise $4,000 from subscribers who are willing to support my work over this month. Don’t worry, subscriptions are available for only $5 per month. This will supply the funding necessary to write for six months.

By Kepler’s definition, to be Earth-like a planet must be both Earth-size (less than 1.25 times Earth’s radius and less than twice Earth’s mass) and must circle its host star within the habitable zone: the band where liquid water can exist.

Image Credit: xkcd
Image Credit: xkcd

This simple, and yet variant, definition is a crucial starting point. But one glance at our Solar System (namely Venus and Mars) demonstrates that just because a planet is Earth-like doesn’t mean it’s an Earth twin.

So even if we do find Earth-like planets, we still don’t have the ability to know if they’re water worlds with luscious green planets and civilizations peering back at us.

But should we scale our definition of Earth-like planets up or down? Examples in the Solar System suggest that we should scale it down. Maybe planets located nearer to the center of the habitable zone are more congenial to life.

But can we base our definition on a single example — even if it’s the only example we know — alone? Theoretical astronomers suggest the picture is much more complicated. Life might arise on larger worlds, ones up to three times as massive as Earth, because they’re more likely to have an atmosphere due to more volcanic activity. Or life might arise on older worlds, where there’s simply more time for life to evolve.

It’s a crucial debate in astronomy research today, and it’s one that the media needs to handle with care. I am proud to be a part of Universe Today’s team, bringing readers up-to-date with the on goings in our local Universe. And Beacon will allow me to spend even more time, focusing on such a critical topic.

For each article, I will gather news, opinions and commentary from astronomers in the field. Not only do I have training as an astronomer, but my graduate school research focused on detecting exoplanet atmospheres from ground-based telescopes. With this deep-rooted understanding of the field at hand, I am able to parse complex information by directly reading peer-reviewed journal articles and interviewing astronomers I’ve met through my previous research.

But I really do need your help. Subscriptions are available for only $5 per month, and there are special rewards — such as gorgeous astronomy photos printed on canvas and gift subscriptions for friends — for people who subscribe at higher levels. You can directly subscribe here.

But here’s the best part: when you subscribe to my work, you’ll get access not only to all the stories I write, but the work of over 100 additional writers, based all over the world. This month Beacon is launching a series of astronomy projects, including one by Universe Today writer Elizabeth Howell.

Please help me write about our exciting search for Earth-like planets.

Photo Gallery: Step Right Up And Tour Rosetta’s Comet! Where Shall We Land?

A picture of Comet 67P/Churyumov-Gerasimenko. Credit: ESA/Rosetta/NAVCAM

What’s one of the first things you do when arriving at a new destination? Likely it would be scoping out the local neighborhood. Getting a sense of its terrain and the good things to do around there.

That’s part of what Rosetta’s team is working on since arriving at its comet early in the morning of Aug. 6 (Eastern time). While only a few pictures have been beamed back to the public so far of Comet 67P/Churyumov-Gerasimenko, the glimpses of its surface are tantalizing. Which is important, because a little spacecraft is on its way there.

As the team busily calibrates its instruments and snaps pictures of the surface, one of their first tasks will be to pick a landing site for Philae, the machine that is scheduled to leave Rosetta and actually touch softly down on the surface in November. This is the first time such a soft-landing has been attempted, and it’s been a long decade of waiting for the scientists who sent the two spacecraft on their way.

Picking a spot will be difficult for the team, they explained last week. The gravity is light and the terrain is not only difficult to navigate, but also hard to choose from. Would you prefer a crater or a cliff? That will be what science investigators will examine in the coming months.

As they do that, check out the latest pictures of the comet in the gallery below.

A view of Comet 67P/Churyumov-Gerasimenko taken by the Rosetta spacecraft on Aug. 9, 2014. Credit: ESA/Rosetta/NAVCAM
A view of Comet 67P/Churyumov-Gerasimenko taken by the Rosetta spacecraft on Aug. 9, 2014. Credit: ESA/Rosetta/NAVCAM
A dark hollow beckons in this picture of Comet 67P/Churyumov-Gerasimenko taken by the Rosetta spacecraft Aug. 5, 2014. Credit:  ESA/Rosetta/NAVCAM
A dark hollow beckons in this picture of Comet 67P/Churyumov-Gerasimenko taken by the Rosetta spacecraft Aug. 5, 2014. Credit: ESA/Rosetta/NAVCAM
The Rosetta spacecraft captured the "rubbe duckie" shape of Comet 67P/Churyumov-Gerasimenko on Aug. 6, 2014. Credit: ESA/Rosetta/NAVCAM
The Rosetta spacecraft captured the “rubbe duckie” shape of Comet 67P/Churyumov-Gerasimenko on Aug. 6, 2014. Credit: ESA/Rosetta/NAVCAM
The mottled surface of Comet 67P/Churyumov-Gerasimenko beckons in this picure taken by the Rosetta spacecraft on Aug. 7, 2014. Credit: ESA/Rosetta/NAVCAM
The mottled surface of Comet 67P/Churyumov-Gerasimenko beckons in this picure taken by the Rosetta spacecraft on Aug. 7, 2014. Credit: ESA/Rosetta/NAVCAM