Observing Alert: See Mercury’s Best Evening Show of the Year

Mercury starts its best period of visibility in the evening sky for skywatchers at mid-northern latitudes this weekend. This map shows the sky facing northwest about 40 minutes after sundown. Bright Jupiter also provides a convenient sightline for locating Mercury. Stellarium

Don’t let furtive Mercury slip through your fingers this spring. The next two and a half weeks will be the best time this year  for observers north of the tropics to spot the sun-hugging planet. If you’ve never seen Mercury,  you might be surprised how bright it can be. This is especially true early in its apparition when the planet looks like a miniature ‘full moon’. 

Mercury, like Venus, displays phases as it revolves around the sun as seen from Earth's perspective outside Mercury's orbit. Credit: Bob King
Mercury, like Venus, displays phases as it revolves around the sun as seen from Earth’s perspective outside Mercury’s orbit. Both Mercury and Venus appear largest when nearly lined up between Earth and sun at inferior conjunction. Planets not to scale and phases shown are approximate. Credit: Bob King

Both Venus and Mercury pass through phases identical to those of the moon. When between us and the sun, Mercury’s a thin crescent, when off to one side, a ‘half-moon’ and when on the far side of the sun, a full moon. This apparition of the planet is excellent because Mercury’s path it steeply tilted to the horizon in mid-spring.

We start the weekend with Mercury nearly full and brighter than the star Arcturus. Twilight tempers its radiance, but :

* Find a location with a wide open view to the northwest as far down to the horizon as possible.

* Click HERE to get your sunset time and begin looking for the planet about 30-40 minutes after sunset in the direction of the sunset afterglow.

* Reach your arm out to the northwestern horizon and look a little more than one vertically-held fist  (10-12 degrees) above it for a singular, star-like object. Found it? Congratulations – that’s Mercury!

* No luck? Start with binoculars instead and sweep the bright sunset glow until you find Mercury. Once you know exactly where to look, lower the binoculars from your eyes and you should see the planet without optical aid. And before I forget – be sure to focus the binoculars on a distant object like a cloud or the moon before beginning your sweeps. I guarantee you won’t find Mercury if it’s out of focus.

Through a telescope, Mercury looks like a gibbous moon right now but its phase will lessen as it moves farther to the ‘left’ or east of the sun. Greatest eastern elongation happens on May 24. On and around that date the planet will be farthest from the sun, standing 12-14 degrees high 40 minutes after sundown from most mid-northern locales.

jjjjjjj
Mercury is even better placed on May 19 but fades and begins to drop back down toward the horizon late in the month. Stellarium

The planet fades in late May and become difficult to see by early June. Inferior conjunction, when Mercury passes between the Earth and sun, occurs on June 19. Unlike Venus, which remains brilliant right up through its crescent phase, Mercury loses so much reflective surface area as a crescent that it fades to magnitude +3. Its greater distance from Earth, lack of reflective clouds and smaller size can’t compete with closer, brighter and bigger Venus.

Mercury's path across the solar disk as seen from the Solar and Heliospheric Observatory (SOHO) on November 8, 2006. The transit was visible in eastern Europe and the eastern hemisphere. Credit: NASA.
When a planet crosses the disk of the sun it’s called a transit. Mercury’s path across the solar disk is seen from the Solar and Heliospheric Observatory (SOHO) on November 8, 2006. Credit: NASA.

Mercury’s 7-degree inclined orbit means it typically glides well above or below the sun’s disk at inferior conjunction. But anywhere from 3 up to 13 years in either November or May the planet passes directly between the Earth and sun at inferior conjunction and we witness a transit. This last happened for U.S. observers on Nov. 8, 2006; the next transit occurs exactly two years from today on May 9, 2016. That event will be widely visible across the Americas, Western Europe and Africa. After having so much fun watching the June 2012 transit of Venus I can’t wait.

 

Planetary Scientist Colin Pillinger Dies

British planetary scientist Colin Pillinger with the Beagle 2 lander.

British planetary scientist Colin Pillinger has passed away. Pillinger, age 70, was best known as leading the 2003 attempt to land the Beagle 2 spacecraft on Mars, part of the European Space Agency’s Mars Express mission.

His family said in a statement: “It is with profound sadness that we are telling friends and colleagues that Colin, whilst sitting in the garden yesterday afternoon, suffered a severe brain hemorrhage resulting in a deep coma. He died peacefully this afternoon at Addenbrooke’s hospital, Cambridge, without regaining consciousness … We ask that all respect our privacy at this devastating and unbelievable time.”

While the Beagle 2 spacecraft failed and likely crashed on Mars, the mission was notable because it was the first time an individual researcher had sent their own vessel into space and the first British-built interplanetary spacecraft. However, a lack of funding meant the Beagle 2 project always struggled. The spacecraft did launch, but all contact with Beagle 2 was lost after its separation from the Mars Express spacecraft, just six days before atmospheric entry.

However, the BBC noted that the mission was “a turning point in bringing together the space science and industrial communities in the UK – which didn’t used to speak with one voice. Beagle-2 wasn’t built in Colin’s backyard: it was the product of UK brains and hard-work in many companies and universities.”

You can read more about Pillager’s career and achievements at the BBC and the International Business Times.

Eta Aquarid Meteors Streak By in Stunning Astrophotos

Porters at Mt. Bromo in Indonesia warm themselves by a fire as an Eta Aquarid meteor streaks overhead on May 6, 2014. Credit and copyright: Justin Ng.

The Eta Aquarid meteor shower has graced the skies this week and while this hasn’t been an exceptionally active shower, here are a few beautiful photos we’ve received. Above astrophotographer Justin Ng climbed Mount Bromo in Indonesia on May 6, and had to contend with interference from the active volcano.

“After having visited Mt. Bromo several times over the past two years, I must say it’s definitely much more active now and part of the night sky was obscured by the sulphur dioxide gas emitted from Mount Bromo when I took this shot,” Justin said via email. “At times, I was ‘consumed’ by the sulphur gas for several minutes due to the occasional change in wind direction and I could hardly breathe or kept my eyes opened when that happened. Despite these challenging shooting and viewing conditions, the natives or tourists will still ascend the steep stone staircase (approximately 253 concrete steps) that leads to the brim of the steaming, sulphurous, gaping caldera to catch a glimpse of the scenic sunrise every morning.”

Wow! This beautiful image is a result of stacking 4 images taken at different times facing at the same direction.

An Eta Aquarid meteor streaks out of Aquarius at left toward the Milky Way at right. Note the chnages in colour as the meteor travels from left to right and descends into our atmosphere, as seen from Arizona on the night of May 4/5, 2014. Credit and copyright: Alan Dyer/Amazing Sky Photography.
An Eta Aquarid meteor streaks out of Aquarius at left toward the Milky Way at right. Note the chnages in colour as the meteor travels from left to right and descends into our atmosphere, as seen from Arizona on the night of May 4/5, 2014. Credit and copyright: Alan Dyer/Amazing Sky Photography.
A lone Eta Aquarid meteor during the night of May 5, 2014. Credit and copyright: Astro Guillaume on Flickr.
A lone Eta Aquarid meteor during the night of May 5, 2014. Credit and copyright: Astro Guillaume on Flickr.

This image is an example of how sparse this meteor shower was this year. “After 547 shots during the night of 5, May 2014 before dawn, my camera has captured only one meteor from the Eta Aquarids meteor Shower!” wrote Astro Guillaume on Flickr.

Interesting Prospects for Comet A1 Siding Spring Versus the Martian Atmosphere

Inbound: the Hubble Space Telescope images Comet 2013 A1 Siding Spring with its Wide Field Camera 3. Credit: NASA.

It may be the chance of a lifetime for planetary science.

This October, a comet will brush past a planet, giving scientists a chance to study how it possibly interacts with a planetary atmosphere.

The comet is C/2013 A1 Siding Spring, and the planet in question Mars.  And although an impact of the comet on the surface of the Red Planet has long been ruled out, a paper in the May 2014 issue of Icarus raises the interesting possibility of possible interactions of the coma of A1 Siding Spring and the tenuous atmosphere of Mars. The study comes out of the Department of Planetary Sciences at the University of Arizona, the Belgian Institute for Space Aeronomy, the Institut de Planétologie et d’Astrophysique de Grenoble at the Université J. Fourier in France, and the Cooperative Institute for Research in Environmental Sciences at the University of Colorado in Boulder.

For the study, researchers considered how active Comet A1 Siding Spring may be at the time of closest approach on October 19th, 2014.

Discovered early last year by Robert McNaught from the Siding Spring Observatory in Australia, Comet A1 Siding Spring created a stir in the astronomical community when it was found that it will pass extremely close to Mars later this year. Further measurements of its orbit have since ruled this possibility out, but its passage will still be a close one, with a nominal passage of 138,000 kilometres from Mars. That’s about one third the distance from Earth to the Moon, and 17 times closer than the nearest recorded passage of a comet to the Earth, Comet D/1770 L1 Lexell in 1780. Mars’ outer moon Deimos has an orbital distance of about 23,500 kilometres.

The passage of Comet 2013 A1 Siding Spring through the inner solar system. Credit: NASA.
The passage of Comet 2013 A1 Siding Spring through the inner solar system. Credit: NASA.

And although the nucleus will safely pass Mars, the brush with its extended atmosphere might just be detectable by the fleet of spacecraft and rovers in service around Mars. At a distance of 1.4 Astronomical Units (A.U.) from the Sun during the encounter, the vast coma is expected to be comprised primarily of H2O. At an input angle of about 60 degrees, penetration was calculated in the study to impinge down and altitude of 154 kilometres to the topside of the Martian ionosphere, in the middle of the thermosphere.

Such an effect should linger for just over 4 hours, well over the interaction period of Mars’ atmosphere with the coma of just over an hour, centered on 18:30 UT on October 19th, 2014.

What kind of views might missions like HiRISE and MSL get of the comet remains to be seen, although NEOWISE and Hubble are already monitoring the comet for enhanced activity. The Opportunity rover is also still functioning, and Mars Odyssey and ESA’s Mars Express are still in orbit around the Red Planet and sending back data. But perhaps the most interesting possibilities for observations of the event are still en route: India’s Mars Orbiter Mission and NASA’s MAVEN orbiter arrive just before the comet. MAVEN was designed to study the upper atmosphere of Mars, and carries an ion-neutral mass spectrometer (NGIMS) which could yield information on the interaction of the coma with the Martian upper atmosphere and ionosphere. The NGIMS cover is slated for release just two days before the comet encounter. All spacecraft orbiting Mars may feel the increased drag effects of the encounter.

A simulation of Mars as seen from Comet A1 Siding Spring on closest approach. Created by the author using Starry Night Software.
A simulation of Mars as seen from Comet A1 Siding Spring on closest approach. Created by the author using Starry Night Software.

Proposals for using Earth-based assets for further observations of the comet prior to the event in October are still pending.  Amateur observers will be able to follow the approach telescopically, as Comet A1 Siding Spring is expected to reach +8th magnitude in October and pass 7’ from Mars in the constellation Ophiuchus as seen from the Earth. Mars just passed opposition last month, but both will be low to the south west at dusk for northern hemisphere observers in October.

It’s also interesting to consider the potential for interactions of the coma with the surfaces of the moons of Mars as well, though the net amount of water vapor expected to be deposited will not be large.

UPDATE: Check out this nifty interactive simulator which includes Comet A1 Siding Springs courtesy of the Solar System Scope:

The H2O coma of A1 Siding Spring is expected to have a radius of 150,000 kilometres when it passes Mars, just a shade over the nominal flyby distance.

“There is a more extended coma made up of H2O dissociation products (such as hydrogen and hydroxide) that extends for ~1,000,000 kilometres,” researcher at the Department of Planetary Sciences at the University of Arizona and lead author on the paper Roger Yelle told Universe Today.

“Essentially, Mars is in the outer reaches of the coma. The main ion tail misses Mars but there will be some ions from the comet that do reach Mars. The dust tail just misses Mars, which is fortunate.”

The paper also notes that significant perturbations of the upper atmosphere of Mars will occur if the cometary production rate is 10^28 s-1 or larger, which corresponds to about 300 kilograms per second.

“The MAVEN spacecraft will make very interesting observations,” Roger Yelle also told Universe Today. “The comet will perturb primarily the upper atmosphere of Mars and MAVEN was designed to study the upper atmosphere of Mars. Also, it’s just such an incredible coincidence that the comet arrives at Mars less than one month after MAVEN does. MAVEN is nominally in its checkout phase then, and the main science phase of the mission was not scheduled to start until November 1st. However, we are reassessing our plans to see what observations we can make. It’s all quite exciting, and we have to balance safety and the desire to make the best science measurements.”

It’s an unprecedented opportunity, that’s for sure… all eyes will be on the planet Mars and Comet A1 Siding Spring on October the 19th!

 

Star Trail Photo Hints at Hidden Polestars

A 45-minute time exposure of the southern sky taken in early May shows trailed stars. The fat, bright streak is the planet Mars. Credit: Bob King

A week ago I made a 45-minute time exposure of the southern sky featuring the planet Mars. As the Earth rotated on its axis, the stars trailed across the sky. But take a closer look at the photo and you’ll see something interesting going on. 

The trails across the diagonal (upper right to lower left) are straight, those in the top third arc upward or north while those in the bottom third curve downward or south.

I've drawn part of the imaginary great circle in the sky called the celestial equator. Residents of cities on or near the Earth's equator see the celestial equator pass directly overhead. From mid-northern latitudes, it's about halfway up in the southern sky. From mid-southern latitudes, it's halfway up in the northern sky. Credit: Bob King
I’ve drawn part of the imaginary great circle in the sky called the celestial equator. Residents of cities on or near the Earth’s equator see the celestial equator pass directly overhead. From mid-northern latitudes, it’s about halfway up in the southern sky. From mid-southern latitudes, it’s halfway up in the northern sky. Credit: Bob King

I suspect you know what’s happening here. Mars happens to lie near the celestial equator, an extension of Earth’s equator into the sky. The celestial equator traces a great circle around the celestial sphere much as the equator completely encircles the Earth.

On Earth, cities north of the equator are located in the northern hemisphere, south of the equator in the southern hemisphere. The same is true of the stars. Depending on their location with respect to the celestial equator they belong either to the northern or southern halves of the sky.

Earth's axis points north to Polaris, the northern hemisphere's North Star, and south to dim Sigma Octantis. Illustration: Bob King
Earth’s axis points north to Polaris, the northern hemisphere’s North Star, and south to dim Sigma Octantis. Illustration: Bob King

Next, let’s take a look at Earth’s axis and where each end points. If you live in the northern hemisphere, you know that the axis points north to the North Star or Polaris. As the Earth spins, Polaris appears fixed in the north while all the stars in the northern half of the sky describe a circle around it every 24 hours (one Earth spin). The closer a star is to Polaris, the tighter the circle it describes.

Time exposure centered on Polaris, the North Star. Notice that the closer stars are to Polaris, the smaller the circles they describe. Stars at the edge of the frame make much larger circles. Credit: Bob King
Time exposure centered on Polaris, the North Star. Notice that the closer stars are to Polaris, the smaller the circles they describe. Stars at the edge of the frame make much larger circles. Credit: Bob King

Likewise, from the southern hemisphere, all the southern stars circle about the south pole star, an obscure star named Sigma in the constellation of Octans, a type of navigational instrument. Again, as with Polaris, the closer a star lies to Sigma Octantis, the smaller its circle.

Stars trail around the dim southern pole star Sigma Octantis as seen from the southern hemisphere. The two smudges are the Large and Small Magellanic Clouds, companion galaxies of the Milky Way. Credit: Ted Dobosz
Stars trail around the dim southern pole star Sigma Octantis as seen from the southern hemisphere. The two smudges are the Large and Small Magellanic Clouds, companion galaxies of the Milky Way. Credit: Ted Dobosz

But what about stars on or near the celestial equator? These gems are the maximum distance of 90 degrees from either pole star just as Earth’s equator is 90 degrees from the north and south poles. They “tread the line” between both hemispheres and make circles so wide they appear not as arcs – as the other stars do in the photo – but as straight lines. And that’s why stars appear to be heading in three separate directions in the photograph.

A view of the entire sky as seen from Quito, Ecuador on the equator this evening. The celestial equator crosses directly overhead while each pole star lies 90 degrees away on opposite horizons. Stellarium
A view of the entire sky as seen from Quito, Ecuador on the equator this evening. The celestial equator crosses directly overhead while each pole star lies 90 degrees away on opposite horizons. Stellarium

In so many ways, we see aspects of our own planet in the stars above.

Asteroid 2013 UQ4 Suddenly Becomes a Dark Comet with a Bright Future

Comet C/2013 UQ4, once thought to be an asteroid, now shows characteristics of a comet including a coma. This photo was made on May 7, 2014. Credit: Artyom Novichonok and Taras Prystavski

On October 23, 2013,  astronomers with the Catalina Sky Survey picked up a very faint asteroid with an unusual orbit more like a that of a comet than an asteroid. At the time 2013 UQ4 was little  more than a stellar point with no evidence of a hazy coma or tail that would tag it as a comet. But when it recently reappeared in the morning sky after a late January conjunction with the sun, amateur astronomers got a surprise.

On May 7, Comet ISON co-discoverer Artyom Novichonok, and Taras Prystavski used a remote telescope located in Siding Spring, Australia to take photos of 2013 UQ4 shortly before dawn in the constellation Cetus. Surprise, surprise. The asteroid had grown a little fuzz, making the move to comethood. No longer a starlike object, 2013 UQ4 now displays a substantial coma or atmosphere about 1.5 arc minutes across with a more compact inner coma measuring 25 arc seconds in diameter. No tail is visible yet, and while its overall magnitude of +13.5 won’t make you break out the bottle of champagne, it’s still bright enough to see in a 12-inch telescope under dark skies.

Wide field map showing the comet's movement from Cetus through Pisces and into Cepheus in July when it becomes circumpolar for skywatchers at mid-northern latitudes. It should reach peak brightness of 7th magnitude in early July. Created with Chris Marriott's SkyMap program
Wide field map showing the comet’s movement from Cetus through Pisces and into Cepheus in July when it becomes circumpolar for skywatchers at mid-northern latitudes. It should reach a peak brightness of 7th magnitude in early July. Click to enlarge. Created with Chris Marriott’s SkyMap program

The best is yet to come. Assuming the now renamed C/2013 UQ4 continues to spout dust and water vapor, it should brighten to magnitude +11 by month’s end as it moves northward across Pisces and into a dark morning sky. Perihelion occurs on June 5 with the comet reaching magnitude +8-9 by month’s end. Peak brightness of 7th magnitude is expected during its close approach of Earth on July 10 at 29 million miles (46.7 million km).

This should be a great summer comet, plainly visible in binoculars from a dark sky as it speeds across Cepheus and Draco during convenient viewing hours at the rate of some 7 degrees per night! That’s 1/3 of a degree per hour or fast enough to see movement through a telescope in a matter of minutes when the comet is nearest Earth.

Lightcurve showing the date on the bottom and magnitude along the vertical. Work by Artyom Novichonok and Taras Prystavski
Light curve showing C/2013 UQ4 brightening to a sharp peak in early July and then quickly fading. Created by Artyom Novichonok and Taras Prystavski

Come August, C/2013 UQ4 rapidly fades to magnitude +10 and then goes the way of so many comets – a return to a more sedentary lifestyle in the cold bones of deep space.

C/2013 UQ4 belongs to a special category of asteroids called damocloids (named for asteroid 5335 Damocles) that have orbits resembling the Halley-family comets with long periods, fairly steep inclinations and highly eccentric orbits (elongated shapes). Some, like Comet Halley itself, even travel backwards as they orbit the sun, an orbit astronomers describe as ‘retrograde’.

Evolution of a comet as it orbits the sun. Credit: Laboratory for Atmospheric and Space Sciences/ NASA
Evolution of a comet as it orbits the sun. Credit: Laboratory for Atmospheric and Space Sciences/ NASA

Damocloids are thought to be comets that have lost all their fizz. With their volatile ices spent from previous trips around the sun, they stop growing comas and tails and appear identical to asteroids. Occasionally, one comes back to life. It’s happened in at least four other cases and appears to be happening with C/2013 UQ4 as well.

Studies of the comet/asteroid’s light indicate that UQ4 is a very dark but rather large object some 4-9 miles (7-15 km) across. It’s estimated that C/2013 UQ4 takes at least 500 years to make one spin around the sun. Count yourself lucky this damocloid decided to spend its summer vacation in Earth’s skies. We’ll have more detailed maps and updates as the comet becomes more easily visible next month. Stay tuned.

The Hunt for KBOs for New Horizons’ Post-Pluto Encounter Continues

An artist’s conception of a KBO encounter by New Horizons. Credit: JHUAPL/SwRI.

Are you ready for the summer of 2015? A showdown of epic proportions is in the making, as NASA’s New Horizons spacecraft is set to pass within 12,500 kilometres of Pluto — roughly a third of the distance of the ring of geosynchronous satellites orbiting the Earth —  a little over a year from now on July 14th, 2015.

But another question is already being raised, one that’s assuming center stage even before we explore Pluto and its retinue of moons: will New Horizons have another target available to study for its post-Pluto encounter out in the Kuiper Belt? Researchers say time is of the essence to find it.

To be sure, it’s a big solar system out there, and it’s not that researchers haven’t been looking. New Horizons was launched from Cape Canaveral Air Force Station on January 19th, 2006 atop an Atlas V rocket flying in a 551 configuration in one of the fastest departures from Earth ever: it took New Horizons just nine hours to pass Earth’s moon after launch.

New Horizons spends its last days on Earth pre-encapsulation. (Credit: NASA/KSC).
New Horizons spends its last days on Earth pre-encapsulation. (Credit: NASA/KSC).

The idea has always been out there to send New Horizons onward to explore and object beyond Pluto in the Kuiper Belt, but thus far, searches for a potential target have turned up naught.

A recent joint statement from NASA’s Small Bodies and Outer Planets Assessment Groups (SBAG and OPAG) has emphasized the scientific priority needed for identifying a possible Kuiper Belt Object (KBO) for the New Horizons mission post-Pluto encounter.  The assessment notes that such a chance to check out a KBO up close may only come once in our lifetimes: even though it’s currently moving at a heliocentric velocity of  just under 15 kilometres a second, it will have taken New Horizons almost a decade to traverse the 32 A.U. distance to Pluto.

The report also highlights the fact that KBOs are expected to dynamically different from Pluto as well and worthy of study. The statement also notes that the window may be closing to find such a favorable target after 2014, as the upcoming observational apparition of Pluto as seen from Earth — and the direction New Horizons is headed afterwards — reaches opposition this summer on July 4th.

But time is of the essence, as it will allow researchers to plan for a burn and trajectory change for New Horizons shortly after its encounter with Pluto and Charon using what little fuel it has left. Then there’s the issue of debris in the Pluto system that may require fine-tuning its trajectory pre-encounter as well. New Horizons will begin long range operations later this year in November, switching on permanently for two years of operations pre-, during and post- encounter with Pluto.

And there currently isn’t a short-list of “next best thing” targets for New Horizons post-Pluto encounter. One object, dubbed VNH0004, may be available for distant observations in January of next year, but even this object will only pass 75 million kilometres — about 0.5 A.U. — from New Horizons at its closest.

Ground based assets such as the Keck, Subaru and Gemini observatories have been repeatedly employed in the search over the past three years. The best hopes lie with the Hubble Space Telescope, which can go deeper and spy fainter targets.

Nor could New Horizons carry out a search for new targets on its own. Its eight inch (20 cm in diameter) LORRI instrument has a limiting magnitude of about +18, which is not even close to what would be required for such a discovery.

New Horizons currently has 130 metres/sec of hydrazine fuel available to send it onwards to a possible KBO encounter, limiting its range and maneuverability into a narrow cone straight ahead of the spacecraft. This restricts the parameters for a potential encounter to 0.35 A.U. off of its nominal path for a target candidate  be to still be viable objective. New Horizons will exit the Kuiper Belt at around 55 A.U. from the Sun, and will probably end its days joining the Voyager missions probing the outer solar system environment. Like Pioneers 10 and 11, Voyagers 1 and 2 and the upper stage boosters that deployed them, New Horizons will escape our solar system and orbit the Milky Way galaxy for millions of years. We recently proposed a fun thought experiment concerning just how much extraterrestrial “space junk” might be out there, littering the galactic disk.

And while the crowd-sourced Ice Hunters project generated lots of public engagement, a suitable target wasn’t found. There is talk of a follow up Ice Investigators project, though it’s still in the pending stages.

Another issue compounding the problem is the fact that Pluto is currently crossing the star rich region of the Milky Way in the constellation Sagittarius. Telescopes looking in this direction must contend with the thousands of background stars nestled towards the galactic center, making the detection of a faint moving KBO difficult. Still, if any telescope is up to the task, it’s Hubble, which just entered its 25th year of operations last month.

Credit Starry Night
The path of Pluto through the constellation Sagittarius through August 2015. Credit: Starry Night.

Shining at +14th magnitude, Pluto will be very near the 3.5th magnitude star Xi2 Sagittarii during the July 2015 encounter.

New Horizons is currently 1.5 degrees from Pluto — about 3 times the angular size of a Full Moon —as seen from our Earthly vantage point, and although neither can be seen with the naked eye, you can wave in their general direction this month on May 18th, using the nearby daytime Moon as a guide.

Credit: Starry Night
The waning crescent Moon lies in the direction of New Horizons and Pluto on May 18th… note the ESA’s Rosetta spacecraft (lower left) and Pioneer 11 (upper center) are also ‘nearby!’ Credit: Starry Night

July 2015 will be an exciting and historic time in solar system exploration. Does Pluto have more undiscovered moons? A ring system of its own? Does it resemble Neptune’s moon Triton, or will it turn out looking entirely different ?

If nothing else, exploration of Pluto will finally give us science writers some new images to illustrate articles on the distant world, rather than recycling the half a dozen-odd photos and artist’s conceptions that are currently available. An abundance of surface features will then require naming as well. It would be great to see Pluto’s discoverer Clyde Tombaugh and Venetia Burney — the girl who named Pluto — get their due. We’ll even assume our space pundit’s hat and predict a resurgence of the “is it a planet?” debate once again in the coming year as the encounter nears…

Onward to Pluto and the brave new worlds beyond!

The Newest ‘Earthrise’ Image, Courtesy of the Lunar Reconnaissance Orbiter

The Moon, tiny Earth and the vastness of space,as seen by the Lunar Reconnaissance Orbiter Wide Angle Camera (WAC). Credit: NASA/GSFC/Arizona State University.

That’s Earth. That’s us. Way off in the distance as a fairly small, blue and swirly white sphere. This is the newest so-called “Earthrise” image, and it was taken on February 1, 2014 by the Lunar Reconnaissance Orbiter.

“LRO experiences twelve earthrises every day, however LROC is almost always busy imaging the lunar surface so only rarely does an opportunity arise such that LROC can capture a view of the Earth,” wrote LROC Principal Investigator Mark Robinson on the instrument’s website. “On the first of February of this year LRO pitched forward while approaching the north pole allowing the LROC WAC to capture the Earth rising above Rozhdestvenskiy crater (180-km diameter).”

Robinson went on to explain that the Earth is a color composite from several frames and the colors are very close to what the average person would see if they were looking back at Earth themselves from lunar orbit. “Also, in this image the relative brightness between the Earth and the Moon is correct, note how much brighter the Earth is relative to the Moon,” Robinson said.

Gorgeous.

Below is a gif image that demonstrates how images are combined over several orbits to create a full image from the Wide Angle Camera.

A gif image showing the “venetian blind” banding demonstrates how a WAC image is built up frame-by-frame. The gaps between the frames are due to the real separation of the WAC filters on the CCD. Credit: NASA/GSFC/Arizona State University.

The frames were acquired at two second intervals, so the total time to collect the sequence was 5 minutes. The video is faster than reality by a factor of about 20.

Does Light Experience Time?

Does Light Experience Time?

Have you ever noticed that time flies when you’re having fun? Well, not for light. In fact, photons don’t experience any time at all. Here’s a mind-bending concept that should shatter your brain into pieces.

As you might know, I co-host Astronomy Cast, and get to pick the brain of the brilliant astrophysicist Dr. Pamela Gay every week about whatever crazy thing I think of in the shower. We were talking about photons one week and she dropped a bombshell on my brain. Photons do not experience time. [SNARK: Are you worried they might get bored?]

Just think about that idea. From the perspective of a photon, there is no such thing as time. It’s emitted, and might exist for hundreds of trillions of years, but for the photon, there’s zero time elapsed between when it’s emitted and when it’s absorbed again. It doesn’t experience distance either. [SNARK: Clearly, it didn’t need to borrow my copy of GQ for the trip.]

Since photons can’t think, we don’t have to worry too much about their existential horror of experiencing neither time nor distance, but it tells us so much about how they’re linked together. Through his Theory of Relativity, Einstein helped us understand how time and distance are connected.

Let’s do a quick review. If we want to travel to some distant point in space, and we travel faster and faster, approaching the speed of light our clocks slow down relative to an observer back on Earth. And yet, we reach our destination more quickly than we would expect. Sure, our mass goes up and there are enormous amounts of energy required, but for this example, we’ll just ignore all that.

If you could travel at a constant acceleration of 1 g, you could cross billions of light years in a single human generation. Of course, your friends back home would have experienced billions of years in your absence, but much like the mass increase and energy required, we won’t worry about them.

The closer you get to light speed, the less time you experience and the shorter a distance you experience. You may recall that these numbers begin to approach zero. According to relativity, mass can never move through the Universe at light speed. Mass will increase to infinity, and the amount of energy required to move it any faster will also be infinite. But for light itself, which is already moving at light speed… You guessed it, the photons reach zero distance and zero time.

Photons can take hundreds of thousands of years to travel from the core of the Sun until they reach the surface and fly off into space. And yet, that final journey, that could take it billions of light years across space, was no different from jumping from atom to atom.

There, now these ideas can haunt your thoughts as they do mine. You’re welcome. What do you think? What’s your favorite mind bending relativity side effect? Tell us in the comments below.