Guest Post: No turning back, NASA ISEE-3 Spacecraft Returning to Earth after a 36 Year Journey

A graphic illustrating the ISEE-3 spacecraft's history. Courtesy Tim Reyes.

Editor’s note: This guest post was written by Tim Reyes, a former NASA software engineer and analyst who has supported development of orbital and lander missions to the planet Mars since 1992.

The International Sun-Earth Explorer spacecraft (ISEE-3) is phoning home and will be returning whether we are ready or not. Launched in 1978 to study Earth’s magnetosphere, the spacecraft was later repurposed to study two comets. Now, on its final leg of a 30-plus year journey to return to Earth, there’s a crowdfunding effort called ISEE-3 Reboot aimed at reactivating the hibernating spacecraft since NASA is not offering any funding to do so.

Interestingly, on May 14th, the spacecraft will be in conjunction with the planet Jupiter, passing only 2 arc minutes from the giant gas planet. While the spacecraft is not visible to the human eye or optical telescopes, Jupiter on the 14th marks the spot where ISEE-3 resides in our night sky.

ISEE-3 Jupiter conjunction on May 14, 2014. Graphic courtesy of Tim Reyes.
ISEE-3 Jupiter conjunction on May 14, 2014. Graphic courtesy of Tim Reyes.

Here’s a bit of history on the program and this spacecraft in particular: The International Sun-Earth Explorers 1, 2 and 3 were the vanguard of what became an ongoing NASA program to monitor and understand the Sun-Earth relationship. ISEE-3 was part of a 3 spacecraft international effort to study the interaction of the Solar Wind with the Earth’s magnetosphere.

In 1982, NASA engineers at Goddard Space Flight Center, led by Robert Farquhar devised an unprecedented sequence of propulsion maneuvers including Earth and Moon gravitational assists to send the spacecraft ISEE-3 out of the Earth-Moon system. It was rechristened as the International Cometary Explorer (ICE) to rendezvous with two comets – Giacobini-Zinner in 1985 and Comet Halley in 1986.

The trajectory given ISEE-3 to escape the Earth-Moon system and flyby comets included returning to Earth on August 10, 2014. Final tweaks to the trajectory were completed in 1987 to assure a flyby of the Moon which Farquhar knew could be used to return ISEE-3 to an Earth orbit.

ISEE-3 Reboot Project mission patch. Image courtesy ISEE-3 Reboot.
ISEE-3 Reboot Project mission patch. Image courtesy ISEE-3 Reboot.

Enter the 21st Century, 30 years later and documents and magnetic tapes have predictably disappeared. The software and hardware to program, command and transmit to ISEE-3 are long gone. An independent team of engineers, led by Dennis Wingo and Keith Cowing (the same leaders of the Lunar Orbiter Image Recovery Project (LOIRP) — recovering old imagery on magnetic tape reels from the first lunar orbiter missions), operating outside the ranks and hallways of NASA are now racing against the clock to accomplish a landmark achievement: to turn on, command and maneuver a NASA spacecraft long ago abandoned, its primary missions completed in the 1980s. There are no funds, no remaining hardware or mission software to execute but this is the 21st century.

As of this writing there are five days left to contribute to this project, which is at 92% of its goal.

“ISEE-3 Reboot” team leader Dennis Wingo, says that if the efforts to contact the spacecraft are successful, plans are to return the spacecraft to the Sun-Earth L1 Point. Wingo emphasizes that Farquhar remains as instrumental to the spacecraft’s recovery today as he was to its departure, providing critical insight into the spacecraft systems.

While ISEE-3 has been on its long journey to return to Earth, remarkable technological and social events have unfolded. The personal computer arrived and matured; visionaries such as Steve Jobs have come and gone. With the Internet — non-existent when ISEE-3 launched – now a RocketHub crowdfunding effort was started to raise funds. Teleconferencing, more limited to board rooms in the days ISEE-3’s launch-date have brought retired NASA engineers and Wingo’s band of engineers together.

Amateur radio operators now have technology sufficient to acquire the signal and through the internet are also a part of the recovery effort. These events have conspired to give the band of engineers a small window of opportunity to recover the spacecraft. Additionally, without the original hardware transmitter, today’s high-speed electronics are able to emulate in software the hardware from 36 years ago.

While budget woes and shortfalls have plagued NASA since the 1960s, the 1980s were especially difficult. Recall that it included a decade void of any missions to Mars. Additionally, Congress refused to fund a US led mission to flyby Comet Halley. NASA was left out in the comet’s return while European, the Soviets and Japanese all had spacecraft planned. Repurposing ISEE-3 filled this gap and it became the first spacecraft to ever fly through the tail of a comet.

Now 36 years after launch, a spacecraft that time forgot, ISEE-3 has become a time traveler. It is the twin astronaut returning home from his long journey to find his twin, now aged and the World transformed. Wingo and his engineers, by recovering ISEE-3 create a link from the past to the present new generations of engineers. Wingo’s Skycorp will make ISEE-3 scientific data open to the public and to researchers and present a system for training engineers in mission management and spacecraft systems.

14 Red Dwarf Stars to View with Backyard Telescopes

An artist's conception of a red dwarf solar system. Credit: NASA/JPL-Caltech.

They’re nearby, they’re common and — at least in the latest exoplanet newsflashes hot off the cyber-press — they’re hot. We’re talking about red dwarf stars, those “salt of the galaxy” stars that litter the Milky Way. And while it’s true that there are more of “them” than there are of “us,” not a single one is bright enough to be seen with the naked eye from the skies of Earth.

A reader recently brought up an engaging discussion of what red dwarfs might be within reach of a backyard telescope, and thus this handy compilation was born.

Of course, red dwarfs are big news as possible hosts for life-bearing planets. Though the habitable zones around these stars would be very close in, these miserly stars will shine for trillions of years, giving evolution plenty of opportunity to do its thing. These stars are, however, tempestuous in nature, throwing out potentially planet sterilizing flares.

Red dwarf stars range from about 7.5% the mass of our Sun up to 50%. Our Sun is very nearly equivalent 1000 Jupiters in mass, thus the range of red dwarf stars runs right about from 75 to 500 Jupiter masses.

For this list, we considered red dwarf stars brighter than +10th magnitude, with the single exception of 40 Eridani C as noted.

The closest stars within 14 light years of our solar system. Credit: Wikimedia Commons, Public Domain graphic.
The closest stars within 14 light years of our solar system. Credit: Wikimedia Commons, Public Domain graphic.

I know what you’re thinking…  what about the closest? At magnitude +11, Proxima Centauri in the Alpha Centauri triple star system 4.7 light years distant didn’t quite make the cut. Barnard’s Star (see below) is the closest in this regard. Interestingly, the brown dwarf pair Luhman 16 was discovered just last year at 6.6 light years distant.

Also, do not confuse red dwarfs with massive carbon stars. In fact, red dwarfs actually appear to have more of an orange hue visually! Still, with the wealth of artist’s conceptions (see above) out there, we’re probably stuck with the idea of crimson looking red dwarf stars for some time to come.

 

Star Magnitude Constellation R.A. Dec
Groombridge 34 +8/11(v) Andromeda 00h 18’ +44 01’
40 Eridani C +11 Eridanus 04h 15’ -07 39’
AX Microscopii/Lacaille 8760 +6.7 Microscopium 21h 17’ -38 52’
Barnard’s Star +9.5 Ophiuchus 17h 58’ +04 42’
Kapteyn’s Star +8.9 Pictor 05h 12’ -45 01’
Lalande 21185 +7.5 Ursa Major 11h 03’ +35 58’
Lacaille 9352 +7.3 Piscis Austrinus 23h 06’ -35 51’
Struve 2398 +9.0 Draco 18h 43’ +59 37’
Luyten’s Star +9.9 Canis Minor 07h 27’ +05 14’
Gliese 687 +9.2 Draco 17h 36’ +68 20’
Gliese 674 +9.9 Ara 17h 29’ -46 54’
Gliese 412 +8.7 Ursa Major 11h 05’ +43 32’
AD Leonis +9.3 Leo 10h 20’ +19 52’
Gliese 832 +8.7 Grus 21h 34’ -49 01’

 

Notes on each:

Groombridge 34: Located less than a degree from the +6th magnitude star 26 Andromedae in the general region of the famous galaxy M31, Groombridge 34 was discovered back in 1860 and has a large proper motion of 2.9″ arc seconds per year.

Locating Groombridge 34. Created using Stellarium.
Locating Groombridge 34. Created using Stellarium.

40 Eridani C:  Our sole exception to the “10th magnitude or brighter” rule for this list, this multiple system is unique for containing a white dwarf, red dwarf and a main sequence K-type star all within range of a backyard telescope.  In sci-fi mythos, 40 Eridani is also the host star for the planet Richese in Dune and the controversial location for Vulcan of Star Trek fame.

Locating 40 Eridani. Created using Stellarium.
Locating 40 Eridani. Created using Stellarium.

AX Microscopii: Also known as Lacaille 8760, AX Microscopii is 12.9 light years distant and is the brightest red dwarf as seen from the Earth at just below naked eye visibility at magnitude +6.7.

A 20 year animation showing the proper motion of  Barnard's Star. Credit: Steve Quirk, images in the Public Domain.
A 20 year animation showing the proper motion of Barnard’s Star. Credit: Steve Quirk, images in the Public Domain.

Barnard’s Star: the second closest star system to our solar system next to Alpha Centuari and the closest solitary red dwarf star at six light years distant, Barnard’s Star also exhibits the highest proper motion of any star at 10.3” arc seconds per year. The center of many controversial exoplanet claims in the 20th century, it’s kind of a cosmic irony that in this era of 1790 exoplanets and counting, planets have yet to be discovered around Barnard’s Star!

Kapteyn’s Star: Discovered by Jacobus Kapteyn in 1898, this red dwarf orbits the galaxy in a retrograde motion and is the closest halo star to us at 12.76 light years distant.

Lalande 21185: currently 8.3 light years away, Lalande 21185 will pass 4.65 light years from Earth and be visible to the naked eye in just under 20,000 years.

Lacaille 9352: 10.7 light years distant, this was the first red dwarf star to have its angular diameter measured by the VLT interferometer in 2001.

Struve 2398: A binary flare star system consisting of two +9th magnitude red dwarfs orbiting each other 56 astronomical units apart and 11.5 light years distant.

Luyten’s Star: 12.36 light years distant, this star is only 1.2 light years from the bright star Procyon, which would appear brighter than Venus for any planet orbiting Luyten’s Star.

Gliese 687: 15 light years distant, Gliese 687 is known to have a Neptune-mass planet in a 38 day orbit.

Gliese 674: Located 15 light years distant, ESO’s HARPS spectrograph detected a companion 12 times the mass of Jupiter that is either a high mass exoplanet or a low mass brown dwarf.

Gliese 412: 16 light years distant, this system also contains a +15th magnitude secondary companion 190 Astronomical Units from its primary.

AD Leonis: A variable flare star in the constellation Leo about 16 light years distant.

Gliese 832: Located 16 light years distant, this star is known to have a 0.6x Jupiter mass exoplanet in a 3,416 day orbit.

The closest stars to our solar system over the next 80,000 years. Credit:  FrancescoA under a Creative Commons Attribution Share-Alike 3.0 Unported license.
The closest stars to our solar system over the next 80,000 years. Credit: FrancescoA under a Creative Commons Attribution Share-Alike 3.0 Unported license.

Consider this list a teaser, a telescopic appetizer for a curious class of often overlooked objects. Don’t see you fave on the list? Want to see more on individual objects, or similar lists of quasars, white dwarfs, etc in the range of backyard telescopes in the future? Let us know. And while it’s true that such stars may not have a splashy appearance in the eyepiece, part of the fun comes from knowing what you’re seeing. Some of these stars have a relatively high proper motion, and it would be an interesting challenge for a backyard astrophotographer to build an animation of this over a period of years. Hey, I’m just throwing that out project out there, we’ve got lots more in the files…

 

 

 

 

Stunning Timelapse: Arizona Sky of Clouds and Stars

A stunning view of the night sky over Monument Valley Navajo Tribal Park in Arizona, USA. Credit and copyright: Gavin Heffernan/Sunchaser Pictures.

One of our favorite timelapse artists, Gavin Heffernan from Sunchaser Pictures recently was invited to Northern Arizona University as an artist in residence to speak with their photography students about his timelapse experiences. While there, he also took shooting field trips to some of the magnificent locations a few hours away, most notably Grand Canyon National Park and Monument Valley Navajo Tribal Park. There, Gavin shot footage to create this incredible timelapse that includes incredible sky views and some of the most unique star trails we’ve ever seen. He titled this timelpase as YIKÁÍSDÁHÁ (Navajo for Milky Way or “That Which Awaits the Dawn”).

“The weather was very intense at times, with high winds, frigid temperatures, and stormfronts passing over us,” Gavin wrote on Vimeo, “but the locations were absolutely stunning and the clouds parted for long enough to reveal some incredible starscapes, meteors, and the clearest Milky Way I’ve ever seen!”

Below are some beautiful stills from the film:

Native Star Trails over Grand Canyon from the YIKÁÍSDÁHÁ timelapse. Credit and copyright: Gavin Heffernan/Sunchaser Pictures.
Native Star Trails over Grand Canyon from the YIKÁÍSDÁHÁ timelapse. Credit and copyright: Gavin Heffernan/Sunchaser Pictures.

We asked Gavin how he created this unique “split” effect on this star trails image: “The split star trails shot was done using the mirror effect in final cut, which essentially splits the screen in half. I then bent the angles a little with a fisheye filter — a little creative license/fun! Obviously nobody’s going to mistake it for a real sky, I hope!”

You can see more images from this set on Gavin’s Flickr page.

YIKÁÍSDÁHÁ from Sunchaser Pictures on Vimeo.

Where Are The Aliens? How The ‘Great Filter’ Could Affect Tech Advances In Space

Artists impression of a Super-Earth, a class of planet that has many times the mass of Earth, but less than a Uranus or Neptune-sized planet. Credit: NASA/Ames/JPL-Caltech

“One of the main things we’re focused on is the notion of existential risk, getting a sense of what the probability of human extinction is,” said Andrew Snyder-Beattie, who recently wrote a piece on the “Great Filter” for Ars Technica.

Continue reading “Where Are The Aliens? How The ‘Great Filter’ Could Affect Tech Advances In Space”

Watch Live As Three People Return From Space Today

The Expedition 39 crew gathers near a globe in the International Space Station in May 2014. Expedition 39 Commander Koichi Wakata is at bottom center. Clockwise from Wakata are Alexander Skvortsov, Mikhail Tyurin, Steve Swanson, Rick Mastracchio and Oleg Artemyev. Credit: NASA

It’s time to come home! Expedition 39 astronauts Rick Mastracchio, Koichi Wakata and Mikhail Tyurin will climb into a Russian Soyuz spacecraft later today to make the trip back to Earth from the International Space Station. Much of the activity will play out on NASA TV, which you can watch above. Below are details about when to watch.

These are the descriptions from NASA about when the major events of the day occur. Bear in mind that all of these times are subject to change as circumstances warrant.

3 p.m. EDT / 7 p.m. UTC — Farewells and hatch closure (hatch closure scheduled at 3:15 p.m. / 7:15 p.m. UTC )
6:15 p.m. EDT / 10:15 p.m. UTC — Undocking (undocking scheduled at 6:33 p.m. / 10:33 p.m. UTC)
8:45 p.m. EDT / 12:45 a.m. UTC — Deorbit burn and landing (deorbit burn scheduled at 9:03 p.m. EDT /1:03 a.m. UTC landing scheduled at 9:57 p.m. EDT / 1:57 a.m. UTC)

The crew is expected to land near Dzhezkazgan in Kazakhstan. After doing some quick medical checks on site, the crew will be flown out separately to do more detailed testing at their local medical centers.

With Wakata flying home, the station is now under the command of Expedition 40 NASA astronaut Steve Swanson, who will oversee activities there along with Alexander Skvortsov and Oleg Artemyev. The rest of the Expedition 40 crew should fly to station May 28, if all goes to plan.

Last Chance: Hadfield’s ‘Space Oddity’ Video Coming Down Soon

Canadian astronaut Chris Hadfield in a screenshot from his "Space Oddity" video recorded on board the International Space Station. Credit: Chris Hadfield / YouTube

After one turn around the sun, it’s time for Chris Hadfield’s ultimate space music video to go to that great graveyard in the sky.

The astronaut tweeted earlier today (May 13) that singer David Bowie gave permission for Hadfield’s “Space Oddity” to be online for a year, and that the video is coming down today. So be sure to watch on YouTube above while you have the chance.

Update (6/25/14): A clarification on this story. The Ottawa Citizen newspaper clarified that it wasn’t David Bowie that only gave a year’s use of the song: “Space Oddity was the only one of more than 300 songs he has written and recorded for which he did not own or control the copyright. Mr. Bowie offered to have his people call the publisher and convey his strong support, but he had no ability to personally dictate any of the terms of the license or even require the publishers to issue one.”

Hadfield also tweeted today that ” Our Oddity will be back online soon.” We’ll repost it when it becomes available.

The Canadian’s homage to Bowie — with slightly altered lyrics — garnered more than 22.4 million views as of this morning, Eastern time. It was filmed on board the International Space Station and produced by Hadfield’s son, Evan. Music was recorded on Earth.

The video capped five months of intense public outreach that Hadfield did during Expedition 34/35 in 2012-13. During Expedition 35, he was the first Canadian commander on station, but still found time to record videos and music showcasing his time in space.

Since returning to Earth, Hadfield has already penned one best-selling book — An Astronaut’s Guide To Life On Earth — and is now working on a second that will include photos from his mission.

NASA West Antarctic Ice Sheet Findings: Glacier Loss Appears Unstoppable

Credit: NASA

It’s a key piece of the climate change puzzle. For years, researchers have been eyeing the stability of the Western Antarctic Ice Sheet as global temperatures rise. Melting of the ice sheet could have dire consequences for sea level rise.

And though not unexpected, news from today’s NASA press conference delivered by Tom Wagner, a cryosphere program scientist with the Earth Science Division of NASA’s Science Mission Directorate in Washington D.C., Sridhar Anandakrishnan, a professor of geosciences at Pennsylvania University, and Eric Rignot, JPL glaciologist and professor of Earth system science at the University of California Irvine was certainly troubling.

Credit: NASA
The key region targeted in the study (arrowed) Credit: NASA

The Western Antarctic Ice Sheet is a marine-based ice sheet below sea level that is bounded by the Ronne and Ross Ice Shelf and contains glaciers that drain into the Amundsen Sea. The study announced today incorporates 40 years of data citing multiple lines of observational evidence measuring movement and thickness of Antarctic ice sheets. A key factor to this loss is a thinning along the grounding line of the glaciers from underneath. The grounding line for an ice sheet is the crucial boundary where ice becomes detached from ground underneath and stretches out to become free floating. A slow degradation of the Western Antarctic Ice Sheet has been observed, one that can be attributed to increased stratospheric circulation along with the advection of ocean heat coupled with anthropogenic global warming.

Credit: Eric Rignot
A closeup of the region: red indicates regions where flow speeds have accelerated in the past 40 years. Credit: Eric Rignot

“This sector will be a major contributor to sea level rise in the decades and centuries to come,” Rignot said in today’s press release. “A conservative estimate is it would take several centuries for all of the ice to flow into the sea.”

Thickness contributes to the driving stress of a glacier. Accelerating flow speeds stretch these glaciers out, reducing their weight and lifting them off of the bedrock below in a continuous feedback process.

A key concern for years has been the possible collapse of western Antarctica’s glaciers, leading to a drastic acceleration in sea-level rise worldwide. Such a catastrophic glacial retreat would dump millions of tons of ice into the sea over a relatively short span of time. And while it’s true that ice calves off of the Western Antarctic ice sheet every summer, the annual overall rate is increasing.

The study is backed up by satellite, airborne and ground observations looking at thickness of ice layers over decades.

Researchers stated that the Amundsen Sea Embayment sector alone contains enough ice to increase global sea level by 1.2 metres.  A strengthening of wind circulation around the South Pole region since the 1980s has accelerated this process, along with the loss of ozone. This circulation also makes the process more complex than similar types of ice loss seen in Greenland in the Arctic.

The research paper, titled Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith and Kohler glaciers, West Antarctica from 1992 to 2011 has been accepted for publication in the American Geophysical Union’s journal Geophysical Research Letters. The American Association for the Advancement of Science will also be releasing a related study on the instability of the West Antarctic ice sheet today in the journal Science.

The most spectacular retreat referenced in the study was seen occurring at the Smith/Kohler glaciers, which migrated about 35 kilometres and became ungrounded over a 500 kilometre square region during the span of 1992 to 2011.

Another telling factor cited in the study was the large scale synchronous ungrounding of several glaciers, suggesting a common trigger mechanism — such as ocean heat flux — is at play.

On the ice shelf proper, the key points that anchor or pin the glaciers to the bedrock below are swiftly vanishing, further destabilizing the ice in the region.

Assets that were used in the study included interferometry data from the Earth Remote Sensing (ERS-1/2) satellites’ InSAR (Interferormetry Synthetic Aperture Radar) instruments, ground team observations and data collected from NASA’s Operation IceBridge overflights of the Antarctic. IceBridge uses a converted U.S. Navy P-3 Orion submarine hunting aircraft equipped with radar experiment packages used to take measurements of the thickness of the ice sheet.

Possible follow up studies targeting the region are upcoming, including five Earth science and observation missions scheduled to be launched this year, which include the Soil Moisture and Passive (SMAP) mission, The Orbiting Carbon Observatory (OCO-2) and the Global Precipitation Measurement (GPM) Core Observatory, launched this past February.

Along with these future NASA missions, there are also two missions — RapidScat and the Cloud-Aerosol Transport System or CATS — slated to study climate headed for the International Space Station this year.

This comes as recent United Nations and United States reports have also announced the reality of climate change and anthropogenic global warming.

“The collapse of this sector of West Antarctica appears to be unstoppable,” Rignot said. “The fact that the retreat is happening simultaneously over a large sector suggests it was triggered by a common cause, such as an increase in the amount of ocean heat beneath the floating sections of the glaciers.”

Of course, the solar cycle, volcanic activity, global dimming (via changes in reflectivity, known as albedo) and human activity all play a role in the riddle that is climate change. The bad news is, taking only natural factors into account, we should be in a cooling period right now.

And yes, reflective ice cover also plays a role in the albedo of the Earth, but researchers told Universe Today that no significant overall seasonal variations in the extent of surface layer of ice will change, as the key loss comes from the ungrounding of ice from below. Thus, this ice loss does not present a significant contribution to changes in overall global albedo, though of course, much of this additional moisture will eventually be available for circulation in the atmosphere. And the same was noted in the press conference for those pinning their hopes on the 2014 ice extent being greater than previous years, a season that was a mere blip on the overall trend. The change and retreat in the grounding line below seen in the study was irrespective of the ice extent above.

NASA’s Operation IceBridge will continue to monitor the ice flow when the next Antarctic deployment cycle resumes in October of this year.

And in the meantime, the true discussion is turning to the challenges of living with a warmer planet. Insurance companies, the Department of Defense and residents of low-lying coastal regions such as Miami’s South Beach already know that the reality of global warming and sea level rise is here. Perhaps the very fact that naysayers have at least backed up their positions a bit in recent years from “global warming isn’t happening” to “Its happening, but there are natural cycles” can at least give us a starting point for true intelligent science-based dialogue  to begin.

– Social media questions from today’s conference can be reviewed at the #AskNASA hastag.

 

Astronomy Cast Ep. 345: Numbered Places: Launch Complex 39

Almost every historic American launch occurred at one place in Cape Canaveral: Launch Complex 39. Good old LC39 was build for the Apollo spacecraft, and then modified for the Space Shuttle program. And now it’s carrying on this tradition for upcoming SpaceX rockets. Let’s explore the history of this instrumental launch facility.
Continue reading “Astronomy Cast Ep. 345: Numbered Places: Launch Complex 39”

Saturn Disappears Behind the Full Flower Moon May 14 – Watch it Live

Simulation of the moon closing in on Saturn just prior to occultation. Credit: Gianluca Masi using SkyX software

Funny thing. Skywatchers are often  just as excited to watch a celestial object disappear as we are to see it make an appearance. Early Wednesday morning (May 14) the Full Flower Moon will slip in front of  Saturn, covering it from view for about an hour for observers in Australia and New Zealand. If you don’t live where the dingoes roam, no worries. You can watch it online.And no matter where you are on the planet, the big moon will accompany the ringed planet across the sky this Tues. night-Weds. morning.


Moon-Saturn occultation from Perth, Australia Feb. 22, 2014 captured by Colin Legg

Occultations of stars happen swiftly. The moon’s limb meets the pinpoint star and bam! it’s gone in a flash. But Saturn is an extended object and the moon needs time to cover one end of the rings to the other. Planetary occultations afford the opportunity to remove yourself from planet Earth and watch a planet ‘set’ and ‘rise’ over the alien lunar landscape. Like seeing a Chesley Bonestell painting in the flesh.

Saturn and the moon tomorrow night just before midnight as viewed from the Midwestern U.S. View faces south-southeast. Stellarium
Saturn and the moon Tuesday night (May 13) just before midnight as viewed from the U.S. Stellarium

As the moon approaches Saturn, the planet first touches the lunar limb and then appears to ‘set’ as it’s covered by degrees. About an hour later, the planet ‘rises’ from the opposite limb. Planetary occultations are infrequent and always worth the effort to see.

Seen from the northern hemisphere and equatorial regions, the nearly full moon will appear several degrees to the right or west of Saturn tomorrow night (May 13). As the night deepens and the moon rolls westward, the two grow closer and closer. They’ll be only a degree apart (two full moon diameters) during Wednesday morning twilight seen from the West Coast. Northern hemisphere viewers will notice that the moon slides to the south of the planet overnight.

Map showing the region where the occultation of Saturn will be visible. Click to get the times of Saturn's disappearance and reappearance for individual cities. Times are given in UT or Universal Time. Add 9.5 hours for Australian Central Standard Time. Credit: IOTA
Map showing the region where the occultation of Saturn will be visible. Click to get times of Saturn’s disappearance and reappearance for individual cities. Times shown are UT or Universal Time. Add 9.5 hours for Australian Central Standard Time. Credit: IOTA

Skywatchers in Australia will see the moon cover Saturn during convenient early evening viewing hours May 14:

* 8:09  p.m. local time from Adelaide

* 9:05 p.m.  Brisbane

* 8:50 p.m.  Melbourne

* 8:53 p.m. Canberra

* 8:56 p.m. from Sydney (More times and a map – click HERE)

Before the occultation, Saturn will shine close to the moon’s upper right and might be tricky to see with the naked eye because of glare.

Binoculars will easily reveal the planet, but a telescope is the instrument of choice. Even a small scope magnifying at least 30x will show Saturn and its rings hovering above the bright edge of the moon. Stick around. About an hour later, Saturn will re-emerge along the moon’s lower left limb.

Saturn and its moons Tuesday night May 13 around 10 p.m. CDT. Titan's the brightest and easiest. Iapetus ranges from magnitude +10 when it's west of Saturn and we see its bright hemisphere to magnitude +12 when it's west of the planet as it will be this week. Created with Meridian software
Saturn and its moons Tuesday night May 13 around 10 p.m. CDT. Titan’s the brightest and easiest moon to see at magnitude +8.5. Iapetus ranges from magnitude +10 when it’s west of Saturn and we see its bright hemisphere to magnitude +12 when it’s east of the planet. Created with Meridian software

Meanwhile, back in the western hemisphere, we’ll watch the nearly full Flower Moon make a close pass of the planet. If you’ve had difficulty finding the celestial ring bearer, you’ll have no problem Tuesday night. Take a look at Saturn’s wonderful system of rings in your telescope – they’re tipped nearly wide open this year. For even more fun, see how many moons you can spot. And don’t forget, you can watch it online courtesy of astrophysicist Gianluca Masi. His Virtual Telescope website will broadcast the occultation live starting at 10:15 Universal Time May 14 (6:15 a.m. EDT, 5:15 CDT, 4:15 MDT and 3:15 PDT).

Carnival of Space #353

Carnival of Space. Image by Jason Major.
Carnival of Space. Image by Jason Major.

This week’s Carnival of Space is hosted by Gadi Eidelheit at his The Venus Transit blog.

Click here to read Carnival of Space #353.

And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.