In three years, NASA is planning to light the fuse on a huge rocket designed to bring humans further out into the solar system.
We usually talk about SLS here in the context of the astronauts it will carry inside the Orion spacecraft, which will have its own test flight later in 2014. But today, NASA advertised a possible other use for the rocket: trying to find life beyond Earth.
At a symposium in Washington on the search for life, NASA associate administrator John Grunsfeld said SLS could serve two major functions: launching bigger telescopes, and sending a mission on an express route to Jupiter’s moon Europa.
The James Webb Space Telescope, with a mirror of 6.5 meters (21 feet), will in part search for exoplanets after its launch in 2018. Next-generation telescopes of 10 to 20 meters (33 to 66 feet) could pick out more, if SLS could bring them up into space.
“This will be a multi-generational search,” said Sara Seager, a planetary scientist and physicist at the Massachusetts Institute of Technology. She added that the big challenge is trying to distinguish a planet like Earth from the light of its parent star; the difference between the two is a magnitude of 10 billion. “Our Earth is actually extremely hard to find,” she said.
While the symposium was not talking much about life in the solar system, Europa is considered one of the top candidates due to the presence of a possible subsurface ocean beneath its ice. NASA is now seeking ideas for a mission to this moon, following news that water plumes were spotted spewing from the moon’s icy south pole. A mission to Europa would take seven years with the technology currently in NASA’s hands, but the SLS would be powerful enough to speed up the trip to only three years, Grunsfeld said.
And that’s not all that SLS could do. If it does bring astronauts deeper in space as NASA hopes it will, this opens up a range of destinations for them to go to. Usually NASA talks about this in terms of its human asteroid mission, an idea it has been working on and pitching for the past year to a skeptical, budget-conscious Congress.
But in passing, John Mather (NASA’s senior project scientist for Webb) said it’s possible astronauts could be sent to maintain the telescope. Webb is supposed to be parked in a Lagrange point (gravitationally stable location) in the exact opposite direction of the sun, almost a million miles away. It’s a big contrast to the Hubble Space Telescope, which was conveniently parked in low Earth orbit for astronauts to fix every so often with the space shuttle.
While NASA works on the funding and design for larger telescope mirrors, Webb is one of the two new space telescopes it is focusing on in the search for life. Webb’s infrared eyes will be able to peer at solar systems being born, once it is launched in 2018. Complementary to that will be the Transiting Exoplanet Survey Satellite, which will fly in 2017 and examine planets that pass in front of their parent stars to find elements in their atmospheres.
The usual cautions apply when talking about this article: NASA is talking about several missions under development, and it is unclear yet what the success of SLS or any of these will be until they are battle-tested in space.
But what this discussion does show is the agency is trying to find many purposes for its next-generation rocket, and working to align it to astrophysics goals as well as its desire to send humans further out in the solar system.
SpaceX successfully launched six ORBCOMM advanced telecommunications satellites into orbit on Monday, July 14, to significantly upgrade the speed and capacity of their existing data relay network. The launch from Cape Canaveral Air Force Station in Florida had been delayed or scrubbed several times since the original launch date in May due to varying problems from payload integration issues, weather conditions and issues with the Falcon 9 rocket. But the launch went off without a hitch today and ORBCOMM reports that all six satellites have been successfully deployed in orbit.
SpaceX also used this launch opportunity to try and test the reusability of the Falcon 9’s first stage and its landing system while splashing down in the ocean. However, the booster did not survive the splashdown. SpaceX CEO Elon Musk reported that the rocket booster reentry, landing burn and leg deployment worked well, the hull of the first stage “lost integrity right after splashdown (aka kaboom),” Musk tweeted. “Detailed review of rocket telemetry needed to tell if due to initial splashdown or subsequent tip over and body slam.”
SpaceX wanted to test the “flyback” ability to the rocket, slowing down the descent of the rocket with thrusters and deploying the landing legs for future launches so the first stage can be re-used. These tests have the booster “landing” in the ocean. The previous test of the landing system was successful, but the choppy seas destroyed the stage and prevented recovery. Today’s “kaboom” makes recovery of even pieces of this booster unlikely.
As far as the ORBCOMM satellites, the six satellites launched today are the first part of what the company hopes will be a 17-satellite constellation. They hope to have all 17 satellites in orbit by the end of the 2014.
Did you hear there was something special about the full Moon this weekend… that it would be, well… really super? I heard about it on every newscast I watched or listened to. Even xkcd got into the ‘Supermoon’ craze. The July “Buck” Moon was the first of three Supermoons on tap for 2014, where the Moon is at its perigee, the closest point to Earth in its orbit, close to the time when it is “officially” full.
If you didn’t hear about it, (or weren’t paying attention) you may not have noticed anything different, as its not radically different from a regular full Moon. Read all the detail of what a Supermoon is here. But as Geoff Chester of the US Naval Observatory, said on NASA’s website, “However, if it gets people out and looking at the night sky and maybe hooks them into astronomy, then it’s a good thing,”
And people were out with their cameras, too! Here’s a great collection of full Moon images from this weekend, as seen in our Flickr Gallery.
Be advised that this month’s big full Moon was not the closest of the year. The closest Full Moon of 2014 occurs next month on August 10th at 18:11 Universal Time (UT) or 1:44 PM EDT. On that date, the Moon reaches perigee or its closest approach to the Earth at 356,896 kilometres distant at 17:44, less than an hour from Full.
Fancy a little Mars in your daily life? You need go no further than the excellent raw image archive that NASA generously provides on its website, showing the view from the Opportunity and Curiosity rovers as they make their way on the surface.
Opportunity is rolling along in its eleventh year of operations, busily exploring the west rim of Endeavour Crater. Below the jump is a stunning stitch-together of some of its latest images from space tweep Stu Atkinson, who runs a lovely blog called Road to Endeavour about the rover’s adventures. NASA also has an official blog that was last updated July 1.
The Curiosity rover is in Gale Crater near the Martian equator, heading towards Mount Sharp as NASA picks paths that are the softest for its damaged wheels. Panorama maker Andrew Bodrov recently put together a new 360-degree view of Curiosity’s mastcam, which encompasses 137 images taken on Sol 673. You can see that below the jump as well.
Below are a couple of more raw views from the Curiosity rover taken on Sol 685.
And across Mars, some views from Opportunity on Sol 3721 of the mission. The rover is facing the elimination of its funding in 2015, although in budget discussions from February NASA said it does have a route for it to get money (if Congress approves).
Where are these radio bursts coming from? Astronomers have heard these signals from the sky several times, but always with the same telescope (Parkes Observatory in Australia). There was debate about whether these were coming from inside or outside the galaxy, or even from Earth itself (given only the one observatory was detecting them.)
A new study with a different telescope, the Arecibo Observatory in Puerto Rico, concludes that the bursts are from outside the galaxy. This is the first time one of these bursts have been found in the northern hemisphere of the sky.
“Our result is important because it eliminates any doubt that these radio bursts are truly of cosmic origin,” stated Victoria Kaspi, an astrophysics researcher at McGill University who participated in the research. “The radio waves show every sign of having come from far outside our galaxy – a really exciting prospect.”
Fast radio bursts are a flurry of radio waves that last a few thousandths of a second, and at any given minute there are only seven of these in the sky on average, according to the Max Planck Institute for Radio Astronomy. Their cause is unknown. They could be anything from black holes, to neutron stars coming together, to the magnetic field of pulsars (a type of neutron star) flaring up — or something else.
The pulse was found Nov. 2, 2012 in the constellation Auriga. Astronomers believe it is from quite far away from measuring its plasma dispersion, or the slowdown of radio waves as they crash into interstellar electrons. This particular source had triple the maximum dispersion than what would be found inside the galaxy, astronomers stated.
“The brightness and duration of this event, and the inferred rate at which these bursts occur, are all consistent with the properties of the bursts previously detected by the Parkes telescope in Australia,” stated Laura Spitler, who led the research. (She was at Cornell University when the study began, but is now at the Max Planck Institute for Radio Astronomy in Bonn, Germany.)
There’s a strange place in the sky where everything is attracted. And unfortunately, it’s on the other side of the Milky Way, so we can’t see it. What could be doing all this attracting?
Just where the heck are we going? We’re snuggled in our little Solar System, hurtling through the cosmos at a blindingly fast of 2.2 million kilometers per hour. We’re always orbiting this, and drifting through that, and it’s somewhere out in the region that’s not as horrifically terrifying as what some of our celestial neighbors go through. But where are we going? Just around in a great big circle? Or an ellipse? Which is going around in another circle… and it’s great big circles all the way up?
Not exactly… Our galaxy and other nearby galaxies are being pulled toward a specific region of space. It’s about 150 million light years away, and here is the best part. We’re not exactly sure what it is. We call it the Great Attractor.
Part of the reason the Great Attractor is so mysterious is that it happens to lie in a direction of the sky known as the “Zone of Avoidance”. This is in the general direction of the center of our galaxy, where there is so much gas and dust that we can’t see very far in the visible spectrum. We can see how our galaxy and other nearby galaxies are moving toward the great attractor, so something must be causing things to go in that direction. That means either there must be something massive over there, or it’s due to something even more strange and fantastic.
When evidence of the Great Attractor was first discovered in the 1970s, we had no way to see through the Zone of Avoidance. But while that region blocks much of the visible light from beyond, the gas and dust doesn’t block as much infrared and x-ray light. As x-ray astronomy became more powerful, we could start to see objects within that region. What we found was a large supercluster of galaxies in the area of the Great Attractor, known as the Norma Cluster. It has a mass of about 1,000 trillion Suns. That’s thousands of galaxies.
While the Norma Cluster is massive, and local galaxies are moving toward it, it doesn’t explain the full motion of local galaxies. The mass of the Great Attractor isn’t large enough to account for the pull. When we look at an even larger region of galaxies, we find that the local galaxies and the Great Attractor are moving toward something even larger. It’s known as the Shapley Supercluster. It contains more than 8000 galaxies and has a mass of more than ten million billion Suns. The Shapley Supercluster is, in fact, the most massive galaxy cluster within a billion light years, and we and every galaxy in our corner of the Universe are moving toward it.
So as we hurtle through the cosmos, gravity shapes the path we travel. We’re pulled towards the Great Attractor, and despite its glorious title, it appears, in fact to be a perfectly normal collection of galaxies, which just happens to be hidden.
What do you think? What are you hoping we’ll discover over in the region of space we’re drifting towards?
And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!
Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer – kenkremer.com
Story updated[/caption]
NASA WALLOPS FLIGHT FACILITY, VA – A commercial Antares rocket carrying the private Cygnus cargo freighter thundered aloft from a beachside launch pad in Virginia today, July 13, bound for the space station and packed with a wide range of science experiments and essential supplies for the six person crew.
The flawless blastoff of the Orbital Sciences Corp. Antares rocket occurred precisely as planned today at 12:52 p.m. (EDT) from Pad 0A at the Mid-Atlantic Regional Spaceport on NASA’s Wallops Flight Facility on the Eastern shore of Virginia.
After a 10 minute ascent, Antares placed the Cygnus resupply spacecraft into an initial orbit of 120 x 180 miles (190 x 290 kilometers) above the Earth, inclined at 51.6 degrees to the equator.
“The Antares rocket first and second stages performed flawlessly,” said Frank Culbertson, Orbital’s executive vice president of the advanced programs group, at a post launch briefing at NASA Wallops. Culberston was a NASA shuttle commander and also flew aboard the International Space Station (ISS).
“The solar arrays deployed as planned,” Culbertson reported. The arrays provide Cygnus with life giving power to command and operate the spacecraft.
The Orb-2 launch was postponed about a month from June 9 to conduct a thorough re-inspection of the two Russian built and US modified Aerojet AJ26 engines that power the rocket’s first stage after a test failure of a different engine on May 22 at NASA’s Stennis Space Center in Mississippi resulted in extensive damage.
After a nearly three day orbital chase, the Cygnus cargo logistics spacecraft will rendezvous with the ISS on July 16 at approximately 6:39 a.m. (EDT).
ISS Expedition 40 crew members Commander Steve Swanson of NASA and Alexander Gerst of the European Space Agency, will then grapple Cygnus with the stations 57 foot long robotic arm and berth it at the Earth facing port on the Harmony module on July 16 at approximately 6:39 a.m. (EDT).
Today’s liftoff marked the fourth successful launch of the 132 foot tall Antares in the past Antares in the past 15 months, Culbertson noted.
The first Antares was launched from NASA Wallops in April 2013. And the Orb-2 mission also marks the third deployment of Cygnus in less than a year.
The Antares/Cygnus Orbital-2 (Orb-2) mission is the second of eight cargo resupply missions to the ISS under Orbital’s Commercial Resupply Services (CRS) contract with NASA.
The pressurized Cygnus cargo freighter will deliver 1,657 kg (3653 lbs) of cargo to the ISS Expedition 40 crew including over 700 pounds (300 kg) of science experiments and instruments, crew supplies, food, water, computer equipment, spacewalk tools and student research experiments.
The wide ranging science cargo and experiments includes a flock of nanosatellites and deployers, student science experiments and small cubesat prototypes that may one day fly to Mars.
The Flock 1B group of 28 nanosatellites from Planet Labs of San Francisco are aboard to take pictures of Earth that will be combined into a mosaic view of nearly the entire Earth.
They will be deployed into orbit from the Japanese JEM module.
TechEdSat-4 is a small cubesat built by NASA’s Ames Research Center in California that will investigate technology to return small samples to Earth from the space station. Researchers hope to send a future variant to Mars by 2018 or 2020, the team told Universe Today.
15 student experiments on the “Charlie Brown” mission are aboard and hosted by the Student Spaceflight Experiment Program, an initiative of the National Center for Earth and Space Science Education (NCESSE) and NanoRacks.
They will investigate plant, lettuce, raddish and mold growth and seed germination in zero-G, penecilium growth, corrosion inhibitors, oxidation in space and microencapsulation experiments.
Cygnus will remain attached to the station approximately 30 days until about August 15.
For the destructive and fiery return to Earth, Cygnus will be loaded with approximately 1,340 kg (2950 lbs) of trash for disposal upon atmospheric reentry over the Pacific Ocean approximately five days later.
Orbital Sciences was awarded a $1.9 Billion supply contract by NASA to deliver 20,000 kilograms of research experiments, crew provisions, spare parts and hardware for 8 flight to the ISS through 2016 under the Commercial Resupply Services (CRS) initiative.
The Orb-2 mission launch today marks the second operational Antares/Cygnus flight.
The two stage Antares rocket stands 132 feet tall. It takes about 10 minutes from launch until separation of Cygnus from the Antares vehicle.
SpaceX has a similar resupply contract using their Falcon 9 rocket and Dragon cargo carrier and just completed their 3rd operational mission to the ISS in May.
Watch for Ken’s continuing onsite Antares Orb-2 mission reports from NASA Wallops, VA.
Stay tuned here for Ken’s continuing ISS, OCO-2, GPM, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more Earth & Planetary science and human spaceflight news.
And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.
NASA WALLOPS FLIGHT FACILITY, VA – Following further weather delays this week Orbital Sciences Corp. commercial Antares rocket is at last set to soar to space at lunchtime Sunday, July 13, from a beachside launch pad in Virginia carrying a private Cygnus cargo freighter loaded with a diverse array of science experiments including a flock of nanosatellites and deployers, student science experiments and small cubesat prototypes that may one day fly to Mars.
The privately developed Antares rocket is on a critical cargo resupply mission – named Orb-2 – bound for the International Space Station (ISS) and now targeting liftoff at 12:52 p.m. on July 13 from Launch Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) at NASA Wallops Island on Virginia’s Eastern shore.
Severe thunderstorms up and down the US East coast forced two consecutive postponements this week from the Atlantic Ocean region launch pad at NASA’s Wallops Flight Facility, VA, from July 11 to July 13.
“Orbital’s launch team has made great progress in preparing the rocket for the Orb-2 mission, which will be the fourth flight of Antares in the past 15 months,” Orbital said in a statement.
“However, severe weather in the Wallops area has repeatedly interrupted the team’s normal operational schedule leading up to the launch. As a result, these activities have taken longer than expected. Orbital has decided to postpone the Orb-2 mission by an additional day in order to maintain normal launch operations processing.”
The pressurized Cygnus cargo freighter will deliver 1,657 kg (3653 lbs) of cargo to the ISS Expedition 40 crew including over 700 pounds (300 kg) of science experiments and instruments, crew supplies, food, water, computer equipment, spacewalk tools and student research experiments.
A flock of 28 nanosatellites from Planet Labs of San Francisco are aboard to take pictures of Earth.
After deployment from the Japanese JEM module they will form “the largest constellation of imaging satellites in Earth orbit,” said Robbie Schingler, Co-Founder of PlanetLabs.
“The individual satellites will take images that will be combined into a whole Earth mosaic,” Schingler told me in an interview at Wallops.
15 student experiments on the “Charlie Brown” mission are aboard and hosted by the Student Spaceflight Experiment Program, an initiative of the National Center for Earth and Space Science Education (NCESSE) and NanoRacks.
“The student experiments were chosen from over 1000 proposals from Grades 5 to 12,” said Jeff Goldstein, NCESSE director.
They will investigate plant, lettuce, raddish and mold growth and seed germination in zero-G, penecilium growth, corrosion inhibitors, oxidation in space and microencapsulation experiments.
The TechEdSat-4 is a small cubesat built by NASA’s Ames Research Center in California that will investigate technology to return small samples to Earth from the space station.
The weather prognosis is very favorable with a 90% chance of acceptable weather at launch time during the 5 minute window.
The Antares/Cygnus Orbital-2 (Orb-2) mission is the second of eight cargo resupply missions to the ISS under Orbital’s Commercial Resupply Services (CRS) contract with NASA.
NASA will broadcast the Antares launch live on NASA TV starting at 12 Noon – http://www.nasa.gov/nasatv
Depending on local weather conditions, portions of the daylight liftoff could be visible to millions of spectators along the US Eastern seaboard stretching from South Carolina to Massachusetts.
Here’s a viewing map:
The best viewing will be in the mid-Atlantic region closest to Wallops Island.
Locally at Wallops you’ll get a magnificent view and hear the rockets thunder at either the NASA Wallops Visitor Center or the Chincoteague National Wildlife Refuge/Assateague National Seashore.
For more information about the Wallops Visitors Center, including directions, see: http://www.nasa.gov/centers/wallops/visitorcenter
NASA will have special “countdown speakers” set up at the NASA Wallops Visitor Center, Chincoteague National Wildlife Refuge/Assateague National Seashore and Ocean City inlet.
Orbital Sciences was awarded a $1.9 Billion supply contract by NASA to deliver 20,000 kilograms of research experiments, crew provisions, spare parts and hardware for 8 flight to the ISS through 2016 under the Commercial Resupply Services (CRS) initiative.
The July mission marks the second operational Antares/Cygnus flight.
The two stage Antares rocket stands 132 feet tall. It takes about 10 minutes from launch until separation of Cygnus from the Antares vehicle.
SpaceX has a similar resupply contract using their Falcon 9 rocket and Dragon cargo carrier and just completed their 3rd operational mission to the ISS in May.
Watch for Ken’s onsite Antares Orb-2 mission reports from NASA Wallops, VA.
Stay tuned here for Ken’s continuing ISS, OCO-2, GPM, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more Earth & Planetary science and human spaceflight news.
Learn more about NASA’s Mars missions and Orbital Sciences Antares ISS launch on July 13 from NASA Wallops, VA in July and more about SpaceX, Boeing and commercial space and more at Ken’s upcoming presentations.
July 11/12/13: “Antares/Cygnus ISS Launch from Virginia” & “Space mission updates”; Rodeway Inn, Chincoteague, VA, evening
Comet C/2014 E2 Jacques has returned! Before it disappeared in the solar glow this spring, the comet reached magnitude +6, the naked eye limit. Now it’s back at dawn, rising higher each morning as it treks toward darker skies. Just days after its July 2 perihelion, the fuzzball will be in conjunction with the planet Venus tomorrow morning July 13. With Mercury nearby, you may have the chance to see this celestial ‘Rat Pack’ tucked within a 8° circle.
While I can guarantee you’ll see Venus and probably Mercury (especially if you use binoculars), morning twilight and low altitude will undoubtedly make spotting Comet Jacques challenging. A 6-inch telescope might nail it. Look for a small, fuzzy cloud with a brighter core against the bluing sky. Patience is the sky observer’s most useful tool. It won’t be long before the comet’s westward motion combined with the seasonal drift of the stars will loft it into darkness again.
A week from now, when the moon’s slimmed to half, the comet will be nearly twice as high and should be easily visible in 50mm binoculars at the start of morning twilight.
Comet Jacques is expected to remain around magnitude +6 through the remainder of July into early August and then slowly fade. It will be well-placed in Perseus at the time of the Perseid meteor shower on Aug. 12-13. Closest approach to Earth occurs on August 29 at 52.4 million miles (84.3 million km). Good luck and let us know if you see it.