Where did the water on Mars come from, and where did it go? This plot (sort of) formed the basis of one of the best Doctor Who episodes of the modern era, but in all seriousness, it is also driving scientists to examine the Red Planet over and over again.
This means revisiting older information with newer data to see if everything still matches up. From time to time, it doesn’t. The latest example came when scientists at the U.S. Geological Survey created a map of the canyon systems of Waikato Vallis and Reull Vallis, which are in the midsoutherly latitudes of Mars.
They previously believed the canyons were connected, but updating the data from an understanding based on 1980s Viking data revealed a different story.
“These canyons are believed to have formed when underground water was released from plains materials to the surface, causing the ground to collapse. The water could have been stored within the plains in localized aquifers or as ice, which could have melted due to the heat from nearby volcanoes,” the U.S. Geological Survey stated.
But the newer data — looking at information from the Mars Reconnaissance Orbiter, Mars Odyssey, Mars Global Surveyor — revealed the canyons are quite separate, demarcated by a zone called Eridania Planitia in between.
“Careful estimates of the ages of the canyons and the plains reveal a sequence of events starting with the water released from Waikato Vallis, which would have been stored for a time in the plains as a shallow lake. As Reull Vallis was forming separately, the canyon breached a crater rim that was holding back the water in the lake; the lake drained gradually, which can be seen by many smaller channels incised on the floor of Reull Vallis.”
The map was co-produced by Scott Mest and David Crown, who are both of the Planetary Science Institute. You can view the entire map and related materials here.
There are few moments more breathtaking than standing beneath a brilliant starry sky. Thousands of small specks of light mark only the beginning of the vast cosmic arena, with its unimaginable vistas of time and space. The Milky Way, wrapping above in a cosmic sheet of colors and patterns, also hints that there’s more than meets the eye.
Most of us long for these dark nights, far away from the city lights. But a new study suggests the Universe is a little too dark.
The vast reaches of empty space are bridged by filaments of hydrogen and helium. But there’s a disconnect between how bright the large-scale structure of the Universe is expected to be and how bright it actually is.
In a recent study, a team of astronomers led by Juna Kollmeier from the Carnegie Institute for Science found the light from known populations of stars and quasars is not nearly enough to explain observations of intergalactic hydrogen.
In a brightly lit Universe, intergalactic hydrogen will be easily destroyed by energetic photons, meaning images of the large-scale structure will actually appear dimmer. Whereas in a dim Universe, there are fewer photons to destroy the intergalactic hydrogen and images will appear brighter.
Hubble Space Telescope observations of the large-scale structure show a brightly lit Universe. But supercomputer simulations using only the known sources of ultraviolet light produces a dimly lit Universe. The difference is a stunning 400 percent.
Observations indicate that the ionizing photons from hot, young stars are almost always absorbed by gas in the host galaxy, so they never escape to affect intergalactic hydrogen. The necessary culprit could be the known number of quasars, which is far lower than needed to produce the required light.
“Either our accounting of the light from galaxies and quasars is very far off, or there’s some other major source of ionizing photons that we’ve never recognized,” said Kollmeier in a press release. “We are calling this missing light the photon underproduction crisis. But it’s the astronomers who are in crisis — somehow or other, the universe is getting along just fine.”
Strangely, this mismatch only appears in the nearby, relatively well-studied cosmos. In the early Universe, everything adds up.
“The simulations fit the data beautifully in the early universe, and they fit the local data beautifully if we’re allowed to assume that this extra light is really there,” said coauthor Ben Oppenheimer from the University of Colorado. “It’s possible the simulations do not reflect reality, which by itself would be a surprise, because intergalactic hydrogen is the component of the Universe that we think we understand the best.”
So astronomers are attempting to shed light on the missing light.
“The most exciting possibility is that the missing photons are coming from some exotic new source, not galaxies or quasars at all,” said coauthor Neal Katz from the University of Massachusetts at Amherst.
The team is exploring these new sources with vigor. It’s possible that there could be an undiscovered population of quasars in the nearby Universe. Or more exotically, the photons could be created from annihilating dark matter.
“The great thing about a 400 percent discrepancy is that you know something is really wrong,” said coauthor David Weinberg from Ohio State University. “We still don’t know for sure what it is, but at least one thing we thought we knew about the present day universe isn’t true.”
The results were published in The Astrophysical Journal Letters and are available online.
As readers of Universe Today know, exoplanets are one of the hottest topics in astronomy today. In just the past six months, astronomers have announced the discovery of more than 700 planets orbiting other stars, bringing the total to more than 1700. These discoveries include the first Earth-size planet found in what’s called the habitable zone of a star, where liquid water could exist; the oldest known planet that could support life; and the first rocky “mega-Earth,” a planet that’s much like Earth except that it’s 17 times more massive.
On July 9, at 19:00 UTC (3 pm EDT, 12:00 pm PDT), three exoplanet hunters will come together discuss the discovery boom, consider the next steps in the hunt for habitable worlds, and debate whether we’re likely to find alien life in the next decade.
You can watch live (or watch the webcast later) below:
The panel includes MIT’s Zachory Berta-Thompson, Stanford’s Bruce Macintosh and Université de Montréal’s Marie-Eve Naud) will come together discuss the recent discovery boom, consider the next steps in the hunt for habitable worlds, and ponder the odds of finding life on another planet. The discussion will be moderated by journalist Kelen Tuttle.
To submit questions ahead of time or during the webcast, send an email to [email protected] or post on Twitter with hashtag #KavliLive. You can find additional information about the webcast and the Kavli Foundation here.
“Watch Out Japan!” added Gerst while he and his crewmates working aboard the ISS send back breathtaking imagery of the gigantic super typhoon heading towards Japan.
Neoguri is currently lashing the Japanese island of Okinawa with powerful damaging winds of over 125 mph and heavy downpours of flooding rain.
The Joint Typhoon Warning Center or JTWC reports that Neoguri is creating large and dangerous swells with wave heights to 37 feet (11.2 meters).
CNN reports today, July 8, that over 600,000 people have been told to evacuate and over 100,000 already have no power. Gusts have reached 212 kph (132 mph),
The storm is so big it could not even be captured in a single image taken today using the astronauts fisheye lens on the ISS.
“Supertyphoon Neoguri did not even fit into our fisheye lens view. I have never seen anything like this,” reports Gerst today, July 8.
And the worst may be yet to come as Neoguri is forecast to make landfall on Kyushu, the southernmost island of the Japanese mainland and home to more than 13 million people after 0000 UTC on July 10 (8 p.m. EDT on July 9).
Super Typhoon Neoguri formed in the western Pacific Ocean south-southeast of Guam on July 3, 2014, according to NASA.
By July 5 it had maximum sustained winds near 110 knots (127 mph).
The NASA and Japan Aerospace Exploration Agency’s Tropical Rainfall Measuring Mission or TRMM satellite passed over the typhoon on Monday, July 7. It was classified as a category four typhoon on the Saffir-Simpson hurricane scale with sustained winds estimates at 135 knots (155 mph), says NASA.
The eerie looking eye is 65 kilometers (40 miles) in diameter. See photo.
It has since decreased slightly in intensity to a category three typhoon.
According to the Japanese Meteorological Agency Neoguri is currently located at 28°55′ (N) and E125°50′ (E).
At 5:02 PM EDT today, July 8, NASA just reported that the ISS flew directly over Neoguri and may have been visible in the new live HDEV cameras residing on the stations truss.
Stay tuned here for Ken’s continuing ISS, OCO-2, GPM, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more Earth & Planetary science and human spaceflight news.
Last week, we encouraged those of you with a decent sized backyard telescope (and a little patience) to try and spot tiny dwarf planet Pluto, which was at opposition over this past weekend.
One of our favorite astrophotographers, John Chumack, did just that using the “Sagittarius Spoon” to zero-in on Pluto’s location.
“Most astronomers are familiar with the Great Tea Pot of Sagittarius, but just above the Teapot’s Handle is the Sagittarius Spoon!” John said via email. His annotated image, above, shows the spoon and the arrow points to Pluto.
See a non-annotated version, below, and try to also spot some very familiar deep sky objects in this field of view:
Can you see:
Globular Clusters M22, M28, NGC-6717
Open Star Clusters M25, M18
Emission Nebulae M17 The Swan or Omega Nebula & M16 The Eagle Nebula
M24 The Sagittarius Star Cloud, (also awesome in binoculars, John says)
John used a modified Canon 40D DSLR & 50mm lens @F5.6, ISO 1600 for a Single 4 minute exposure while tracking on a CG-4 Mount. And friends from Dexter, Iowa provided the view!
Update:
Larry McNish from the Calgary Centre of the Royal Astronomical Society of Canada also sent in two images of Pluto at opposition. All the details are on the images, but they emphasize just how difficult capturing Pluto can be:
Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.
‘Tis the season once again, when rogue Full Moons nearing perigee seem roam the summer skies to the breathless exhortations of many an astronomical neophyte at will. We know… by now, you’d think that there’d be nothing new under the Sun (or in this case, the Moon) to write about the closest Full Moons of the year.
But love ‘em or hate ‘em, tales of the “Supermoon” will soon be gracing ye ole internet again, with hyperbole that’s usually reserved for comets, meteor showers, and celeb debauchery, all promising the “biggest Full Moon EVER…” just like last year, and the year be for that, and the year before that…
How did this come to be?
What’s happening this summer: First, here’s the lowdown on what’s coming up. The closest Full Moon of 2014 occurs next month on August 10th at 18:11 Universal Time (UT) or 1:44 PM EDT. On that date, the Moon reaches perigee or its closest approach to the Earth at 356,896 kilometres distant at 17:44, less than an hour from Full. Of course, the Moon reaches perigee nearly as close once everyanomalistic month (the time from perigee-to-perigee) of 27.55 days and passes Full phase once every synodic period (the period from like phase to phase) with a long term average of 29.53 days.
And the August perigee of the Moon only beats out the January 1st, 2014 perigee out by a scant 25 kilometres for the title of the closest perigee of the year, although the Moon was at New phase on that date, with lots less fanfare and hoopla for that one. Perigee itself can vary from 356,400 to 370,400 kilometres distant.
But there’s more. If you consider a “Supermoon” as a Full Moon falling within 24 hours of perigee, (folks like to play fast and loose with the informal definitions when the Supermoon rolls around, as you’ll see) then we actually have a trio of Supermoons on tap for 2014, with one this week on July 12th and September 9th as well.
What, then, is this lunacy?
Well, as many an informative and helpful commenter from previous years has mentioned, the term Supermoon was actually coined by an astrologer. Yes, I know… the same precession-denialists that gave us such eyebrow raising terms as “occultation,” “trine” and the like. Don’t get us started. The term “Supermoon” is a more modern pop culture creation that first appeared in a 1979 astrology publication, and the name stuck. A more accurate astronomical term for a “Supermoon” is a perigee-syzygy Full Moon or Proxigean Moon, but those just don’t seem to be able to “fill the seats” when it comes to internet hype.
One of the more arcane aspects set forth by the 1979 definition of a Supermoon is its curiously indistinct description as a “Full Moon which occurs with the Moon at or near (within 90% of) its closest approach to Earth in a given orbit.” This is a strange demarcation, as it’s pretty vague as to the span of distance (perigee varies, due to the drag of the Sun on the Moon’s orbit in what’s known as the precession of the line of apsides) and time. The Moon and all celestial bodies move faster near perigee than apogee as per Kepler’s 2nd Law of planetary motion.
We very much prefer to think of a Proxigean Moon as defined by a “Full Moon within 24 hours of perigee”. There. Simple. Done.
And let’s not forget, Full phase is but an instant in time when the Moon passes an ecliptic longitude of 180 degrees opposite from the Sun. The Moon actually never reaches 100% illumination due to its 5.1 degree tilt to the ecliptic, as when it does fall exactly opposite to the Sun it also passes into the Earth’s shadow for a total lunar eclipse.
-Check out this animation of the changing size of the Moon and its tilt — known as libration and nutation, respectively — as seen from our Earthly perspective over the span of one lunation.
The truth is, the Moon does vary from 356,400 to 406,700 kilometres in its wonderfully complicated orbit about our fair world, and a discerning eye can tell the difference in its size from one lunation to the next. This means the apparent size of the Moon can vary from 29.3’ to 34.1’ — a difference of almost 5’ — from perigee to apogee. And that’s not taking into account the rising “Moon illusion,” which is actually a variation of an optical effect known as the Ponzo Illusion. And besides, the Moon is actually more distant when its on the local horizon than overhead, to the tune of about one Earth radius.
Like its bizarro cousin the “minimoon” and the Blue Moon (not the beer), the Supermoon will probably now forever be part of the informal astronomical lexicon. And just like recent years before 2014, astronomers will soon receive gushing platitudes during next month’s Full Moon from friends/relatives/random people on Twitter about how this was “the biggest Full Moon ever!!!”
Does the summer trio of Full Moons look bigger to you than any other time of year? It will be tough to tell the difference visually over the next three Full Moons. Perhaps a capture of the July, August and September Full Moons might just tease out the very slight difference between the three.
And for those preferring not to buy in to the annual Supermoon hype, the names for the July, August and September Full Moons are the Buck, Sturgeon and Corn Moon, respectively. And of course, the September Full Moon near the Equinox is also popularly known as the Harvest Moon.
And in case you’re wondering, or just looking to mark your calendar for the next annual “largest Full Moon(s) of all time,” here’s our nifty table of Supermoons through 2020, as reckoned by our handy definition of a Full Moon falling within 24 hours of perigee.
So what do you say? Let ‘em come for the hype, and stay for the science. Let’s take back the Supermoon.
While Hurricane Arthur was still a hurricane, the new Global Precipitation Measurement (GPM) Core Observatory flew over the storm last week and captured its structure in 3-D. This was a good test of the new satellite, which is supposed to help NASA track these Atlantic storms to better precision than before.
The joint NASA-Japanese Aerospace Exploration Agency mission allowed researchers to do better forecasting because they could track the precipitation to 1,000 feet vertically and three miles horizontally (305 meters and five kilometers).
“Hurricane features pop out more. They’re sharper, there’s more clarity to the structures,” stated NASA Goddard hurricane researcher Scott Braun. “Being able to see the structures more clearly may allow for better determination of the structure of the eye wall and rainbands, thereby providing clues about the likelihood of a storm intensifying or weakening.”
Wow! Even from interstellar space, the plucky Voyager 1 can still listen in to activities from our Sun. Whenever the Sun has a large amount of activity, the waves of energy it sends out bashes into the charged gas particles or plasma surrounding the NASA spacecraft, which has been sailing away from Earth since 1977.
There have been three events so far from our Sun (which is in solar maximum), with each one confirming scientists’ findings that interstellar space is where the spacecraft is, NASA said.
“Normally, interstellar space is like a quiet lake,” stated Voyager project scientist Ed Stone of the California Institute of Technology. “But when our sun has a burst, it sends a shock wave outward that reaches Voyager about a year later. The wave causes the plasma surrounding the spacecraft to sing.”
“The tsunami wave rings the plasma like a bell,” added Stone. “While the plasma wave instrument lets us measure the frequency of this ringing, the cosmic ray instrument reveals what struck the bell — the shock wave from the Sun.”
The discovery of this wave front confirms the previous assertion that Voyager 1 is indeed in interstellar space, NASA added. Winds from the sun push against the plasma at the edge of interstellar space, making it denser (40 times denser than what was measured before Voyager reached the milestone in 2012, in fact.)
NASA’s announcement in 2013 that Voyager 1 is in interstellar space was accompanied by intense discussion about whether it is in or out of the Solar System (it still hasn’t reached the shell of the Oort Cloud that hosts comets, a milestone that won’t be possible for 300 years). Prior to the announcement, several scientific papers had also weighed in on Voyager 1’s status, with some saying it was interstellar space and some not.
Has it been three years already? The last mission of the space shuttle program launched on this day in 2011. We’ve included some of the most beautiful NASA images from the final flight of Atlantis.
But we’re also interested in publishing photos from Universe Today readers! If you attended STS-135 or any other launch of the space shuttle program, we’d like to hear from you. More details below the jump.
The mission’s major goal was to heft a multipurpose logistics module into space, as well as a bunch of spare parts that would be difficult to ship after the space shuttle retired. But it also served as a point of remembrance for the thousands of workers who constructed and maintained the shuttle, and the millions of people who watched its flights.
Where were you during that flight? What pictures did you take? Let us know in the comments and if you’d like to see your images published in a future Universe Today story, share your photos in our Flickr group. The photos must belong to you and be free to share. While this story focuses on STS-135, pictures from any shuttle launch or event are welcome. Let us know which one it was!
To kick off the memories, I’ll talk about where I was during the launch: I was on my way to a wedding in Toronto, Canada — five hours away from my hometown of Ottawa. I managed to pull into a parking lot just a few minutes before the launch sequence started.
I tried and tried to get a steady signal for video, but my phone was having none of it, so I instead “watched” the launch on Twitter. Luckily for me, friends were tweeting and sending text updates from watching television or in person, so I didn’t miss a thing. Then a couple of days later, my best friend and I both watched the NASA launch video together for the first time.
NASA WALLOPS FLIGHT FACILITY, VA – The long delayed liftoff of an Orbital Sciences Corp. commercial Antares rocket on a cargo mission bound for the International Space Station (ISS) has been cleared for blastoff this Friday, July 11, from the Eastern shore of Virginia, following a thorough re-inspection of the two Russian built and US modified AJ26 engines that power the rocket’s first stage after the test failure of a different engine in May.
The critically important Aerojet Rocketdyne AJ26 engine re-inspection was mandated following the significant failure of another AJ26 engine during acceptance testing on May 22 at NASA’s Stennis Space Center in Mississippi to investigate any concerns and insure against an in flight failure.
NASA and Orbital Sciences are now targeting the Antares launch carrying the privately developed Cygnus resupply freighter on the Orb-2 mission from Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) at NASA’s Wallops Flight Facility, Virginia, on July 11 at 1:40 p.m. (EDT).
Universe Today was granted a visit to the Orbital Sciences Antares rocket integration facility at NASA Wallops recently as the engine re-inspection work was winding down. See my Antares/Cygnus Orb-2 rocket photos herein.
Aerojet engineers re-inspected the engines while they were still mated to the bottom of the Antares rocket and found them to be satisfactory for fight. No swap out was required.
The Cygnus cargo logistics spacecraft was then mated to the rocket on July 3 and will be rolled out to the Wallops launch pad on Wednesday morning at 8:30 a.m., July 9.
Late stow items including time sensitive science experiments will be packed aboard on Tuesday, July 8.
The launch window on July 11 opens at 1:40 p.m. for a duration of 5 minutes.
In the event of a delay for any reason the next available launch opportunity is July 12 at 1:14 p.m.
Until the first stage engine failure, this Antares rocket had been slated to blastoff on June 10 with the Cygnus cargo freighter on the Orb-2 mission which is the second of eight cargo resupply missions to the ISS under Orbital’s Commercial Resupply Services (CRS) contract with NASA.
The AJ26 rocket engine that failed in May was extensively damaged about halfway through the planned test aimed at qualifying the engine for an Antares flight scheduled for early next year.
“There was a test failure at Stennis on May 22,” Orbital Sciences spokesman Barry Beneski told Universe Today at that time. “Engineers are examining data to determine the cause of the failure.”
The failure occurred approximately 30 seconds into the planned 54-second test.
“It terminated prematurely, resulting in extensive damage to the engine,” Orbital said in a statement in May.
The pressurized Cygnus spacecraft will deliver 1,657 kg of cargo to the ISS including science experiments and instruments, crew supplies, food, water, computer equipment, spacewalk tools and student research experiments.
Cygnus will remain berthed at the station for 40 days.
For the return to Earth it will be loaded with approximately 1,346 kg of material for disposal upon atmospheric reentry.
The two stage Antares rocket stands 133 feet tall.
It takes about 10 minutes from launch until separation of Cygnus from the Antares vehicle.
Flight time to the ISS is approximately 3 days. An on time launch will result in Cygnus arrival at the ISS on July 15.
Station commander Steven Swanson of NASA and Flight Engineer Alexander Gerst of the European Space Agency (ESA) will grapple and berth Cygnus using the stations 57 foot-long robotic arm onto the Earth-facing port of the station’s Harmony module.
The Antares first stage is powered by a pair of liquid oxygen and kerosene fueled AJ26-62 engines that deliver a combined 734,000 pounds (3265 kilonewtons) of sea level thrust.
To date the AJ26 engines have performed flawlessly through a total of three Antares launches from NASA’s Wallops Flight Facility in Virginia starting in April 2013.
They measure 3.3 meters (10.9 feet) in height and weigh 1590 kg (3,500 lb.).
The AJ26 engines were originally known as the NK-33 and built during the 1960s and 1970s in the Soviet Union for their manned moon landing program.
Aerojet extensively modified, checked and tested the NK-33 engines now designated as the AJ26-62 to qualify them for use in the first stage Antares core, which is manufactured in Dnipropetrovsk, Ukraine by the Yuznoye Design Bureau and based on the Zenit launch vehicle.
Orbital Sciences was awarded a $1.9 Billion supply contract by NASA to deliver 20,000 kilograms of research experiments, crew provisions, spare parts and hardware for 8 flight to the ISS through 2016 under the Commercial Resupply Services (CRS) initiative.
The July mission marks the second operational Antares/Cygnus flight.
SpaceX has a similar resupply contract using their Falcon 9 rocket and Dragon cargo carrier and just completed their 3rd operational mission to the ISS in May.
Watch for Ken’s onsite Antares Orb-2 mission reports from NASA Wallops, VA.
Stay tuned here for Ken’s continuing ISS, OCO-2, GPM, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more Earth & Planetary science and human spaceflight news.
Learn more about Orbital Sciences Antares ISS launch on July 11 from NASA Wallops, VA, and more about SpaceX, Boeing, commercial space, NASA’s Mars missions and more at Ken’s upcoming presentations.
July 10/11: “Antares/Cygnus ISS Launch from Virginia” & “Space mission updates”; Rodeway Inn, Chincoteague, VA, evening