Where To Go After Pluto? Hubble Seeks The Next Target For New Horizons

Artist's impression of New Horizons' encounter with Pluto and Charon. Credit: NASA/Thierry Lombry

It’s going to be a really busy summer for the New Horizons team. While they’re checking out the newly awakened spacecraft to make sure it’s working properly for its close encounter with Pluto next year, NASA is already thinking about where to put it next: possibly towards a Kuiper Belt Object!

So now the Hubble Space Telescope (in Earth orbit) is scoping out icy objects beyond Pluto. Luckily for us, one of the team members — Alex Parker, a planetary astronomer at the University of California, Berkeley, provided an entertaining livetweet of the process — even through a power failure.

There’s far more to Parker’s tweets than we are indicating here; his Twitter feed also has details about the collaborators, for example, so be sure to read through the entire exchange from yesterday. The survey is led by the Southwest Research Institute’s John Spencer.

What astronomers are doing now is a “pilot observation” where the space telescope looks at a spot in the constellation Sagittarius. Controllers will try to turn the telescope at the same rate as what a KBO would be orbiting around the sun. If the method works, stars will look like streaks and the KBOs will look like “pinpoint objects”, NASA stated.

A view of the Hubble Space Telescope from inside space shuttle Atlantis on mission STS-125 in 2009. Credit: NASA
A view of the Hubble Space Telescope from inside space shuttle Atlantis on mission STS-125 in 2009. Credit: NASA

“If the test observation identifies at least two KBOs of a specified brightness it will demonstrate statistically that Hubble has a chance of finding an appropriate KBO for New Horizons to visit. At that point, an additional allotment of observing time will continue the search across a field of view roughly the angular size of the full moon,” NASA said in a press release.

The reason for this step is Hubble is a high-profile telescope, receiving a lot of requests for observing time around the world. The agency wants to ensure that the telescope is being used for the best scientific return possible. NASA also noted the search might be difficult.

“Though Hubble is powerful enough to see galaxies near the horizon of the universe, finding a KBO is a challenging needle-in-haystack search. A typical KBO along the New Horizons trajectory may be no larger than Manhattan Island and as black as charcoal,” NASA stated.

This isn’t the first time the telescope has done a pinch-hit for Plutonian science. Four new moons have been found around Pluto, a discovery that involved Hubble time. The telescope has also looked for dust rings near the dwarf planet (to do a risk analysis for New Horizons’ approach) and done a map of the surface, to help controllers figure out where to target New Horizons.

Pale White Dot: Saturn’s Moon Atlas Shines Between Gas Giant’s Rings

Saturn's moon Atlas peeks out between the rings in this Cassini shot taken Jan. 23, 2014. Credit: NASA/JPL-Caltech/Space Science Institute

See that small pixel? That’s an entire moon you’re looking at! Peeking between the rings of Saturn is the tiny saucer-shaped moon Atlas, as viewed from the Cassini spacecraft. The image is pretty, but there’s also a scientific reason to watch the planet’s many moons while moving around the rings.

“Although the sunlight at Saturn’s distance is feeble compared to that at the Earth, objects cut off from the Sun within Saturn’s shadow cool off considerably,” NASA stated.

“Scientists study how the moons around Saturn cool and warm as they enter and leave Saturn’s shadow to better understand the physical properties of Saturn’s moons.”

And if you look at Atlas close-up, it looks a little like a flying saucer! The moon is only 20 miles (32 km) across, which is a bit shy of the length of a marathon. The Voyager 1 team spotted the moon in 1980 when the spacecraft zoomed through the system. You can learn more about Saturn’s moons here.

Cassini is still in excellent health (it arrived at Saturn in 2004, and has been in space since 1997), and scientists are eagerly getting ready for when Saturn gets to its summer solstice in 2017. Among the things being looked at is a hurricane at Saturn’s north pole.

Saturn's moon Atlas. Left image: viewed from the side, at a scale of 0.6 miles (1 km) per pixel. Right image: the mid-southern latitudes, at 820 feet (250 m) per pixel. The images are composite views from the Cassini spacecraft. Credit: NASA/JPL/SSI
Saturn’s moon Atlas. Left image: viewed from the side, at a scale of 0.6 miles (1 km) per pixel. Right image: the mid-southern latitudes, at 820 feet (250 m) per pixel. The images are composite views from the Cassini spacecraft. Credit: NASA/JPL/SSI

Asteroid-Turned-Comet 2013 UQ4 Catalina Brightens: How to See it This Summer

credit

Though ISON may have fizzled in early 2014, we’ve certainly had a bevy of binocular comets to track this year. Thus far in 2014, we’ve had comets R1 Lovejoy, K1 PanSTARRS, and E2 Jacques reach binocular visibility. Now, and asteroid-turned-comet is set to put on a fine show this summer for northern hemisphere observers.

Veteran stargazer and Universe Today contributor Bob King told the tale last month of how the asteroid formerly known as 2013 UQ4 became comet 2013 UQ4 Catalina. Discovered last year on October 23rd 2013 during the routine Catalina Sky Survey searching for Near Earth Objects based outside of Tucson Arizona, this object was of little interest until early this year.

Credit:
A recent image of 2013 UQ4 Catalina from June 16th. The development of fine tail structure can be seen. Credit: A. Maury & J.G. Bosch.

As it rounded the Sun, astronomers recovered the asteroid and discovered that it had begun to sprout a fuzzy coma, a very un-asteroid-like thing to do. Then, on May 7th, Taras Prystavski and Artyom Novichonok — of Comet ISON fame — conducted observations of 2013 UQ4 and concluded that it was indeed an active comet.

credit
The orbital path of UQ4 Catalina in early July. Created using the JPL Solar System Dynamics Small Body Database Browser.

Hovering around +13th magnitude last month, newly rechristened 2013 UQ4 Catalina was a southern hemisphere object visible only from larger backyard telescopes. That should change, however, in the coming weeks if activity from this comet holds up.

Light curve
The light curve of UQ4 Catalina with current observations (dots) noted. Credit:  Seiichi Yoshida/Aerith.net.

2013 UQ4 belongs to a class of objects known as damocloids. These asteroids are named after the prototype for the class 5335 Damocles and are characterized as long-period bodies in retrograde and highly eccentric orbits. These are thought to be inactive varieties of comet nuclei, and other asteroids in the damocloid series such as C/2001 OG 108 (LONEOS) and C/2002 VQ94 (LINEAR) also turned out to be comets. Damocloids also exhibit the same orbital characteristics of that most famous inner solar system visitor of them all; Halley’s Comet.

The path of Comet 9PM 30deg north
The path of Comet UQ4 Catalina looking towards the NE at 9PM local in early July from latitude 30 degrees north. Credit: Stellarium.

The good news is, 2013 UQ4 Catalina is brightening on schedule and should be a binocular object greater than +10th magnitude by the end of June. Recent observations, including those made by Alan Hale (of comet Hale-Bopp fame) place the comet at magnitude +11.9 with a bullet. The comet is currently placed high in the east in the constellation Pisces at dawn, and will soon speed northward and vault across the sky as it crosses the ecliptic plane this week. In fact, comet 2013 UQ4 Catalina reaches perihelion on July 6th only four days before its closest approach to the Earth at 47 million kilometres distant, when it may well reach a peak magnitude of +7. At that point, the comet will have an apparent motion of about 7 degrees a day — that’s the span of a Full Moon once every 1 hour and 42 minutes — as it rises in the constellation Cepheus to the northeast at dusk in early July. A fine placement, indeed. And speaking of the Moon, our natural satellite reaches New phase later this month on June 27th, another good reason to begin searching for 2013 UQ4 Catalina now.

Here’s a list of notable events to watch out for and aid you in your quest as comet 2013 UQ4 Catalina crosses the summer sky:

June 16th: The comet crosses north of the ecliptic plane.

June 20th: The waning crescent Moon passes 3 degrees from the comet.

starry nite
The celestial path of the comet from June 16th to July 15th… Credit: Starry Night Education software.

June 29th: Crosses into the constellation of Andromeda.

July 1st: Passes less than one degree from the +2nd magnitude star Alpheratz.

July 2nd: Crosses briefly into the constellation Pegasus before passing back into Andromeda.

July 6th: The comet reaches perihelion or its closest point to the Sun at 1.081 A.U.s distant.

July 7th: Crosses into the constellation of Lacerta and passes the deep sky objects NGCs 7296, 7245, 7226.

July 8th: Crosses into the constellation Cepheus and across the galactic plane.

July 9th: Passes a degree from the Elephant Trunk open star cluster.

July 10th: Passes less than one degree from the stars Eta (magnitude +3.4) and Theta (magnitude +4.2) Cephei.

July 10th: Passes 2 degrees from the +7.8 magnitude Open Cluster NGC 6939.

July 10th: Passes closest to Earth at 0.309 A.U.s or 47 million kilometres distant.

July 11th: Crosses into the constellation Draco.

July 11th: Reaches its most northerly declination of 64 degrees.

July 12th: Photo op: the comet passes 3 degrees from the Cat’s Eye Nebula.

July 15th- August 20th
… and the path of the comet from July 15th to August 20th. Credit: Starry Night.

July 17th: The comet passes into the astronomical constellation of Boötes.

July 31st: Passes just 2 degrees from globular cluster NGC5466 (+9th magnitude) and 6 degrees from the famous globular cluster Messier 3.

From there on out, the comet drops below naked eye visibility and heads back out in its 470 year orbit around the Sun. Be sure to check out comet 2013 UQ4 Catalina this summer… what will the Earth be like next time it passes by in 2484 A.D.?

Opportunity Peers Out from ‘Pillinger Point’ – Honoring British Beagle 2 Mars Scientist Where Ancient Water Flowed

Opportunity Mars rover peers into vast Endeavour Crater from Pillinger Point mountain ridge named in honor of Colin Pillinger, the Principal Investigator for the British Beagle 2 lander built to search for life on Mars. Pillinger passed away from a brain hemorrhage on May 7, 2014. This navcam camera photo mosaic was assembled from images taken on June 5, 2014 (Sol 3684) and colorized. Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer-kenkremer.com

NASA’s decade old Opportunity rover has reached a long sought after region of aluminum-rich clay mineral outcrops at a new Endeavour crater ridge now “named ‘Pillinger Point’ after Colin Pillinger the Principal Investigator for the [British] Beagle 2 Mars lander”, Prof. Ray Arvidson, Deputy Principal Investigator for the rover, told Universe Today exclusively. See above the spectacular panoramic view from ‘Pillinger Point’ – where ancient water once flowed billions of year ago.

The Beagle 2 lander was built to search for signs of life on Mars.

The Mars Exploration Rover (MER) team named the noteworthy ridge in honor of Prof. Colin Pillinger – a British planetary scientist at the Open University in Milton Keynes, who passed away at the age of 70 on May 7, 2014.

‘Pillinger Point’ is a scientifically bountiful place possessing both clay mineral outcrops and mineral veins where “waters came up through the cracks”, Arvidson explained to me.

Since water is a prerequisite for life as we know it, this is a truly fitting tribute to name Opportunity’s current exploration site ‘Pillinger Point’ after Prof. Pillinger.

See our new photo mosaic above captured by Opportunity peering out from ‘Pillinger Point’ ridge on June 5, 2014 (Sol 3684) and showing a panoramic view around the eroded mountain ridge and into vast Endeavour crater.

The gigantic crater spans 14 miles (22 kilometers) in diameter.

See below our Opportunity 10 Year traverse map showing the location of Pillinger Point along the segmented rim of Endeavour crater.

British planetary scientist Colin Pillinger with the Beagle 2 lander.
British planetary scientist Colin Pillinger with the Beagle 2 lander.

Pillinger Point is situated south of Solander Point and Murray Ridge along the western rim of Endeavour in a region with caches of clay minerals indicative of an ancient Martian habitable zone.

For the past several months, the six wheeled robot has been trekking southwards from Solander towards the exposures of aluminum-rich clays – now named Pillinger Point- detected from orbit by the CRISM spectrometer aboard NASA’s powerful Martian ‘Spysat’ – the Mars Reconnaissance Orbiter (MRO) – while gathering context data at rock outcrops along the winding way.

“We are about 3/5 of the way along the outcrops that show an Al-OH [aluminum-hydroxl] montmorillonite [clay mineral] signature at 2.2 micrometers from CRISM along track oversampled data,” Arvidson told me.

“We have another ~160 meters to go before reaching a break in the outcrops and a broad valley.”

The rover mission scientists ultimate goal is travel even further south to ‘Cape Tribulation’ which holds a motherlode of the ‘phyllosilicate’ clay minerals based on extensive CRISM measurements accomplished earlier at Arvidson’s direction.

“The idea is to characterize the outcrops as we go and then once we reach the valley travel quickly to Cape Tribulation and the smectite valley, which is still ~2 km to the south of the present rover location,” Arvidson explained.

Mars Express and Beagle 2 were launched in 2003, the same year as NASA’s twin rovers Spirit and Opportunity, on their interplanetary voyages to help unlock the mysteries of Mars potential for supporting microbial life forms.

Pillinger was the driving force behind the British built Beagle 2 lander which flew to the Red Planet piggybacked on ESA’s Mars Express orbiter. Unfortunately Beagle 2 vanished without a trace after being deployed from the orbiter on Dec. 19, 2003 with an expected air bag assisted landing on Christmas Day, Dec. 25, 2003.

In an obituary by the BBC, Dr David Parker, the chief executive of the UK Space Agency, said that Prof. Pillinger had played a critical role in raising the profile of the British space programme and had inspired “young people to dream big dreams”.

NASA’s Opportunity Mars rover captures sweeping panoramic vista near the ridgeline of 22 km (14 mi) wide Endeavour Crater’s western rim. The center is southeastward and also clearly shows the distant rim. See the complete panorama below. This navcam panorama was stitched from images taken on May 10, 2014 (Sol 3659) and colorized. Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer-kenkremer.com
NASA’s Opportunity Mars rover captures sweeping panoramic vista near the ridgeline of 22 km (14 mi) wide Endeavour Crater’s western rim. The center is southeastward and also clearly shows the distant rim. See the complete panorama below. This navcam panorama was stitched from images taken on May 10, 2014 (Sol 3659) and colorized. Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer-kenkremer.com

During his distinguished career Pillinger also analyzed lunar rock samples from NASA’s Apollo moon landing missions and worked on ESA’s Rosetta mission.

“It’s important to note that Colin’s contribution to planetary science goes back to working on Moon samples from Apollo, as well as his work on meteorites,” Dr Parker told the BBC.

Today, June 16, marks Opportunity’s 3696th Sol or Martian Day roving Mars – compared to a warranty of just 90 Sols.

So far she has snapped over 193,400 amazing images on the first overland expedition across the Red Planet.

Her total odometry stands at over 24.51 miles (39.44 kilometers) since touchdown on Jan. 24, 2004 at Meridiani Planum.

NASA’s Opportunity Mars rover captures sweeping panoramic vista near the ridgeline of 22 km (14 mi) wide Endeavour Crater's western rim. The center is southeastward and the distant rim is visible in the center. An outcrop area targeted for the rover to study is at right of ridge.  This navcam panorama was stitched from images taken on May 10, 2014 (Sol 3659) and colorized.  Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer-kenkremer.com
NASA’s Opportunity Mars rover captures sweeping panoramic vista near the ridgeline of 22 km (14 mi) wide Endeavour Crater’s western rim. The center is southeastward and the distant rim is visible in the center. An outcrop area targeted for the rover to study is at right of ridge. This navcam panorama was stitched from images taken on May 10, 2014 (Sol 3659) and colorized. Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer-kenkremer.com

Meanwhile on the opposite side of Mars, Opportunity’s younger sister rover Curiosity is trekking towards gigantic Mount Sharp after drilling into her 3rd Red Planet rock at Kimberley.

Stay tuned here for Ken’s continuing Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more planetary and human spaceflight news.

Ken Kremer

Traverse Map for NASA’s Opportunity rover from 2004 to 2014 - A Decade on Mars. This map shows the entire path the rover has driven during a decade on Mars and over 3692 Sols, or Martian days, since landing inside Eagle Crater on Jan 24, 2004 to current location along Pillinger Point ridge south of Solander Point summit at the western rim of Endeavour Crater and heading to clay minerals at Cape Tribulation.  Opportunity discovered clay minerals at Esperance - indicative of a habitable zone.  Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer
Traverse Map for NASA’s Opportunity rover from 2004 to 2014 – A Decade on Mars
This map shows the entire path the rover has driven during a decade on Mars and over 3692 Sols, or Martian days, since landing inside Eagle Crater on Jan 24, 2004 to current location along Pillinger Point ridge south of Solander Point summit at the western rim of Endeavour Crater and heading to clay minerals at Cape Tribulation. Opportunity discovered clay minerals at Esperance – indicative of a habitable zone. Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer

Astronomy Cast Ep. 349: Mercury 7 – How the US picked the First Astronauts

Before the Apollo Program, there was the Gemini Program, and before Gemini came the Mercury Program. 7 elite astronauts chosen from a pool of military test pilots. How did NASA choose these original 7 men?

Visit the Astronomy Cast Page to subscribe to the audio podcast!

We record Astronomy Cast as a live Google+ Hangout on Air every Monday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch here on Universe Today or from the Astronomy Cast Google+ page.

Watch the Rise and Fall of a Towering Inferno on the Sun

A solar prominence imaged on May 27, 2014. Earth and Moon are shown to scale at the bottom. (NASA/SDO)

Caught on camera by NASA’s Solar Dynamics Observatory, a prominence blazes hundreds of thousands of miles out from the Sun’s surface (i.e., photosphere) on May 27, 2014. The image above, seen in extreme ultraviolet wavelengths, shows a brief snapshot of the event with the column of solar plasma stretching nearly as far as the distance between Earth and the Moon.

Watch a video of the event below:

The video covers a span of about two hours.

Although it might look fiery in these images, a prominence isn’t flame — it’s powered by rising magnetic fields trapping and carrying the Sun’s superheated material up into the corona. And while this may not have been a unique or unusual event — or even particularly long-lived — it’s still an impressive reminder of the immense scale and energy of our home star!

Credit: NASA/SDO

Gaia Space Telescope Team Battles ‘Stray Light’ Problems At Start Of Mission

Artist's conception of the Gaia telescope backdropped by a photograph of the Milky Way taken at the European Southern Observatory. Credit: ESA/ATG medialab; background: ESO/S. Brunier

Europe’s powerful Milky Way mapper is facing some problems as controllers ready the Gaia telescope for operations. It turns out that there is “stray light” bleeding into the telescope, which will affect how well it can see the stars around it. Also, the telescope optics are also not transmitting as efficiently as the design predicted.

Controllers emphasize the light problem would only affect the faintest visible stars, and that tests are ongoing to minimize the impact on the mission. Still, there will be some effect on how well Gaia can map the stars around it due to this issue.

“While there will likely be some loss relative to Gaia’s pre-launch performance predictions, we already know that the scientific return from the mission will still be immense, revolutionizing our understanding of the formation and evolution of our Milky Way galaxy and much else,” wrote the Gaia project team in a blog post.

Both of these problems have been known publicly since April, and the team has been working hard in recent months to pinpoint the cause. Of the two of them, it appears the team is having the most success with the optics transmission problems. They have traced the issue to water vapor in the telescope that freezes (no surprise since Gaia operates between -100 degrees Celsius and -150 Celsius, or -148 Fahrenheit and -238 Fahrenheit.)

Soyuz VS06, with Gaia space observatory, lifted off  from Europe's Spaceport, French Guiana, on 19 December 2013. (ESA–S. Corvaja)
Soyuz VS06, with Gaia space observatory, lifted off from Europe’s Spaceport, French Guiana, on 19 December 2013. (ESA–S. Corvaja)

The team turned on heaters on Gaia (on its mirrors and focal plane) to get rid of the ice before turning the temperature back down so the telescope can do its work. While some ice was anticipated (that’s why the heaters were there) there was more than expected. The spacecraft is also expected to equalize its internal pressure over time, sending out gases that again, could freeze and cause interference, so more of these “decontamination” procedures are expected.

The stray light problem is proving to be more stubborn. The light waves from sunlight and brighter sources of light in the sky are likely moving around the sunshield and bleeding into the telescope optics, which was unexpected (but the team is now trying to model and explain.)

Perhaps it was more ice. The challenge is, there were no heaters placed into the thermal tent area that could be responsible for the issue, so the team at first considered moving the position of Gaia to have sunlight strike that area and melt the ice.

GAIA Telescope Array - Credit: ESA
GAIA Telescope Array – Credit: ESA

 

Simulations showed no safety problems with the idea, but “there is currently no plan to do so,” the team wrote. That’s because some tests on ground equipment in European laboratories didn’t show any strong evidence for or against layers of ice interfering with the stray light. So there didn’t seem to be much point to doing the procedure.

So instead, the idea is to do “modified observing strategies” to collect the data and then tweaking the software on the spacecraft and on the ground to “best optimize the data we will collect,” Gaia managers wrote.

“The stray light is variable across Gaia’s focal plane and variable with time, and has a different effect on each of Gaia’s science instruments and the corresponding science goals. Thus, it is not easy to characterise its impact in a simple way,” they added. They predict, however, that a star at magnitude 20 (the limit of Gaia’s powers) would see its positional accuracy mapping reduced by about 50%, while stars that are brighter would have less impact.

A diagram of the Gaia telescope payload (largest size available). Credit: European Space Agency
A diagram of the Gaia telescope payload (largest size available). Credit: European Space Agency

“It is important to realize that for many of Gaia’s science goals, it is these relatively brighter stars and their much higher accuracy positions that are critical, and so it is good to see that they are essentially unaffected. Also, the total number of stars detected and measured will remain unchanged,” the managers added.

The team is also tracking a smaller issue with a system that is supposed to measure the angle of separation between the two telescopes of Gaia. It’s needed to measure how small changes in temperature affect the angle between the telescopes. While the system is just fine, the angle is varying more than expected, and more work will be needed to figure out what to do next.

But nevertheless, Gaia is just about ready to start a science session that will last about a month. The team expects to have a better handle on what the telescope is capable of, and how to work with these issues, after that time. Gaia operates about 1.5 million km (932,000 miles) away from Earth in a gravitationally stable point in space known as L2, so it’s a bit too far for a house call such as what we were used to with the Hubble Space Telescope.

Source: European Space Agency

How Much of the Universe is Black Holes?

How Much of the Universe is Black Holes?

We all fear black holes, but how many of them are there out there, really? Between the stellar mass black holes and the supermassive ones, just how much of our Universe is black holes?

There are two kinds of black holes in the Universe that we know of: There’s stellar mass black holes, formed from massive stars, and a supermassive black holes which lives at the hearts of galaxies.

About 1 in a 1000 stars have enough mass to become a black hole when they die. Our Milky Way has 100 billion stars, this means it could have up to 100 million stellar mass black holes. As there are hundreds of billions of galaxies in the observable Universe, there are lots, lots more out there. In fact, the math suggests there’s a new black hole forming every second or so. So just to recap, the entire Universe is about 1/1000th “regular flavor” stellar mass black holes.

Supermassive black holes are a slightly different story. Our central galactic black hole is about 26,000 light years away from us. Formally, it’s called Sagittarius A-star, but for our purposes I’m going to call it Kevin. Just so you know they don’t throw that term “supermassive” around for no reason, Kevin contains 4.1 million times the mass of the Sun.

Kevin is gigantic and horrible. We can only imagine what it’s like to be in the region of space near Kevin. What percentage of the galaxy do you think Kevin makes up, mass wise?

Kevin, whilst absolutely super-massive, is a tiny, tiny 1/10,000 of a percent of the Milky Way galaxy’s mass. So, to be precise, if we add Kevin’s mass to the mass of all the stellar mass black holes aka. “mini-Kevins”, we get a very minor 11/10000s of a %.

As it turns out this ratio holds up on a Universal scale and is approximately the same for all the mass in the Universe. So, 11 ten thousandths of a percent is the answer to the question. As far as we know.

Unless… dark matter is black holes. Dark matter accounts for more than ¾ of the mass of the Universe. It doesn’t absorb light or interact with matter in any way. We’re only aware of its presence through its gravitational influence.

Artistic view of a radiating black hole.  Credit: NASA
Artistic view of a radiating black hole. Credit: NASA

As it turns out, Astronomers think that one explanation for dark matter might be primordial black holes. These microscopic black holes would have the mass of an asteroid or more and could only form in the high pressure, high temperature conditions after the Big Bang.

Experiments to search for primordial black holes have yet to turn up any evidence, and most scientists don’t think they’re a viable explanation. But if they were, then the Universe is almost entirely composed of the physics inspired nightmare that are black holes.

If it’s not the case now, in the far future, everything could be. Given enough time, all those stellar black holes and supermassive Kevins will scoop up all the available material in the Universe.

In 10 quintillion years everything in the Universe will have either fallen into a black hole, or been flung out on an escape trajectory. And then those black holes will slowly evaporate over time, as predicted by Stephen Hawking.

In 10^66 years the smallest stellar black holes will have evaporated. The most massive supermassive black holes could take 10^100 years. And then, there won’t be any black holes at all.

What do you think? Is it mostly black holes or almost no black holes? Tell us what you suspect in the comments below.

New Recipe For Saturn’s Orangey Moon Titan Is ‘Aromatic’ And Hazy

A fish-eye view of Titan's surface from the European Space Agency's Huygens lander in January 2005. Credit: ESA/NASA/JPL/University of Arizona

What’s in all that browny orangey stuff in the atmosphere around Titan? It’s a question that scientists have been trying to answer concerning Saturn’s moon for decades (Carl Sagan was among them). That’s because it’s hard to reverse-engineer the recipe.

There are hundreds of thousands of hydrocarbons (hydrogen and carbon molecules) that could form the compounds in the atmosphere along with nitriles (nitrogen-abundant chemicals). But scientists are hoping that their new recipe gets a bit closer to understanding how the atmosphere works.

The researchers put gases inside of a chamber and monitored their reactions, starting with nitrogen and methane — the gases that are the most common in Titan’s atmosphere. Then they included benzene — which the Cassini spacecraft has detected in the atmosphere — along with close chemical relatives.

Titan's surface is almost completely hidden from view by its thick orange "smog" (NASA/JPL-Caltech/SSI. Composite by J. Major)
Titan’s surface is almost completely hidden from view by its thick orange “smog” (NASA/JPL-Caltech/SSI. Composite by J. Major)

In the end, it seemed the best third ingredient was choosing an “aromatic”, a sort of hydrocarbon, that includes nitrogen. That’s because the scientists saw that the spectrum of this gas appeared to be similar to what was spotted by Cassini.

“This is the closest anyone has come, to our knowledge, to recreating with lab experiments this particular feature seen in the Cassini data,” stated lead author Joshua Sebree, a former postdoctoral fellow at the NASA Goddard Space Flight Center who is now an assistant professor at the University of Northern Iowa in Cedar Falls.

Scientists say the recipe still needs some modifications, but this is a good start. The research is available in the journal Icarus.

Source: Jet Propulsion Laboratory

‘Weird’ Dust Ring Baffles In Cloud That Will Give Birth To Giant Stars

A picture of NGC 7538 from data taken by the Herschel Space Observatory. Credit: ESA/NASA/JPL-Caltech/Whitman College

Long after telescopes cease operating, their bounty of scientific data continues to amaze. Here’s an example of that: this Herschel Space Telescope image of this dust and gas cloud about 8,000 light-years away.

The examination of NGC 7358 revealed a “weird” dusty ring in the cloud — nobody quite knows how it got there — as well as a baker’s dozen of huge dust clumps that could one day form gigantic stars.

“The 13 clumps spotted in NGC 7358, some of which lie along the edge of the mystery ring, all are more than 40 times more massive than the sun,” NASA stated.

“The clumps gravitationally collapse in on themselves, growing denser and hotter in their cores until nuclear fusion ignites and a star is born. For now, early in the star-formation process, the clumps remain quite cold, just a few tens of degrees above absolute zero. At these temperatures, the clumps emit the bulk of their radiation in the low-energy, submillimeter and infrared light that Herschel was specifically designed to detect.”

Artist's impression of the Herschel Space Telescope. Credit: ESA/AOES Medialab/NASA/ESA/STScI
Artist’s impression of the Herschel Space Telescope. Credit: ESA/AOES Medialab/NASA/ESA/STScI

More observations are planned to learn about the nature of the dusty ring. So far, astronomers can say it is 35 light-years at its longest axis, 25 light-years at its shortest-axis, and has a mass of about 500 times of the sun. The astronomers took a look at it with the James Clerk Maxwell Telescope in Hawaii to gain some more information.

“Astronomers often see ring and bubble-like structures in cosmic dust clouds,” NASA added.” The strong winds cast out by the most massive stars, called O-type stars, can generate these expanding puffs, as can their explosive deaths as supernovas. But no energetic source or remnant of a deceased O-type star, such as a neutron star, is apparent within the center of this ring. It is possible that a big star blew the bubble and, because stars are all in motion, subsequently left the scene, escaping detection.”

While the research was published in the Astrophysical Journal about a year ago, the image appears to be a new entry on NASA’s and Herschel’s websites. You can also read the paper (led by Cassandra Fallscheer, a visiting assistant professor of astronomy at Whitman College in Walla Walla, Washington) in preprint version on Arxiv.

The Herschel telescope was shut down almost exactly a year ago after the liquid helium that cooled its instruments ran out.

Source: Jet Propulsion Laboratory