It’s oft-repeated that black holes are powerful gravity wells, because they represent a dense concentration of matter in one location. But what about their magnetic fields? A new study suggests that this force could be at least as strong as gravity in supermassive black holes, the singularities that lurk in the center of many galaxies.
Simulations of magnetic fields of gas falling into these beasts suggest that this action — if the gas carries a magnetic field — makes the field stronger until it equals gravity.
Magnetic fields can affect properties such as how luminous black holes appear (in radio) and how powerful the jets emanating from the singularity are. The scientists speculate that when you see bright jets from a black hole, this could imply a strong magnetic field indeed.
“Surprisingly, the magnetic field strength around these exotic objects is comparable to the magnetic field produced in something more familiar: a magnetic resonance imaging (MRI) machine that you can find in your local hospital,” the Max Planck Institute for Radio Astronomy stated.
“Both supermassive black holes and MRI machines produce magnetic fields that are roughly 10,000 times stronger than the Earth’s surface magnetic field, which is what guides an ordinary compass.”
New information on how strong the magnetic fields was based on recent work with the Very Long Baseline Array, a networked group of radio telescopes in the United States. Specifically, the information came from a program named MOJAVE (Monitoring Of Jets in Active galactic nuclei with VLBA Experiments) that looks at jets around several hundred supermassive black holes.
The researchers emphasized that more observational research will be needed to supplement the simulations. The work will be published today in Nature. Leading the research was Mohammad Zamaninasab, a past researcher at Max Planck.
Now, chalk up two more worlds for a famous red dwarf star in our own galactic neck of the woods. An international team of astronomers including five researchers from the Carnegie Institution announced the discovery this week of two exoplanets orbiting Kapteyn’s Star, about 13 light years distant. The discovery was made utilizing data from the HIRES spectrometer at the Keck Observatory in Hawaii, as well as the Planet Finding Spectrometer at the Magellan/Las Campanas Observatory and the European Southern Observatory’s La Silla facility, both located in Chile.
The Carnegie Institution astronomers involved in the discovery were Pamela Arriagada, Ian Thompson, Jeff Crane, Steve Shectman, and Paul Butler. The planets were discerned using radial velocity measurements, a planet-hunting technique which looks for tiny periodic changes in the motion of a star caused by the gravitational tugging of an unseen companion.
“That we can make such precise measurements of such subtle effects is a real technological marvel,” said Jeff Crane of the Carnegie Observatories.
Kapteyn’s Star (pronounced Kapt-I-ne’s Star) was discovered by Dutch astronomer Jacobus Kapteyn during a photographic survey of the southern hemisphere sky in 1898. At the time, it had the highest proper motion of any star known at over 8” arc seconds a year — Kapteyn’s Star moves the diameter of a Full Moon across the sky every 225 years — and held this distinction until the discovery of Barnard’s Star in 1916. About a third the mass of our Sun, Kapteyn’s Star is an M-type red dwarf and is the closest halo star to our own solar system. Such stars are thought to be remnants of an ancient elliptical galaxy that was shredded and subsequently absorbed by our own Milky Way galaxy early on in its history. Its high relative velocity and retrograde orbit identify Kapteyn’s Star as a member of a remnant moving group of stars, the core of which may have been the glorious Omega Centauri star cluster.
The worlds of Kapteyn’s Star are proving to be curious in their own right as well.
“We were surprised to find planets orbiting Kapteyn’s Star,” said lead author Dr. Guillem Anglada-Escude, a former Carnegie post-doc now with the Queen Mary University at London. “Previous data showed some irregular motion, so we were looking for very short period planets when the new signals showed up loud and clear.”
It’s curious that nearby stars such as Kapteyn’s, Teegarden’s and Barnard’s star, though the site of many early controversial claims of exoplanets pre-1990’s, have never joined the ranks of known worlds which currently sits at 1,794 and counting until the discoveries of Kapteyn B and C. Kapteyn’s star is the 25th closest to our own and is located in the southern constellation Pictor. And if the name sounds familiar, that’s because it made our recent list of red dwarf stars for backyard telescopes. Shining at magnitude +8.9, Kapteyn’s star is visible from latitude 40 degrees north southward.
Kapteyn B and C are both suspected to be rocky super-Earths, at a minimum mass of 4.5 and 7 times that of Earth respectively. Kapteyn B orbits its primary once every 48.6 days at 0.168 A.U.s distant (about 40% of Mercury’s distance from our Sun) and Kapteyn C orbits once every 122 days at 0.3 A.U.s distant.
This is really intriguing, as Kapteyn B sits in the habitable zone of its host star. Though cooler than our Sun, the habitable zone of a red dwarf sits much closer in than what we enjoy in our own solar system. And although such worlds may have to contend with world-sterilizing flares, recent studies suggest that atmospheric convection coupled with tidal locking may allow for liquid water to exist on such worlds inside the “snow line”.
And add to this the fact that Kapteyn’s Star is estimated to be 11.5 billion years old, compared with the age of the universe at 13.7 billion years and our own Sun at 4.6 billion years. Miserly red dwarfs measure their future life spans in the trillions of years, far older than the present age of the universe.
“Finding a stable planetary system with a potentially habitable planet orbiting one of the very nearest stars in the sky is mind blowing,” said second author and Carnegie postdoctoral researcher Pamela Arriagada. “This is one more piece of evidence that nearly all stars have planets, and that potentially habitable planets in our galaxy are as common as grains of sand on the beach.”
Of course, radial velocity measurements only give you lower mass constraints, as we don’t know the inclination of the orbits of the planets with respect to our line of sight. Still, this exciting discovery could potentially rank as the oldest habitable super-Earth yet discovered, and would make a great follow-up target for the direct imaging efforts or the TESS space telescope set to launch in 2017.
“It does make you wonder what kind of life could have evolved on those planets over such a long time,” added Dr Anglada-Escude. And certainly, the worlds of Kapteyn’s Star have had a much longer span of time for evolution to have taken hold than Earth… an exciting prospect, indeed!
-Read author Alastair Reynolds’ short science fiction piece Sad Kapteyn accompanying this week’s announcement.
We all remember the lightsaber fight from Star Wars: A New Hope, yes? So you might be surprised to learn the iconic word was only uttered once in the first film of the franchise.
This revelation comes after an intrepid soul (Tom Murphy) assembled all the English dialog of the movie in the video above, which he calls ARST ARSW. “This is the Special Edition to troll Han-shot-first purists. Everyone knows the orig is the most legit,” he wrote on YouTube.
If you can make it through all 43 minutes, the Force is indeed strong with you.
Some other fun facts, from a quick browse of the contents:
“Doomed” appears twice (guess C-3PO was feeling optimistic)
“Force” appears 22 times
“Father” appears 12 times
“Hyperspace” appears four times
“Leader” appears 13 times (especially in the X-wing scenes)
“Jabba” appears 9 times
“Luke” appears 57 times
“Obi-Wan” appears 20 times and “Ben” 11 times
“Princess” appears 12 times and “Leia” three times
“Reward” appears six times (remember, that’s what Han Solo wants) and “rich” three times
In any galaxy there are hundreds of X-ray binaries: systems consisting of a black hole capturing and heating material from a relatively low-mass orbiting companion star. But high-mass X-ray binaries — systems consisting of a black hole and an extremely high-mass companion star — are hard to come by. In the Milky Way there’s only one: Cygnus X-1. But 30 million light-years away in the Whirlpool galaxy, M51, there are a full 10 high-mass X-ray binaries.
Nearly a million seconds of observing time with NASA’s Chandra X-ray Observatory has revealed these specks. “This is the deepest, high-resolution exposure of the full disk of any spiral galaxy that’s ever been taken in the X-ray,” said Roy Kilgard, from Wesleyan University, at a talk presented at the American Astronomical Society meeting today in Boston. “It’s a remarkably rich data set.”
Within the image there are 450 X-ray points of light, 10 of which are likely X-ray binaries.
The Whilpool galaxy is thought to have so many X-ray binaries because it’s in the process of colliding with a smaller companion galaxy. This interaction triggers waves of star formation, creating new stars at a rate seven times faster than the Milky Way and supernova deaths at a rate 10-100 times faster. The more-massive stars simply race through their evolution in a few million years and collapse to form neutron stars or black holes quickly.
“In this image, there’s a very strong correlation between the fuzzy purple stuff, which is hot gas in the X-ray, and the fuzzy red stuff, which is hydrogen gas in the optical,” said Kilgard. “Both of these are tracing the star formation very actively. You can see it really enhanced in the northern arm that approaches the companion galaxy.”
Eight of the 10 X-ray binaries are located close to star forming regions.
Chandra is providing astronomers with an in depth look at a class of objects that has only one example in the Milky Way.
“We’re catching them at a short window in their evolutionary cycle,” said Kilgard. “The massive star that formed the black hole has died, and the massive star that is accreting material onto the black hole has not yet died. The window at which these objects are X-ray bright is really short. It’s maybe only tens of thousands of years.”
It’s perhaps one of the most famous images in astronomy. The Hubble Ultra Deep Field displays nearly 10,000 galaxies across the observable Universe in both visible and near-infrared light. The smallest, reddest galaxies are among the youngest known, existing when the Universe was just 800 million years old.
But now, with the addition of ultraviolet light the renowned image is even better than ever.
“We’ve taken new observations with the Hubble Space Telescope and made a new image of this very famous region of the sky — the Hubble Ultra Deep Field — which gives us one of the most comprehensive pictures of galaxy evolution ever obtained,” said Harry Teplitz from Caltech, in a talk presented at the American Astronomical Society meeting in Boston today.
The image has undoubtedly captured the minds of amateurs and provided astronomers with a wealth of data, from which to study galaxies in their most primitive stages.
But there was a caveat: without ultraviolet light, which tells us about the youngest and hottest stars, there was a significant gap in our understanding of these forming galaxies. Between 5 and 10 billion light-years away from us — corresponding to a time period when most of the stars in the Universe were born — we were left in the dark.
Compare the new image to an older version:
Now, with the addition of ultraviolet data to the Hubble Ultra Deep Field, astronomers can see unobscured regions of star formation throughout this time period. It will help us understand how galaxies grew in size from small collections of very hot stars — now visible across the observable Universe — to the elegant structures we see today.
Here’s a ‘pan and zoom’ video version of the new image:
For more information on the new and improved Ultra Deep Field, check out the HubbleSite.
Shock waves! Fast-moving particles! Magnetic fields! This image has it all. Behold the merging galaxy clusters MACS J0717+3745 about five billion light-years from our planet.
That funny red thing you see in the center is new data from the Karl G. Jansky Very Large Array showing a spot where “shocks caused by the collisions are accelerating particles that then interact with magnetic fields and emit the radio waves,” officials at the National Radio Astronomical Observatory stated.
“The complex shape of this region is unique; we’ve never spotted anything like this before,” stated Reinout van Weeren, an Einstein Fellow at the Harvard-Smithsonian Center for Astrophysics. “The shape probably is the result of the multiple ongoing collisions.”
This is a composite image of new exposures from VLA and the Chandra X-Ray Observatory, with an older image from the Hubble Space Telescope. And if you take a second look, there’s also a black hole: “The straight, elongated radio-emitting object is a foreground galaxy whose central black hole is accelerating jets of particles in two directions,” NRAO added. “The red object at bottom-left is a radio galaxy that probably is falling into the cluster.”
Astronomers presented their findings at the American Astronomical Society meeting this week in Boston.
In five decades of spacewalks, we challenge you to find a set of photos that more fully represents the potential of the tumbling gymnastics you can do during a spacewalk.
NASA astronaut Ed White stepped out of his Gemini 4 spacecraft 49 years ago today, equipped in a spacesuit and attached to his spacecraft by nothing more than a tether. These incredible pictures (taken by commander Jim McDivitt) give a sense of how White moved around, propelled by a small maneuvering unit in his hand.
After about 20 minutes of orbital exercises, White was ordered back to the spacecraft. “It’s the saddest moment of my life,” he said. In a NASA oral history interview in 1999, McDivitt later recalled the trouble they had getting him back inside:
I was kind of anxious to have him get back inside the spacecraft, because I’d like to do this in the daylight, not in the dark. But by the time he got back in, it was dark. So, when we went to close the hatch, it wouldn’t close. It wouldn’t lock. And so, in the dark I was trying to fiddle around over on the side where I couldn’t see anything, trying to get my glove down in this little slot to push the gears together. And finally, we got that done and got it latched.
It was the first time any American had done this — but White was not the first in the world. That honor belongs to Alexei Leonov, who pushed out of Vokshod 2 in March 1965. (The Soviet spacewalk was actually quite terrifying, as Leonov had to reduce the pressure in his spacesuit to get back inside the spacecraft.)
Even after White’s triumph, there was much to learn about spacewalking. Several astronauts in later Gemini missions struggled with doing tasks outside the spacecraft because there were not enough handholds to keep a grip in microgravity. It took until Gemini 12 for a combination of astronaut training and spacecraft design to make spacewalking a more controlled procedure — just in time for the Apollo moon program of the 1960s and 1970s.
Below the video about Gemini 4 are several more pictures of White’s adventures in space. Gemini 4 was White’s only spaceflight. He died in a launch pad fire for Apollo 1 on Jan. 27, 1967.
Some terms in astronomy definitely have a PR problem, and are perhaps due for an overhaul. One such awkward term is occultation, which simply means that one celestial body is passing in front of another from an observer’s vantage point, nothing more, and nothing less. I know, the word ‘occult’ is in there, raising many a non-astronomically minded eyebrow and evoking astronomy’s hoary astrological past. You can even use it as a verb in this sense, as in to ‘occult’ one body with another. A planet or asteroid can occult a star, your cat can occult your laptop’s screen, and the Moon can occult a star or planet, as occurs on Tuesday, June 10th when the waxing gibbous Moon occults the planet Saturn for observers across the southern Indian Ocean region.
Of course, most of us will see a near miss worldwide. This is parallax in motion, as differing vantage points on the surface of the planet Earth see the Moon against a different starry background.
And we’re currently in the midst of a cycle of occultations of the planet Saturn in 2014, as the Moon occults it 11 times this year, nearly once for every lunation. The Moon actually occults planets 22 times in 2014, 24 if you count the occultations of 1 Ceres and 4 Vesta on September 28th, with Saturn getting covered by the Moon once again on the same date! Saturn tops the list in the number of times it’s occulted by the Moon this year, as it’s the slowest moving of the planets and fails to hustle out of the Moon’s way until November, after which a series of occultations of the ringed planet won’t resume again until December 9th, 2018.
The shadow footprint of the June 10th occultation just makes landfall over southwestern Australia near Perth, a slice of Antarctica, and a scattering of southern Indian Ocean islands and the southern tip of South Africa in and around Cape Town. Note that the phase of the Moon is changing by about 30 degrees of ecliptic longitude as well during each successive occultation of Saturn. Next week’s event occurs as the Moon is at a 93% waxing gibbous illuminated phase this month and soon will occur when the Moon is a crescent. What’s especially interesting is the dark limb of the Moon is always the leading edge during waxing phases; this means that any stars or planets in its way get hidden (or ingress) under its shady nighttime edge.
Central conjunction for Saturn and the Moon actually occurs at around 19:00 Universal Time on June 10th. The Moon rises at around 6:00 PM local on this date, and North American observers will see Saturn 4 degrees from the limb of the Moon and at an elevation of 28 degrees above the horizon at dusk. Unfortunately, the best occultation of Saturn by the Moon for North America in 2014 occurs in the daytime on August 31st, though you can indeed catch Saturn in the broad daylight through a telescope with good sky transparency if you know exactly where to look for it… a nearby daytime Moon certainly helps!
Unlike stellar occultations, blockages of planets by the Moon are leisurely events, and lend themselves to some pretty amazing video sequences. You can actually get a sense of the motion of the Moon as you watch it slowly cover the planet’s disk, in real time. It might also be fun to catch the occultation of Saturn’s brightest moon, +9th magnitude Titan. Hey, a moon occulting a moon, a sort of cosmic irony…
Saturn spends all of 2014 in the astronomical constellation of Libra. The Moon moves on to Full on Friday the 13th — triskaidekaphobics take note — at 4:13 UT/00:13 AM EDT. This is the closest Full Moon to the northward solstice which occurs on June 21st at 10:51 UT/6:51 AM EDT, meaning that while the Sun rides high in the sky during the day, the rising Full Moon transits low to the south at night. In the southern hemisphere, the reverse is true in June.
The June Full Moon is also known as per ye ole Farmer’s Almanac as the Strawberry or Rose Moon.
So there you have it, occultations were evoked no less than 21 times in the writing of this post. We need a modern, hip, internet ready meme to supplant the term occultation… y’know, like “ring of fire” for and annular eclipse or minimoon for an apogee moon, etc… blockage? Covering? Enveloping? Let us know what you think!
So you know the difference between a bat’leth and a Batmobile, or you can win any board game you get your hands on, or you can easily rhyme off 20 alien species who were in Star Wars. And whatever your nerd or geek cred skills, you’re interested in competition — in showing off what you can do and becoming the best among friends.
If this sounds like attributes similar to what you have, there’s a T.V. show out there for you. It’s called King of the Nerds and it’s casting its third season.
I had the pleasure of watching the last season closely because my former classmate at the University of North Dakota, Kayla LaFrance, participated and won!
I saw a range of colorful competitions, such as playing a modified game of Quidditch or racing go-karts around a darkened track. There were celebrity judges and appearances; as a Star Trek fan, my personal favourite was George Takei (Sulu on the original series). And there were also a disorienting set of skills among the competitors, who had knowledge of anything from space to languages to engineering to even debating skills.
While participating appears to be its own reward, the prize for the winner is a cool $100,000. If this perks your interest, the producers say that applicants should e-mail [email protected] to apply, including your name, phone number, and a brief summary of why you should be on King of the Nerds.
Eligibility is limited to U.S. residents who are 18 years of age or older, according to the Facebook page. There are eight episodes ordered for TBS and the show will air in early 2015.
(And by the way, Kayla has no idea I’m writing this article. It’ll be a surprise to her.)
Caption: Animation of SpaceX Dragon V2 astronaut transporter. Credit: SpaceX
Would you like to meet and fly aboard SpaceX’s next generation manned Dragon V2 spacecraft?
Well hop aboard for a ride, take a seat and prepare for the thrill of a lifetime to the International Space Station (ISS) and back.
Watch the cool animation above to see exactly ‘How it Works!’
Now you can experience the opening salvo in the exciting new chapter of ‘Commercial Human Spaceflight.’
The commercial crew effort is led by a trio of private American aerospace company’s (SpaceX, Boeing & Sierra Nevada) in an intimate partnership with NASA to get American’s back in space on American rockets from American Soil – rather than being totally dependent on Russian rocket technology and Soyuz capsules for astronaut rides to orbit.
“We need to have our own capability to get our crews to space. Commercial crew is really, really, really important,” NASA Administrator Charles Bolden told me in an exclusive interview.
Billionaire entrepreneur and SpaceX CEO Elon Musk let the curtain to the future drop on Thursday, May 29 to reveal his company’s new manned Dragon V2 astronaut transporter for all the world to see during a live streaming webcast direct from SpaceX’s state-of-the-art design and manufacturing facility and Headquarters in Hawthorne, CA.
And with a flair worthy of the premiere of a blockbuster Hollywood Science Fiction movie he unveiled the gum-dropped shaped Dragon V2 – and the lively animation. Although its not known if he’ll provide the crews with musical entertainment during the trip too.
As you’ll quickly notice watching the animation, the sleek styled V2 manned Dragon is a far cry ahead of the current V1 cargo Dragon.
“We wanted to take a big step in spacecraft technology. It is a big leap forward in technology and takes things to the next level,” said Musk.
The top of the V2 is equipped to open up and expose a docking probe so it’s able to dock autonomously at the ISS – and at the same port as NASA’s now retired space shuttle orbiters.
‘Catching a Dragon by the tail’- with the Canadian built robot arm as the stations astronauts like to say and berthing it at an Earth-facing port on the Harmony module, will be a thing of the past.
“No robotic arm necessary!” Musk explained.
And for departure there’s another big difference – powerful SuperDraco landing rockets for pinpoint touchdown accuracy rather than an ocean splashdown.
The animation shows a thrilling land landing back at the Kennedy Space Center launch base.
“An important characteristic of that is its ability to land anywhere on land, propulsively. It can land anywhere on Earth with the accuracy of a helicopter,” Musk said.
“I think that’s what a spaceship should be able to do.”
Musk and SpaceX are not alone aiming to get Americans back to space.
Boeing and Sierra Nevada are competing with SpaceX to build the next generation spaceship to ferry astronauts to and from the ISS by 2017 using seed money from NASA’s Commercial Crew Program in a public/private partnership.
The BoeingCST-100 and Sierra Nevada Dream Chaser ‘space taxis’ are also vying for funding in the next round of contracts to be awarded by NASA around late summer 2014.
Read my earlier “Dragon V2” unveiling event articles – here, here and here.
Enjoy!
Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.