Seen From Space! Crew’s Rocket Launch Spotted By NASA Astronaut In Orbit

The launch of Expedition 39/40's Steve Swanson, Alexander Skvortsov and Oleg Artemyev as seen from space. Picture captured by NASA's Rick Mastracchio aboard the International Space Station on March 25, 2014. Credit: Rick Mastracchio

Seriously, how cool is this picture? The International Space Station crew caught an incredible view of their three future crewmates rocketing up to meet them today around 5:17 p.m. EDT (9:17 p.m. UTC).

Expedition 39’s Rick Mastracchio (from NASA) shared this on Twitter, casually mentioning that he will expect more crewmates to arrive later today. Upon the rocket were Steve Swanson (NASA), Alexander Skvortsov (Roscosmos) and Oleg Artemyev (Roscosmos).

Check out the launch video and some NASA pictures of the activities below the jump. (Update, 10:21 p.m. EDT: One of the engine firings did not take place as planned, meaning the astronauts will not dock with the station as planned tonight. The crew is safe and doing a standard backup plan that will bring them to the station on Thursday. We will provide updates as the situation progresses.)

 

 

 

 

 

New Storms on Jupiter Look Like Mickey Mouse

A full view of Jupiter on February 25, 2014 showing several features including three storms that in combination look like Mickey Mouse. Credit and copyright: Damian Peach.

We told you this was going to be a good season to observe Jupiter, and astrophotographers in the northern hemisphere have been making the most of this time of opposition where Jupiter has been riding high in the sky. What we didn’t know was that there was going to be a familiar face staring back at us.

A combination of three storms has been noted throughout this Jupiter observing season for its resemblance to Mickey Mouse’s face (at least in outline), and astrophotographer Damian Peach has captured some great images of these storms, along with the iconic Great Red Spot, its little brother Oval BA and other turbulence. Damian has also put together a stunning movie (below) showing about three hours of rotation of the king of the planets.

Damian explained the Mickey Mouse storms are two anticyclones (high pressure regions) that form the ears while a longer elongated cyclone (low pressure) forms the face.

The abundance of storms on Jupiter are a result of the planet’s dense atmosphere of hydrogen and helium and large gravitational field. Storms on this planet are likely the strongest in the Solar System.

Jupiter reached its most northern point for 2014 at a declination of +23.3 degrees on March 11, but it’s still easily visible since it is the brightest starlike object in the evening sky.

Jupiter's Great Red Spot and the 'Mickey Mouse' storms on February 25, 2014. Credit and copyright: Damian Peach.
Jupiter’s Great Red Spot and the ‘Mickey Mouse’ storms on February 25, 2014. Credit and copyright: Damian Peach.
More images of Jupiter on February 25, 2014, with these showing the Oval BA storm, with the Mickey Mouse storms peeking around the left side. Credit and copyright: Damian Peach.
More images of Jupiter on February 25, 2014, with these showing the Oval BA storm, with the Mickey Mouse storms peeking around the left side. Credit and copyright: Damian Peach.

As David Dickinson mentioned in his article on observing Jupiter, we’re also in the midst of a plane crossing, as the orbits of the Jovian moons appear edge-on to our line of sight throughout 2014 and into early 2015.

Damian captured this great transit of Europa earlier in February:

Check out more of Damian Peach’s work at his website.

NASA Asks: Which Spacesuit Prototype Do You Prefer? Vote On Your Favorite

Three models of NASA's Z-2 suit unveiled to the public in March 2014 for people to vote on their favorite design. From left, "Biomimicry", "Technology" and "Trends In Society." Click for a larger version. Credit: NASA (Photo combination: Elizabeth Howell)

If you ever wanted to participate in spacesuit design, even in a small way, here’s your big chance. NASA is asking the public to choose which design of the futuristic Z-2 “planetary mobility” suit prototype will be used by astronauts while evaluating how well the spacesuit works.

There are three options (which you can see above), and NASA promises the winning design will be used in pool training at NASA’s Neutral Buoyancy Laboratory, the Johnson Space Center “rockyard” to simulate Mars exploration, and in vacuum tests. Outer space is not an option because of “micrometeorite, thermal and radiation protection” considerations, however.

In NASA’s words, here’s a quick summary of the prototypes:

  • Biomimicry: The “Biomimicry” design draws from an environment with many parallels to the harshness of space: the world’s oceans. Mirroring the bioluminescent qualities of aquatic creatures found at incredible depths, and the scaly skin of fish and reptiles found across the globe, this design reflects the qualities that protect some of Earth’s toughest creatures.
  • Technology: “Technology” pays homage to spacesuit achievements of the past while incorporating subtle elements of the future. By using Luminex wire and light-emitting patches, this design puts a new spin on spacewalking standards such as ways to identify crew members.
  • Trends In Society: “Trends in Society” is based off of just that: being reflective of what every day clothes may look like in the not too distant future. This suit uses electroluminescent wire and a bright color scheme to mimic the appearance of sportswear and the emerging world of wearable technologies.

The Z-2 includes several improvements over its Z-1 predecessor, which won an invention award from Time magazine in 2012. These include a “hard composite” upper torso that is intended to be more durable, better shoulder and hip joints, and boots that would be more useful on a planet.

To follow developments on the suit in detail, you can check out this page. Voting on the spacesuit designs closes at April 15, 2014 at 11:59 EDT. This is where you can vote.

Other collaborators on the design include ILC (the primary suit vendor) and Philadelphia University.

NASA Opens Doors For Asteroid Capture Ideas, Offering $6M For Possible Future Missions

An astronaut retrieves a sample from an asteroid in this artist's conception. Credit: NASA

Got some ideas about how to snag an asteroid? NASA has just announced $6 million in opportunities for its asteroid retrieval initiative, which would see astronauts explore one of these space rocks in the 2020s if the agency receives budgetary approval to go through with the idea.

First proposed in the 2014 fiscal year budget (which has yet to be approved by Congress), the agency is moving forward with the idea by getting ideas from industry about the best way to approach the asteroid, capture it, and other priority areas. Up to 25 proposals will be selected.

The announcement comes just ahead of a one-day conference to (in part) gather public ideas for the mission. For those who weren’t able to snag one of the sold-out seats, NASA is offering virtual attendance at the forum. Follow the instructions at this page and then make a note of the program schedule on Wednesday.

In NASA’s words, these are the topics that are priority areas for solicitation:

  • Asteroid capture system concepts including using deployable structures and autonomous robotic manipulators;
  • Rendezvous sensors that can be used for a wide range of mission applications including automated rendezvous and docking and asteroid characterization and proximity operations;
  • Commercial spacecraft design, manufacture, and test capabilities that could be adapted for development of the Asteroid Redirect Vehicle (ARV);
  • Studies of potential future partnership opportunities for secondary payloads on either the ARV or the SLS;
  • Studies of potential future partnership opportunities for the Asteroid Redirect Crewed Mission, or other future missions, in areas such as advancing science and in-situ resource utilization, enabling commercial activities, and enhancing U.S. exploration activities in cis-lunar space after the first crewed mission to an asteroid.

“NASA is developing two mission concepts for the Asteroid Redirect Mission (ARM): one concept uses a robotic spacecraft to capture a whole small near-Earth asteroid, and the second concept uses largely the same robotic spacecraft to capture a cohesive mass from a larger asteroid,” the agency added in the solicitation documents.

Artist's conception of NASA's asteroid retrieval mission. Credit: NASA
Artist’s conception of NASA’s asteroid retrieval mission. Credit: NASA

“In both mission concepts, the asteroid mass would be redirected into a stable orbit around the Moon. Astronauts aboard the Orion spacecraft launched on the Space Launch System (SLS) would rendezvous with the captured asteroid mass in lunar orbit and collect samples for return to Earth.”

The agency is framing this initiative as a way to prepare for longer-duration missions (such as going to Mars) as well as better characterizing the threat from asteroids — which is certainly on many people’s minds after a meteor broke up over Chelyabinsk, Russia just over a year ago.

More information on the initiative is available at this NASA webpage, and you can read the solicitation documents at this link.

Amazing Aurora in Alaska, March 2014

Aurora seen near Fairbanks, Alaska on March 21, 2014. Credit and copyright: John Chumack.

Every year, our friend and astrophotographer extraordinaire John Chumack co-leads a tour to Alaska on how to photograph the northern lights and the night sky, and this year they hit paydirt. “Absolutely amazing aurora about 30 minutes outside Fairbanks, Alaska!!!!” John wrote via email. “I took over 450 photos of it, I watched it dance and sway from 9:30pm until 4:00am!!! It got so bright at times it turn the snow green, to red to purple too!”

Sounds incredible, and here are some great pictures to showcase what John and his friends saw. If you have an aurora trip on your bucket list, you can find out more about the Alaskan astrophotography tour here.

Aurora seen near Fairbanks, Alaska on March 21, 2014. Credit and copyright: John Chumack.
Aurora seen near Fairbanks, Alaska on March 21, 2014. Credit and copyright: John Chumack.

Aurora seen near Fairbanks, Alaska on March 21, 2014. Credit and copyright: John Chumack.
Aurora seen near Fairbanks, Alaska on March 21, 2014. Credit and copyright: John Chumack.
Aurora seen near Fairbanks, Alaska on March 21, 2014. Credit and copyright: John Chumack.
Aurora seen near Fairbanks, Alaska on March 21, 2014. Credit and copyright: John Chumack.
Aurora seen near Fairbanks, Alaska on March 21, 2014. Credit and copyright: John Chumack.
Aurora seen near Fairbanks, Alaska on March 21, 2014. Credit and copyright: John Chumack.

UPDATE: John sent us an update and a couple of additional aurora photos from subsequent nights in Alaska. He said he has done quite a bit of research over the years, and Fairbanks has the highest number of clear nights late March — when he annually hosts the aurora tour. “Also the Earth’s Magnetic Field is weaker near equinox, so even if you don’t get flares, the solar wind is enough to spark aurora displays,” John said via email. “We are on our 4th consecutive clear nights with great Aurora displays. Only a KP-2 index Level is need to see them here.”

A good enticement to check out his tour for 2015!

Aurora on March 24, 2014 near Fairbanks, Alaska. Credit and copyright: John Chumack.
Aurora on March 24, 2014 near Fairbanks, Alaska. Credit and copyright: John Chumack.
A group of attendees at John Chumack's Aurora Borealis tour watch the aurora together near Fairbanks, Alaska on March 24, 2014. Credit and copyright: John Chumack
A group of attendees at John Chumack’s Aurora Borealis tour watch the aurora together near Fairbanks, Alaska on March 24, 2014. Credit and copyright: John Chumack

Ready, Set, Messier Marathon: A 2014 Guide

Patiently awaiting darkness at the starting line... Credit and copyright: John Chumack.

Have YOU seen all 110?

The passage of the northward equinox last week on March 20th means one thing in the minds of many a backyard observer: the start of Messier Marathon season. This is a time of year during which a dedicated observer can conceivably spot all of the objects in Charles Messier’s famous deep sky catalog in the span of one night.

We’ve written about some tips and tricks to completing this challenge previously, as well as the optimal dates for carrying a marathon out. Typically, the New Moon weekend nearest the March equinox is the best time of year for northern hemisphere observers to target all of the objects on Messier’s list. This works because a majority of the Messier objects are clustered into two regions: towards the core of our galaxy in Sagittarius — where the Sun sits during the December solstice — up through the summer triangle constellations of Cygnus, Aquila and Lyra, and in the bowl of Virgo asterism and its super cluster of galaxies that extends northward into the constellation of Coma Berenices. In March through early April the Sun sits in the constellation of Pisces, well away from the galactic plane.

The prospects for completing a Messier marathon in 2014 favor the last weekend on March on the 29th-30th. The Moon reaches New on Sunday, March 30th at 18:45 Universal Time/2:45 PM EDT.

Messier marathons first came into vogue in the early 1970s right around the time Schmidt-Cassegrain and large Dobsonian “light bucket” telescopes came into general use.

Charles Messier began noting the curious objects that he would later incorporate into his famous catalog during the summer of 1758, with his description of the Crab Nebula in Taurus, which would become Messier object number one or M1. Messier was a prolific comet hunter and discovered 21 comets in his lifetime. The catalog was compiled over the span of 13 years from 1771 to 1784. Messier’s original list contained 45 objects, and was later expanded in subsequent editions 103, with Messier’s assistant Pierre Méchain adding six more objects to the catalog. The list is generally tallied at 110 objects, with one famous controversy being M102, which is generally cited as a re-observation of M101 or the galaxy NGC 5866.

The catalog itself contains a grab bag of open and globular clusters, galaxies, planetary and diffuse nebulae, and one double star (M40). The Messier catalog spans the sky down to M7, an object also known as the Ptolemy Cluster, which is the southernmost object on the list at latitude -34 degrees 48’ south.

The first page of Messier's third revision of his catalog describing M1 through M5. Image in th Public Domain.
The first page of Messier’s third revision of his catalog, describing M1 through M5. Image in the Public Domain.

Messier observed from Paris at latitude +48 degrees 51’ north using two primary telescopes of the almost one dozen that he owned for his discoveries: a 6.4” Gregorian reflector and a 3.5” refractor. Messier knew nothing of the nature of these “faint fuzzies” that he’d periodically stumbled across in his cometary vigil. His original intent was to compile a list of “comet imposters” in the night sky for comet hunters to be aware of in their quests. In his words:

“What made me produce this catalog was the nebula which I had seen in Taurus while I was observing the comet of that year (1758). The shape and brightness of that nebula reminded me so much of a comet, that I undertook to find more of its kind, to save astronomers from confusing these nebulae with comets.”

“Beware, here doth not lie comets,” Messier admonishes future generations of observers. Still, some peculiarities remain in the catalog: why did Messier, for example, include such obvious “non-comets” as the Pleiades (M45), but skip over the brilliant Double Cluster in Perseus?

Charles Messier's 1771 sketch of the Orion nebula, M42 in the Messier Catalog. Image in the public domain.
Charles Messier’s 1771 sketch of the Orion nebula, M42 in the Messier Catalog. Image in the public domain.

Alas, such mysteries are known only to Messier, who was interred at the famous Père Lachaise cemetery after his death in 1817. When we visit Paris, we’ll bypass Jim Morison to leave a copy of Burnham’s Celestial Handbook at Messier’s grave.

And just like the road variety, “running the Messier marathon” takes all of the stamina and pacing that a visual athlete can muster. You’ll want to grab M77 and M74 immediately after dusk, or the marathon will be over before it starts. From there, move on up north to the famous Andromeda galaxy (M31) and the scattering of objects around it before settling in for a more leisurely observing pace moving westward through the constellations of Orion, Leo and surrounding objects.

An all-sky map showing the distribution of Messier objects. (Click to enlarge). Credit: Jim Cornmell under a Wikimedia Commons Attribution-Share Alike 3.0 Unported license.
An all-sky map showing the distribution of Messier objects. (Click to enlarge). Credit: Jim Cornmell under a Wikimedia Commons Attribution-Share Alike 3.0 Unported license.

Now towards the approach of local midnight comes the first large group: the Virgo cluster of galaxies extending through Coma Berenices, rising to the east. After this batch, you can catch some quick shut-eye before bagging the Messier objects towards the galactic center and up through Cygnus in the pre-dawn. Plan ahead; M52, M2 and M30 are especially notoriously difficult in the spring dawn sky!

It’s also worth noting your “attitude versus latitude” plays a role as well. To this end, Ed Kotapish compiled this nifty perpetual chart of when the entire Messier catalog is visible from respective latitudes:

A chart calculating number of total Messier objects that are visible on the dates (vertical column in month-day format) versus north latitude (top row). Note that this chart is pertpetual for non-leap years, and does not take into account the pahse of the Moon. Click to enlarge. Credit: Edward Kotapish.
A chart calculating number of total Messier objects that are visible on the dates (vertical column in month-day format) versus north latitude (top row). Note that this chart is pertpetual for non-leap years, and does not take into account the pahse of the Moon. Click to enlarge. Credit: Edward Kotapish.

“The bounds of the chart are for a variety of objects,” Ed told Universe Today. “I used nautical twilight (when the Sun falls below -12 degrees in elevation) as the starting and ending condition.” Ed also notes that the top curve of the chart on the morning side is bounded by the difficulty in finding troublesome M30, while the left bottom evening boundary is limited by the observability of M110 and M74, which can be a problem for observers at higher latitudes.

Alternate versions of the Messier marathon exist as well, such as imaging or even sketching all 110 objects in one night.

Why complete a Messier marathon? Well, not only does such a feat hone your visual skills as an observer, but it also familiarizes you with the entire catalog… and there’s nothing that says you have to complete it all in one evening, except of course, for bragging rights at the next star party!

Good luck!

-Here’s a handy list of all 110 of the Messier objects in the catalog.

-Be sure to send those pics of Messier objects and more in to Universe Today’s Flickr forum!

Cosmologists Cast Doubt on Inflation Evidence

Some physicists still have questions on the true origin of the BICEP2 findings...

It was just a week ago that the news blew through the scientific world like a storm: researchers from the BICEP2 project at the South Pole Telescope had detected unambiguous evidence of primordial gravitational waves in the cosmic microwave background, the residual rippling of space and time created by the sudden inflation of the Universe less than a billionth of a billionth of a second after the Big Bang. With whispers of Nobel nominations quickly rising in the science news wings, the team’s findings were hailed as the best direct evidence yet of cosmic inflation, possibly even supporting the existence of a multitude of other universes besides our own.

That is, if they really do indicate what they appear to. Some theorists are advising that we “put the champagne back in the fridge”… at least for now.

Theoretical physicists and cosmologists James Dent, Lawrence Krauss, and Harsh Mathur have submitted a brief paper (arXiv:1403.5166 [astro-ph.CO]) stating that, while groundbreaking, the BICEP2 Collaboration findings have yet to rule out all possible non-inflation sources of the observed B-mode polarization patterns and the “surprisingly large value of r, the ratio of power in tensor modes to scalar density perturbations.”

“However, while there is little doubt that inflation at the Grand Unified Scale is the best motivated source of such primordial waves, it is important to demonstrate that other possible sources cannot account for the current BICEP2 data before definitely claiming Inflation has been proved. “

– Dent, Krauss, and Mathur (arXiv:1403.5166 [astro-ph.CO])

The history of the universe starting the with the Big Bang. Image credit: grandunificationtheory.com
The history of the universe starting the with the Big Bang. Image credit: grandunificationtheory.com

Inflation may very well be the cause — and Dent and company state right off the bat that “there is little doubt that inflation at the Grand Unified Scale is the best motivated source of such primordial waves” —  but there’s also a possibility, however remote, that some other, later cosmic event is responsible for at least some if not all of the BICEP2 measurements. (Hence the name of the paper: “Killing the Straw Man: Does BICEP Prove Inflation?”)

Not intending to entirely rain out the celebration, Dent, Krauss, and Mathur do laud the BICEP2 findings as invaluable to physics, stating that they “will be very important for constraining physics beyond the standard model, whether or not inflation is responsible for the entire BICEP2 signal, even though existing data from cosmology is strongly suggestive that it does.”

Read more: We’ve Discovered Inflation! Now What?

Now I’m no physicist, cosmologist, or astronomer. Actually I barely passed high school algebra (and I have the transcripts to prove it) so if you want to get into the finer details of this particular argument I invite you to read the team’s paper for yourself here and check out a complementary article on The Physics arXiv Blog.

And so, for better or worse (just kidding — it’s definitely better) this is how science works and how science is supposed to work. A claim is presented, and, regardless of how attractive its implications may be, it must stand up to any other possibilities before deemed the decisive winner. It’s not a popularity contest, it’s not a beauty contest, and it’s not up for vote. What it is up for is scrutiny, and this is just an example of scientists behaving as they should.

Still, I’d  keep that champagne nicely chilled.

Source: The Physics arXiv Blog

_________

Want to read more about the BICEP2 findings from actual physicists? Read more in an article by Peter Coles, see what Matthew Francis has to say in his article on arstechnica here, and watch a video by Sean Carroll on PBS News Hour.

Can Light Orbit A Black Hole?

Can Light Orbit A Black Hole?

Since black holes are the most powerful gravitational spots in the entire Universe, can they distort light so much that it actually goes into orbit? And what would it look like if you could survive and follow light in this trip around a black hole?

I had this great question in from a viewer. Is it possible for light to orbit a black hole?

Consider this thought experiment, first explained by Newton. Imagine you had cannon that could shoot a cannonball far away. The ball would fly downrange and then crash into the dirt. If you shot the cannonball harder it would fly further before slamming into the ground. And if you could shoot the cannonball hard enough and ignore air resistance – it would travel all the way around the Earth. The cannonball would be in orbit. It’s falling towards the Earth, but the curvature of the Earth means that it’s constantly falling just over the horizon.

This works not only with cannonballs, astronauts and satellites, but with light too. This was one of the big discoveries that Einstein made about the nature of gravity. Gravity isn’t an attractive force between masses, it’s actually a distortion of spacetime. When light falls into the gravity well of a massive object, it bends to follow the curvature of spacetime.

Distant galaxies, the Sun, and even our own Earth will cause light to be deflected from its path by their distortion of spacetime. But it’s the incredible gravity of a black hole that can tie spacetime in knots. And yes, there is a region around a black hole where even photons are forced to travel in an orbit. In fact, this region is known as the “photon sphere”.

From far enough away, black holes act like any massive object. If you replaced the Sun with a black hole of the same mass, our Earth would continue to orbit in exactly the same way. But as you get closer and closer to the black hole, the orbiting object needs to go faster and faster as it whips around the massive object. The photon sphere is the final stable orbit you can have around a black hole. And only light, moving at, well, light speed, can actually exist at this altitude.

Artist impression of a black hole. Credit: ESO/L. Calçada
Artist impression of a black hole. Credit: ESO/L. Calçada

Imagine you could exist right at the photon sphere of a black hole. Which you can’t, so don’t try. You could point your flashlight in one direction, and see the light behind you, after it had fully orbited the black hole. You would also be bathed in the radiation of all the photons captured in this region. The visible light might be pretty, but the x-ray and gamma radiation would cook you like an oven.

Below the photon sphere you would see only darkness. Down there is the event horizon, light’s point of no return. And up above you’d see the Universe distorted by the massive gravity of the black hole. You’d see the entire sky in your view, even stars that would be normally obscured by the black hole, as they wrap around its gravity. It would be an awesome and deadly place to be, but it’d sure beat falling down below the event horizon.

If you could get down into the photon sphere, what kind of experiments would you want to do? Tell us in the comments below.

‘Yesterday’s Coffee’: Drinking Urine In Space Could Preview Mars Exploration Techniques

Expedition 10 commander Leroy Chiao is reflected in a water sphere on board the International Space Station in 2004. Credit: NASA

“Here on board the ISS, we turn yesterday’s coffee into tomorrow’s coffee” is a slogan that sounds a little like a Don Draper-led advertising campaign. Seriously, though, it’s a nifty way in which Expedition 39 commander Koichi Wakata describes in this video (also embedded below) how the astronauts drink purified urine on the station.

The water is perfectly hygienic once it runs through the system, and moreover, it could be a useful trick for future space colonists to remember.

Water is heavy, at about 8.3 pounds per gallon (or roughly 1 kg/liter) at room temperature. And astronauts in space do need to go through a lot of it to prevent dehydration and other illnesses. Throw in demanding activities such as exercising two hours a day or going on a spacewalk, and you can see how quickly people in space go through it.

Everything sent into space has an associated launch cost with it, and space engineers are always looking for ways to shave a few grams here or there. By installing the water purification system (which was completed in 2009 with Wakata on board), NASA said it would be able to reduce the amount sent up to station.

When people speak of space colonies on the Moon or Mars, they often talk about landing them near a large source of water ice and then using that to help support the people working there. As NASA once wrote in a worksheet, “Until an orbiting grocery store is opened, recycling of water and air will be crucial for crew survival.”

Check out Wakata’s explanation of the water recycling system below. For more information on recycling water in Mars colonies, one source to start with could be T. A. Heppenheimer’s “Colonies In Space”, published on the National Space Society website.