Can Light Orbit A Black Hole?

Can Light Orbit A Black Hole?

Since black holes are the most powerful gravitational spots in the entire Universe, can they distort light so much that it actually goes into orbit? And what would it look like if you could survive and follow light in this trip around a black hole?

I had this great question in from a viewer. Is it possible for light to orbit a black hole?

Consider this thought experiment, first explained by Newton. Imagine you had cannon that could shoot a cannonball far away. The ball would fly downrange and then crash into the dirt. If you shot the cannonball harder it would fly further before slamming into the ground. And if you could shoot the cannonball hard enough and ignore air resistance – it would travel all the way around the Earth. The cannonball would be in orbit. It’s falling towards the Earth, but the curvature of the Earth means that it’s constantly falling just over the horizon.

This works not only with cannonballs, astronauts and satellites, but with light too. This was one of the big discoveries that Einstein made about the nature of gravity. Gravity isn’t an attractive force between masses, it’s actually a distortion of spacetime. When light falls into the gravity well of a massive object, it bends to follow the curvature of spacetime.

Distant galaxies, the Sun, and even our own Earth will cause light to be deflected from its path by their distortion of spacetime. But it’s the incredible gravity of a black hole that can tie spacetime in knots. And yes, there is a region around a black hole where even photons are forced to travel in an orbit. In fact, this region is known as the “photon sphere”.

From far enough away, black holes act like any massive object. If you replaced the Sun with a black hole of the same mass, our Earth would continue to orbit in exactly the same way. But as you get closer and closer to the black hole, the orbiting object needs to go faster and faster as it whips around the massive object. The photon sphere is the final stable orbit you can have around a black hole. And only light, moving at, well, light speed, can actually exist at this altitude.

Artist impression of a black hole. Credit: ESO/L. Calçada
Artist impression of a black hole. Credit: ESO/L. Calçada

Imagine you could exist right at the photon sphere of a black hole. Which you can’t, so don’t try. You could point your flashlight in one direction, and see the light behind you, after it had fully orbited the black hole. You would also be bathed in the radiation of all the photons captured in this region. The visible light might be pretty, but the x-ray and gamma radiation would cook you like an oven.

Below the photon sphere you would see only darkness. Down there is the event horizon, light’s point of no return. And up above you’d see the Universe distorted by the massive gravity of the black hole. You’d see the entire sky in your view, even stars that would be normally obscured by the black hole, as they wrap around its gravity. It would be an awesome and deadly place to be, but it’d sure beat falling down below the event horizon.

If you could get down into the photon sphere, what kind of experiments would you want to do? Tell us in the comments below.

‘Yesterday’s Coffee’: Drinking Urine In Space Could Preview Mars Exploration Techniques

Expedition 10 commander Leroy Chiao is reflected in a water sphere on board the International Space Station in 2004. Credit: NASA

“Here on board the ISS, we turn yesterday’s coffee into tomorrow’s coffee” is a slogan that sounds a little like a Don Draper-led advertising campaign. Seriously, though, it’s a nifty way in which Expedition 39 commander Koichi Wakata describes in this video (also embedded below) how the astronauts drink purified urine on the station.

The water is perfectly hygienic once it runs through the system, and moreover, it could be a useful trick for future space colonists to remember.

Water is heavy, at about 8.3 pounds per gallon (or roughly 1 kg/liter) at room temperature. And astronauts in space do need to go through a lot of it to prevent dehydration and other illnesses. Throw in demanding activities such as exercising two hours a day or going on a spacewalk, and you can see how quickly people in space go through it.

Everything sent into space has an associated launch cost with it, and space engineers are always looking for ways to shave a few grams here or there. By installing the water purification system (which was completed in 2009 with Wakata on board), NASA said it would be able to reduce the amount sent up to station.

When people speak of space colonies on the Moon or Mars, they often talk about landing them near a large source of water ice and then using that to help support the people working there. As NASA once wrote in a worksheet, “Until an orbiting grocery store is opened, recycling of water and air will be crucial for crew survival.”

Check out Wakata’s explanation of the water recycling system below. For more information on recycling water in Mars colonies, one source to start with could be T. A. Heppenheimer’s “Colonies In Space”, published on the National Space Society website.

NASA Targeting Earth Observing Satellites and ISS Sensors to Aid Missing Malaysian Airline Search

Sensors aboard NASA’s Terra satellite are aiding the search for MH 370. Credit: NASA

NASA has actively joined the hunt for the missing Malaysian Airline flight MH-370 that mysteriously disappeared without a trace more than two weeks ago on March 8, 2014.

Sensors aboard at least two of NASA’s unmanned Earth orbiting global observation satellites as well as others flying on the manned International Space Station (ISS) are looking for signs of the jetliner that could aid the investigators from a multitude of nations and provide some small measure of comfort to the grieving families and loved ones of the passengers aboard.

“Obviously NASA isn’t a lead agency in this effort. But we’re trying to support the search, if possible,” Allard Beutel, NASA Headquarters, Office of Communications director, told Universe Today this evening.

NASA’s airplane search assistance comes in two forms; mining existing space satellite observing data and retargeting space based assets for new data gathering since the incident.

The Malaysian Airline Boeing 777-2H6ER jetliner went missing on March 8 while cruising en route from Kuala Lampur, Malaysia to Beijing, China. See cockpit photo below.

Accurate facts on why MH-370 vanished with 239 passengers aboard have sadly been few and far between.

Chinese satellite image of possible debris of MH 370. Credit: China/SASTIND
Chinese satellite image of possible debris of MH 370. Credit: China/SASTIND

Last week, the search area shifted to a wide swath in the southern Indian Ocean when potential aircraft debris was spotted in a new series of separate satellite images from Australia and China government officials.

A prior set of official Chinese government satellite images at a different location yielded absolutely nothing.

The area is now focused 2,500 km (1,600 mi) south west of Perth, a city on the western coast of Australia.

NASA’s search support was triggered upon activation of the International Charter on Space and Major Disasters.

Available data from NASA’s Terra and Aqua satellites has already been transmitted to the U.S. Geological Survey and new data are now being collected in the search area.

“In response to activation of the International Charter on Space and Major Disasters last week regarding the missing Malaysia Airlines jetliner, NASA sent relevant space-based data to the U.S. Geological Survey’s Earth Resources Observations and Science Hazard Data Distribution System that facilitates the distribution of data for Charter activations,” according to a NASA statement.

And it’s important to note that NASA satellites and space-based cameras are designed for long-term scientific data gathering and Earth observation.

“They’re really not meant to look for a missing aircraft,” Beutel stated.

“The archive of global Earth-observing satellite data is being mined for relevant images. These include broad-area views from the MODIS [instrument] on NASA’s Terra and Aqua satellites,” Beutel informed me.

The next step was to retarget both satellites and another high resolution camera aboard the ISS.

“In addition, two NASA high-resolution assets have been targeted to take images of designated search areas: the Earth Observing-1 satellite and the ISERV camera on the International Space Station,” Beutel explained.

Sensors aboard NASA’s Aqua satellite are aiding the search for MH 370. Credit: NASA
Sensors aboard NASA’s Aqua satellite are aiding the search for MH 370. Credit: NASA

Aqua and Terra were already gathering new observations with the MODIS instrument in the search area off Australia last week. MODIS measures changes in Earth’s cloud cover.

Here are the satellite observation times and capabilities:

• MODIS on the Aqua satellite observed at about 1:30 p.m. local time as it passes overhead from pole-to-pole
• MODIS on the Terra satellite observed at about 10:30 a.m. local time
• The width (field of view) of a MODIS observation is 2,300 kilometers
• One pixel of a MODIS image – the limit of how small a feature it can see – is about 1 kilometer.

A new set of high resolution Earth imaging cameras are being sent to the ISS and are loaded aboard the SpaceX CRS-3 Dragon resupply capsule now slated for blastoff on March 30.

The newly launched NASA/JAXA GPM precipitation monitoring satellite which will cover this ocean area in the future is still in the midst of science instrument checkout.

The International Space Station (ISS) in low Earth orbit.  Credit: NASA
The International Space Station (ISS) in low Earth orbit. Credit: NASA

Ships and planes from at least 26 countries have been being dispatched to the new based on the new satellite imagery to search for debris and the black boxes recording all the critical engineering data and cockpit voices of the pilot and copilot and aid investigators as to what happened.

No one knows at this time why the Malaysia Airlines flight mysteriously disappeared.

Ken Kremer

Map of possible MH 370 debris locations published 1: 12 March (disproved), 2: 20–23 March 2014. Credit: Wikipedia
Map of possible MH 370 debris locations published 1: 12 March (disproved), 2: 20–23 March 2014. Credit: Wikipedia

map

Flight deck view of the missing MH 370 aircraft, showing many of the communication systems now under investigation. Credit: Chris Finney
Flight deck view of the missing MH 370 aircraft, showing many of the communication systems now under investigation. Credit: Chris Finney
Photo of Malaysia Air Boeing 777-200
Photo of Malaysia Air Boeing 777-200

Sirius, UFO trickster extraordinaire

Pilot Kenneth Arnold with an illustration of a UFO he saw in 1947. The modern run of UFO sightings began when Arnold reported seeing nine objects flying in a V-formation over Mt. Ranier in Washington. Click for more on the story.


Scintillating Sirius is sometimes mistaken for a UFO

I’ve never seen a UFO that stayed a UFO. I remember certain moving lights as a kid but they turned out to be airplanes or geese aglow with light pollution. And who hasn’t been tricked into thinking they’ve discovered the next Milky Way supernova only to realize it was a distant aircraft in your line of sight? 

For all the hours of dark sky time amateur astronomers accumulate, few of us have seen a UFO. It makes sense. We’re generally familiar with the stars and their movements, where the planets happen to be and the atmosphere’s uncanny ability to distort and parse light into strange and beautiful phenomena. Not that some skywatchers haven’t seen a few things that defy immediate explanation.

While some might say this takes away the magic of the night sky, rendering us blind to the possibility of UFOs, I’d argue the contrary. Knowledge deepens our appreciation of all we see, hear, smell and touch.

Sirius, nicknamed the Dog Star is the brightest star in Canis Major and brightest in the night sky. This map show Sirius about 1/3 of the way up in the southern sky during late twilight this month. Stellarium
Sirius, nicknamed the Dog Star, is the brightest star in Canis Major and brightest in the night sky. This map show Sirius about 1/3 of the way up in the southern sky during late twilight this month. Stellarium

Familiar objects often mistaken for UFOs include bright stars, planets and satellites, but high – if not highest – on the list is Sirius in the constellation Canis Major the Greater Dog.

Sirius has attained UFO status for several good reasons: at magnitude -1.5 it’s the brightest star in the sky, it “moves” both slowly and rapidly and shoots out light of different colors.

Because it’s bright, and for many of us, falls along an easy line of sight on March evenings, we’re bound to notice it. No star sparkles more intensely especially when hovering low in the sky.

For skywatchers at mid-northern latitudes, Sirius is the bright, often flashing star in the southern sky at nightfall. Credit: Bob King
For skywatchers at mid-northern latitudes, Sirius is the bright, often flashing star in the southern sky at nightfall. Credit: Bob King

Stars. So big but yet so tiny. Despite their enormous size, distance reduces stars to tiny pinpoints even in the largest telescopes. When a star beam hits our atmosphere, it gets yanked around by parcels of air of varying density, speed and size. Each parcel acts like a individual lens, refracting or bending the star’s light into a tiny image. As the air churns overhead, the positions of all those individual images continually change, zigging the star in random directions. While our eyes aren’t keen enough to distinguish the many tiny images moving to and fro, we sense the starlight’s tortured path as sputtering light or twinkling. All stars flitter around – just ask telescopic observers –  but twinkling is most noticeable in bright stars like Vega, Canopus, Rigel and especially Sirius.

Twinkling is caused by moving air pockets in our atmosphere. Twinkling is much stronger and more noticeable near the horizon, because our line of sight passes through a much greater thickness of air. Illustration: Bob King - See more at: http://astrobob.areavoices.com/2011/09/04/why-stars-twinkle-and-sputter-in-color/#sthash.MNP51ROv.dpuf
Twinkling is caused by moving air pockets in our atmosphere. Twinkling is much stronger and more noticeable near the horizon, because our line of sight passes through a much greater thickness of air. Illustration: Bob King

Mind you, it doesn’t necessarily matter how calm it is on the ground. Some 10 miles of relatively thick air between you and Sirius provide plenty of opportunities for fluttering images on many otherwise tranquil nights. Bright planets generally don’t twinkle because they’re close enough to show actual disks.  Tiny shifts induced by atmospheric turbulence can bodily move a star with ease, but planets are big enough compared to the size of the air cells to hold their own and beam forth a steady light.

 

For some, Sirius’ twinkling creates the sense that a star is moving or shooting about, making it that much more mysterious. Superimposed on this apparent rapid movement is the slow westward drift of the stars caused by Earth’s rotation. People have contacted me about brilliant, slow-moving objects, and it’s clear they’ve been watching a star get a free ride from our revolving planet.

The color and brightness of Sirius can change rapidly as it twinkles. I shot these slightly out of focus to spread the color out and show it more clearly. Not only are the hues striking but brightness changes are obvious, too. Photo: Bob King
The color and brightness of Sirius changes rapidly as it twinkles. I shot these individual 1/30″ photos slightly out of focus to spread the color out and show it more clearly. Not only are the hues striking but brightness changes are obvious, too. The short video at the top of this story captures Sirius’ twinkling “live”.Credit: Bob King

So we’ve got brightness and movement going for us – what about color? Colors come from the air, too. Just as white light is composed of a rainbow or spectrum of individual colors from indigo to red, so is starlight. When Sirius is low above the horizon, refraction (bending of light) is strong enough to create images of the star in every color of the rainbow and cast them about in different directions. Split-second variations in air density and flow make for continuous multi-color sparkles.

Sirius’ colors are fairly obvious with the naked eye, but I’ve found binoculars show them even better. By the way, the jerkiness induced in holding binoculars steady adds another motion factor to the UFO equation.

Sirius is hotter, brighter and 1.75 times the size of our own sun. It's located nearby as stars go at a distance of 8.7 light years, the main reason it appears so bright in the sky. Credit: Wikipedia
Sirius is hotter, brighter and 1.75 times the size of our own sun. As stars go, it’s practically in our backyard at just 8.7 light years away – the main reason it appears so bright in the nighttime sky. Credit: Wikipedia

Once, a fellow came to our local planetarium with video he’d taken of a UFO, hoping for help in identifying the object. We watched it change from a star to a bloated disk and back to a star again as the image jumped wildly about in the shaky, hand-held camera. Knowing the date and time of the footage, we instantly knew it was the camera struggling to maintain autofocus on Sirius.

Sirius is orbited by an Earth-sized, superdense white dwarf nicknamed the "Pup". Credit: NASA/ESA
Sirius is orbited by an Earth-sized, superdense white dwarf nicknamed the “Pup”. Credit: NASA/ESA

I remember thinking, “wow, we really helped this guy out”, but he was less than pleased. We tried to explain that he was seeing not only the brightest star in the sky but one twice as massive as the sun and nearly twice its size. But facts were of no use. Convinced he had recorded a UFO anyway, he took his video and promptly left!

I’d love to see a real space ship UFO powered by alien biology. Deep down many of us suspect they exist. With 1,779 extra-solar planets confirmed to date, habitats for potential life seem more certain than ever. But what are the odds of little green men dropping by anything soon? Not only are the distances between stars daunting, but intelligent species may have no interest in outer space or leaving the home planet. After all, whales don’t build space ships.

 

 

Curiosity Pulls into Kimberley and Spies Curvy Terrain For Drilling Action

Martian landscape with rows of curved rock outcrops at ‘Kimberly’ in the foreground and spectacular Mount Sharp on the horizon. NASA’s Curiosity Mars rover pulled into Kimberly waypoint dominated by layered rock outcrops as likely drilling site. This colorized navcam camera photomosaic was assembled from imagery taken on Sol 576 (Mar. 20, 2014). Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer-kenkremer.com

Martian landscape with rows of curved rock outcrops at ‘Kimberley’ in the foreground and spectacular Mount Sharp on the horizon. NASA’s Curiosity Mars rover pulled into Kimberly waypoint dominated by layered rock outcrops as likely drilling site. This colorized navcam camera photomosaic was assembled from imagery taken on Sol 576 (Mar. 20, 2014).
Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer-kenkremer.com
See additional Curiosity Mars photomosaics below[/caption]

KENNEDY SPACE CENTER, FL – NASA’s Curiosity rover has just pulled into gorgeous terrain chock full of curvy rock outcrops at Kimberley that’s suitable for contact science and drilling action, according to the mission team.

The six wheeled Martian dune buggy drove into the dazzling Kimberley waypoint this week after traversing a swath of otherworldly dune fields since passing through a gateway known as the ‘Dingo Gap’ sand dune some six weeks ago.

The robot’s arm has been deployed to investigate the most scientifically productive spots to touch Kimberley’s textured outcrops for detailed scrutiny.

The science team has been hunting for tasty rock outcrops suitable for the first drilling campaign since she departed the dried out lakebed at Yellowknife Bay in July 2013 and began her epic trek across the floor of Gale Crater towards the base of Mount Sharp.

With each passing Sol, or Martian day, Mount Sharp looms larger and larger and the historical layers with deposits of hydrated minerals potentially indicative of an alien habitable zone come ever clearer into focus.

About a month ago on Feb. 19 (Sol 548), Curiosity couldn’t resist the urge to pause mid dune drive, just like a tourist, and snap fabulous imagery of multiple rows of striated rocks at the Junda outcrop – see our mosaics below.

Junda appeared remarkably similar to Kimberley, about 1 kilometer back.

Curiosity looks back at Martian sand dunes and rover tracks after passing by Junda outcrop (right) on Sol 548 (Feb. 19, 2014) with Gale Crater rim and Mount Sharp on the distant horizon. Navcam colorized photomosaic. Credit: NASA/JPL-Caltech/Ken Kremer- kenkremer.com/Marco Di Lorenzo
Curiosity looks back at Martian sand dunes and rover tracks after passing by Junda outcrop (right) on Sol 548 (Feb. 19, 2014) with Gale Crater rim and Mount Sharp on the distant horizon. Navcam colorized photomosaic. Credit: NASA/JPL-Caltech/Ken Kremer- kenkremer.com/Marco Di Lorenzo

So after executing a final series of short bumps edging ever closer to the outcrops this week, Curiosity parked at the periphery of Kimberley on Thursday, March 20, Sol 576, and captured breathtaking imagery of the rocky rows dominated by towering Mount Sharp on the distant horizon.

See our photomosaics showing the spectacularly inviting terrain around Kimberley and Junda – above and below by Marco Di Lorenzo and Ken Kremer.

“The images [at Kimberley] show nice outcrops in front of the rover, suitable for contact science,” according to science team member Ken Herkenhoff in a mission update.

NASA’s Curiosity Mars rover will likely drill into this layered rock outcrop, near the center of the mosaic, at the Kimberly waypoint.   This photomosaic was assembled from high resolution Mastcam 34 camera images taken on Sol 574  (March 18, 2014).  Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer-kenkremer.com
NASA’s Curiosity Mars rover will likely drill into this layered rock outcrop, near the center of the mosaic, at the Kimberly waypoint. This photomosaic was assembled from high resolution Mastcam 34 camera images taken on Sol 574 (March 18, 2014). Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer-kenkremer.com

This weekend, the state of the art robot is conducting contact science with the cameras and spectrometers on the terminus of the 7 foot long robotic arm and the mast mounted ChemCam laser and high resolution cameras to determine the best spot for drilling and sampling.

The team commanded Curiosity to clean out the arms CHIMRA sample handling mechanism in anticipation of boring into the Martian outcrops and delivering powdery, pulverized samples of cored Martian rocks to the SAM and CheMin miniaturized chemistry labs waiting patiently inside the robots belly to eat something exciting from the Red Planet.

“The arm will be deployed to “thwack” and vibrate CHIMRA to clean out any remnants of the “John Klein” [drilling] sample, followed by Mastcam and RMI imaging of the CHIMRA sieve,” says Herkenhoff.

Scientists directed Curiosity on a pinpoint drive to Kimberly after their interest was piqued by orbital images taken by the powerful telescopic camera on NASA’s Mars Reconnaissance Orbiter (MRO) circling overhead.

“At Kimberly, we see three terrain types exposed and a relatively dust-free surface,” said science team collaborator Katie Stack of the California Institute of Technology, Pasadena.

Flattened fisheye hazcam camera view of Kimberly rock outcrop and Mount Sharp backdrop, taken on Sol 576 (Mar. 20, 2014) and colorized.  Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer - kenkremer.com
Flattened fisheye hazcam camera view of Kimberly rock outcrop and Mount Sharp backdrop, taken on Sol 576 (Mar. 20, 2014) and colorized. Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer – kenkremer.com

The missions science focus has shifted to “search for that subset of habitable environments which also preserves organic carbon,” says Curiosity Principal Investigator John Grotzinger, of the California Institute of Technology in Pasadena.

Organic molecules are the building blocks of life as we know it.

The sedimentary foothills of Mount Sharp, which reaches 3.4 miles (5.5 km) into the Martian sky, is the 1 ton robots ultimate destination inside Gale Crater because it holds caches of water altered minerals. Such minerals could possibly indicate locations that sustained potential Martian life forms, past or present, if they ever existed.

Curiosity discovered a habitable zone at Yellowknife via two drilling operations at the John Klein and Cumberland outcrops and thereby accomplished the primary goal of the mission.

Mars rock rows and Mount Sharp. Martian landscape scene with rows of striated rocks in the foreground and Mount Sharp on the horizon. NASA's Curiosity Mars rover paused mid drive at the Junda outcrop to snap the component images for this navcam camera photomosaic on Sol 548 (Feb. 19, 2014) and then continued traveling southwards towards mountain base.   UHF Antenna at right. Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer-kenkremer.com
Mars rock rows and Mount Sharp. Martian landscape scene with rows of striated rocks in the foreground and Mount Sharp on the horizon. NASA’s Curiosity Mars rover paused mid drive at the Junda outcrop to snap the component images for this navcam camera photomosaic on Sol 548 (Feb. 19, 2014) and then continued traveling southwards towards mountain base. UHF Antenna at right. Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer-kenkremer.com

To date Curiosity’s odometer stands at 6.2 kilometers. She has taken over 132,000 images.

The robot has somewhat over another 4 kilometers to go to reach the base of Mount Sharp.

She may arrive at the lower reaches of Mount Sharp sometime in mid 2014, but must first pass through a potentially treacherous dune field.

Meanwhile, NASA’s sister Opportunity rover is exploring clay mineral outcrops by the summit of Solander Point on the opposite side of Mars at the start of her 2nd Decade investigating the Red Planet’s mysteries.

A pair of new orbiters are streaking to the Red Planet to fortify Earth’s invasion fleet- NASA’s MAVEN and India’s MOM.

Stay tuned here for Ken’s continuing Curiosity, Opportunity, Chang’e-3, SpaceX, Orbital Sciences, LADEE, MAVEN, MOM, Mars and more planetary and human spaceflight news.

Learn more at Ken’s upcoming presentations at the NEAF convention on April 12/13 and at Washington Crossing State Park, NJ on April 6. Also evenings at the Quality Inn Kennedy Space Center, Titusville, FL, March 24/25 and March 29/30.

Ken Kremer

NASA Curiosity Mars rover Traverse Map from Landing Zone in Gale Crater to Kimberly Waypoint. Credit: NASA
NASA Curiosity Mars rover Traverse Map from Landing Zone in Gale Crater to Kimberly Waypoint. Credit: NASA

Check Out These Online Astronomy Classes and Contests

Here are a few upcoming and ongoing astronomy classes and photography contests that our readers may be interested in.

One minute
Once a year, the One-Minute Astronomer — aka Brian Ventrudo — offers a detailed course called “The Art of Stargazing,” and you need to act fast on this one, as the final signup date is March 24, 2014. This 12-month course breaks down everything you need to know about stargazing into bite-sized pieces… detailed sky tours, choosing and using the best binoculars and telescope for you, and a smattering of science to help you understand a little about your place in the universe. It also shows you how to find and enjoy hundreds of achingly beautiful sights you will remember for the rest of your life.”

You have until noon (GMT) this Monday, March 24 to begin your personal odyssey through the heavens. As the Brian says, “You’ll come away from The Art of Stargazing with everything you need to become a skilled backyard stargazer.”

The cost is $197 USD, and there are payment plans, as well as a lifetime of followup information and email advisories. Get all the details here.

CosmoQuest-Logo-Full-sm3

As always, you can find other ongoing classes at the CosmoQuest Academy. They regularly have new classes as well as opportunities for citizen science with their Moon Mappers, Asteroid Mappers and Planet Mappers programs.

There are also two astrophotography contests going on right now:
contest

Ciel et Espace Photos in France is having their Photo Nightscape Awards, and are looking for submissions of Earth and night sky photos. Photos must be taken between January 1, 2014 and August 31, 2014. One photo submission per photographer, and all formats are accepted: panoramic, square, mosaics.

Prizes will be awarded Sunday, November 9, 2014 at the Rencontres Sky and Space (NCE) which will take place from 8 to 11 November 2014 at the Cité des Sciences et de l’Industrie.

They have two categories: pro and amateur. Prizes include a trip to the Very Large Telescope from ESO, a trip to the Alqueva Dark Sky Resever in Portugal for first prizes, and second prizes are a pair of Binocular from Nikon.

The judge for the contest is Miguel Claro, whose astrophotography we feature often here on Universe Today.

Get more information and find all the rules here.

contest 2

A second photo contest comes from our friends at TWAN—The World At Night with their 5th annual International Earth and Sky Photo Contest, which is part of Global Astronomy Month in April 2014. The TWAN the contest is open to anyone of any age, anywhere around the world.

This year’s contest theme, “Dark Skies Importance,” has two categories: “Beauty of the Night Sky” and “Against the Lights.” Photos submitted to the contest should address either category: either to impress people on how important and amazing the starry sky is or to impress people on how bad the problem of light pollution has become. Both categories illustrate how light pollution affects our lives. Photographers can submit images to one or both categories.

Submitted photographs must be created in the “TWAN style” — showing both the Earth and the sky — by combining elements of the night sky (e.g., stars, planets, the Moon or celestial events) in the backdrop of a beautiful, historic, or notable location or landmark. This style of photography is called “landscape astrophotography”. This is similar to general “Nightscape Photography” but with more attention to the sky, astronomical perspectives, and celestial phenomena.

Find out more here.

SpaceX Resets Space Station Launch with Revolutionary Rocket Legs and Robonaut Legs to March 30

The Dragon spacecraft, filled with about 4,600 lbs of cargo bound for the space station, is mated with Falcon 9. Credit: SpaceX

KENNEDY SPACE CENTER, FL – Following last week’s sudden and late in the processing flow postponement of the SpaceX Falcon 9 rocket launch, SpaceX announced a reset of its next cargo mission launch for NASA to the International Space Station (ISS) to a new target date of Sunday, March 30.

The commercially developed Falcon 9 booster and Dragon cargo vessel are slated for a spectacular night time liftoff from Cape Canaveral Air Force Station in Florida at 10:50 p.m. EDT on March 30, SpaceX announced on Friday.

This mission, soaring to space under a resupply contract to NASA, could ignite a revolution in both rocketry and robotics.

The first stage of the Falcon 9 rocket sports a quartet of never before tried landing legs and the Dragon freighter is loaded with a set of lanky legs to enable mobility in space for NASA’s Robonaut 2 standing at the cutting edge of space robotics technology.

Launch preparations were suddenly halted less than 72 hours prior to the then planned March 16 early morning launch because of unspecified technical issues concerning the sudden discovery of “contamination,” sources told me.

The Falcon 9 rocket with landing legs in SpaceX’s hangar at Cape Canaveral, Fl, preparing to launch Dragon to the space station this Sunday March 30.  Credit: SpaceX
The Falcon 9 rocket with landing legs in SpaceX’s hangar at Cape Canaveral, Fl, preparing to launch Dragon to the space station this Sunday March 30. Credit: SpaceX

“To ensure the highest possible level of mission assurance and allow additional time to resolve remaining open items, the team is taking additional time to resolve open items and ensure SpaceX does everything possible on the ground to prepare for a successful launch,” according to a statement from SpaceX.

Several sources told me that the problem related to “contamination” that was found in the “unpressurized truck section” at the rear of the Dragon spacecraft.

“An unknown contaminant of unknown origin was found on a blanket in the Dragon trunk,” independent sources said to Universe Today soon after the postponement was announced.

“After careful review and analysis, engineering teams representing both the ISS and SpaceX have determined Dragon is ready to fly ‘as-is.’ All parties agree that the particular constituents observed in Dragon’s trunk are in line with the previously defined environments levels and do not impose additional risk to the payloads,” SpaceX announced in a new statement.

With the contamination issues now resolved, the launch is back on track.

Robonaut 2 engineering model equipped with new legs like those heading to the ISS on upcoming SpaceX CRS-3 launch were on display at the Kennedy Space Center Visitor Complex on March 15, 2014. Credit: Ken Kremer - kenkremer.com
Robonaut 2 engineering model equipped with new legs like those heading to the ISS on upcoming SpaceX CRS-3 launch were on display at the Kennedy Space Center Visitor Complex on March 15, 2014. Credit: Ken Kremer – kenkremer.com

NASA Television will air live coverage on Sunday.

In case the launch is delayed, the backup launch opportunity is at 9:39 p.m. Wednesday, April 2.

Altogether, this unmanned SpaceX CRS-3 mission will deliver over 5000 pounds of science experiments, a pair of legs for Robonaut 2, a high definition imaging camera suite, an optical communications experiment and essential gear, spare parts, crew provisions, food, clothing and supplies to the six person crews living and working aboard the ISS soaring in low Earth orbit under NASA’s Commercial Resupply Services (CRS) contract.

SpaceX is under contract to NASA to deliver 20,000 kg (44,000 pounds) of cargo to the ISS during a dozen Dragon cargo spacecraft flights over the next few years at a cost of about $1.6 Billion.

To date SpaceX has completed two operational cargo resupply missions and a test flight. The last flight dubbed CRS-2 blasted off a year ago on March 1, 2013 atop the initial version of the Falcon 9 rocket.

Following the rescheduled March 30 launch and a series of orbit raising and course corrections over the next two days, Dragon will rendezvous and dock at the Earth facing port on the station’s Harmony module on Wednesday, April 2.

Falcon 9 SpaceX CRS-2 launch of Dragon spacecraft on March 1, 2013 to the ISS from pad 40 at Cape Canaveral, Florida.- shot from the roof of the Vehicle Assembly Building.   During 2014, SpaceX plans  two flight tests simulating Dragon emergency abort scenarios launching from pad 40. Credit: Ken Kremer/www.kenkremer.com
Falcon 9 SpaceX CRS-2 launch of Dragon spacecraft on March 1, 2013 to the ISS from pad 40 at Cape Canaveral, Florida.- shot from the roof of the Vehicle Assembly Building. Credit: Ken Kremer/www.kenkremer.com

Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Learn more at Ken’s upcoming presentations at the NEAF astro/space convention on April 12/13 and at Washington Crossing State Park, NJ on April 6. Also evenings at the Quality Inn Kennedy Space Center, Titusville, FL, March 24/25 and March 29/30
.

And watch for Ken’s upcoming SpaceX launch coverage at Cape Canaveral & the Kennedy Space Center press site.

Ken Kremer

Bill Nye on Taking Astronomy with Carl Sagan

“This is how we know nature. It is the best idea humans have ever come up with.”
– Bill Nye, Science Guy and CEO of The Planetary Society

In this latest video from NOVA’s Secret Life of Scientists and Engineers, science guy Bill Nye talks about the incredible influence that Carl Sagan had on his life, from attending his lectures on astronomy at Cornell University to eventually becoming CEO of The Planetary Society, which was co-founded by Sagan in 1980.

“I took astronomy from Carl Sagan.” Now there’s a statement that’ll get people’s attention. (It got mine, anyway.)

See more videos in NOVA’s Secret Life series here.

Space Geek Heaven: Man’s ‘Museum’ Contains Thousands Of Collectables

Part of the vast set of space memorabilia of Joe Lennox, a private collector based in the New York City area. Credit: Joe Lennox

We’re all space geeks at Universe Today and are used to seeing collections of memorabilia, but there’s something about Joe Lennox’s that makes us set our phasers to stunned. Ever since John Glenn first rocketed to space 52 years ago, Lennox has been amassing a collection of newspaper articles, astronaut autographs, books and other memorabilia that he has on display in his New York City-area home.

As a child, he had to fight to save stuff with his sister; they eventually agreed to a “joint venture”, Lennox said. For 10 years, they clipped newspapers, wrote to NASA astronauts and space program employees (collecting their responses), and started branching out to movies and other things covering space exploration. Their mother allowed them to display the items in a back bedroom. Eventually, the interest of Lennox’s sister faded, but his only deepened.

The collection has been through a few moves; his parents moved in 1978, meaning the stuff had to be stored wherever Lennox could find storage space until he and his wife bought their own house in 1990. There’s a spare bedroom available to display the collection, but the pictures indicate it’s simply bursting with items.

“My only problem is I don’t have enough room, because obviously as the years go by, I write (more) letters and purchase things,” Lennox told Universe Today.

Patches adorn a wall in the private collection of Joe Lennox, a New York City-area space fan who has a vast space-y collection. Credit: Joe Lennox
Patches adorn a wall in the private collection of Joe Lennox, a New York City-area space fan who has a vast space-y collection. Credit: Joe Lennox

Lennox makes sure to display his collection as carefully as he can. Scrapbook pages are acid-free, and letters are stored in acid-free folders as well. He says he has received space hardware (sometimes flown hardware) from contractors and others over the years, which he keeps in sealed display cases. Anything that remains outside of a sealed environment gets covered with a cloth when he’s not showing off the collection to house visitors.

It would be very difficult for a space fan to build such a collection today, he adds. NASA’s rules about “flown items” and other space memorabilia are tougher, with most items going to places such as the Smithsonian. Fewer people seem to answer his letters, too, Lennox said. “In the old days, if I wrote 100 letters, I would venture to say we got 95 really, really good responses. Today, if I wrote 100 letters I might get five responses. It’s very depressing, I got to tell you.”

With Lennox’s interest, a natural next question would be to ask if he ever considered working for NASA itself. While he never got that chance, the story ends up being a good one for the schoolkids he regularly speaks with.

Joe Lennox speaking with schoolchildren about space exploration in this undated photo. Credit: Joe Lennox
Joe Lennox speaking with schoolchildren about space exploration in this undated photo. Credit: Joe Lennox

Lennox said he never wanted to be an astronaut — “I’m not smart enough and don’t have the courage”  — but he did have aspirations to be a flight controller. He said he began his university engineering studies with the idea for working for NASA, and happily worked away at his degree for a year and a half. Then he discovered he was going blind, requiring two corneal transplants.

The transplants worked, but it delayed his studies by four years and his eyesight was not as good as it used to be, meaning Lennox felt it was best to switch careers. He ended up in the banking industry, still writing letters to NASA and others the entire time. Now retired, he’s switching his energies over to teaching kids about space.

“I give presentations throughout New Jersey, 45 or 50 a year, where I go and I teach people about the space program,” he said. “I teach kids, I teach adults, I have probably 30 or 40 different presentations.”

His big message: “I want the children to understand they should never give up on their goals. If they have a goal in their life and it seems it can’t be reached because of health, like me, or money or relocation or whatever, they still can do it.”

You can see more pictures of Lennox’s “museum” below or at his website. He said he has willed the collection to an Orlando-area museum upon his death, meaning it could be viewable by the public in generations to come.

Books from the collection of Joe Lennox, a space fan with a vast collection of space memorabilia in the New York City area. Credit: Joe Lennox
Books from the collection of Joe Lennox, a space fan with a vast collection of space memorabilia in the New York City area. Credit: Joe Lennox
A signed picture from now-retired Canadian astronaut Chris Hadfield is part of the large space memorabilia collection that Joe Lennox has. The inscription reads, "To Joe Lennox: Many thanks for your unparalleled support and enthusiasm. Chris Hadfield / STS-74 / MS1." Credit: Joe Lennox
A signed picture from now-retired Canadian astronaut Chris Hadfield is part of the large space memorabilia collection that Joe Lennox has. The inscription reads, “To Joe Lennox: Many thanks for your unparalleled support and enthusiasm. Chris Hadfield / STS-74 / MS1.” Credit: Joe Lennox
An Apollo 11 first-day cover in the collection of Joe Lennox, a New York City-area space collector. Credit: Joe Lennox
An Apollo 11 first-day cover in the collection of Joe Lennox, a New York City-area space collector. Credit: Joe Lennox
Joe Lennox's collection includes a vast set of space-related items, including some that he says were used by astronauts. Source: Joe Lennox
Joe Lennox’s collection includes a vast set of space-related items, including some that he says were used by astronauts. Source: Joe Lennox