Supermassive Black Hole’s Dizzying Spin Is Half The Speed Of Light

This photo combination shows the quasar RX J1131-1231 imaged by NASA's Chandra X-ray Observatory and the Hubble Space Telescope. Credit: X-ray: NASA/CXC/Univ of Michigan/R.C.Reis et al; Optical: NASA/STScI

The spin rate of the most distant supermassive black hole has been measured directly, and wow, is it fast. X-ray observations of  RX J1131-1231 (RX J1131 for short) show it is whizzing around at almost half the speed of light. Through X-rays, the astronomers were able to peer at the rate of debris fall into the singularity, yielding the speed measurement.

“We estimate that the X-rays are coming from a region in the disk located only about three times the radius of the event horizon — the point of no return for infalling matter,” stated Jon Miller, an an associate professor of astronomy at the University of Michigan and a co-author on the paper. “The black hole must be spinning extremely rapidly to allow a disk to survive at such a small radius.”

Supermassive black holes are embedded in the heart of most galaxies, and are millions or even billions of times for massive than the Sun. This makes the spin speed astonishingly fast, but also gives astronomers clues about how the host galaxy evolved.

“The growth history of a supermassive black hole is encoded in its spin, so studies of spin versus time can allow us study the co-evolution of black holes and their host galaxies,” stated Mark Reynolds, an assistant research scientist in astronomy at University of Michigan, another co-author on the study.

An artist's conception of jets protruding from a quasar. Credit: ESO/M. Kornmesser
An artist’s conception of jets protruding from a quasar. Credit: ESO/M. Kornmesser

RX J1131 is six billion light-years away from Earth and classified as a quasar, a type of object that occurs when a lot of matter plunges into a supermassive black hole.

“Under normal circumstances, this faraway quasar would be too faint to study. But the researchers were able to take advantage of a sort of natural telescope effect known as gravitational lensing and a lucky alignment of the quasar and a giant elliptical galaxy to get a closer view,” the University of Michigan stated.

“Gravitational lensing, first predicted by Einstein, occurs when the gravity of massive objects acts as a lens to bend, distort and magnify the light from more distant objects as it passes.”

In this case, the researchers used the Chandra X-ray Observatory and the European Space Agency’s XMM-Newton Telescope to capture the X-ray images.

The research was led Rubens Reis, a postdoctoral research fellow in astronomy the University of Michigan. The paper is published today (March 5) in Nature.

For further reading, see the Chandra website and the associated NASA press release.

Source: University of Michigan

Daylight Saving Time: A Spring Forward or a Step Back?

The tricky business of keeping time... the Astronomical Clock in Prague, Czech Republic.

 The time to change clocks is once again nigh.

We’ll put our unabashed bias as a lover of the night sky right up front: we loathe Daylight Saving Time. And it’s not just because of the biannual hunt through our home for the dozen-odd non-networked clocks that it instigates twice a year. For astronomers, the shift to DST means that true darkness falls much later in the evening, marking the abrupt end of the school star party season not long after March. You don’t have to go far north to about latitude 45 degrees to find areas where it doesn’t get dark until about 11PM local towards mid-summer. And sure, we gain back an extra hour of morning darkness, albeit that too soon dwindles towards summer as well.

In 2014 we (as in a majority of North America) spring forward one hour on March 9th at 2:00 AM local. That’s just one day shy of the earliest that we can now spring forward, as the current convention established by the Energy Policy Act of 2005 during the Bush administration that was enacted in 2007 now sets the beginning of DST as the 2nd Sunday in March.

We’re now on DST for about roughly eight months or 67% of the calendar year. The European Union still shifts forward on the last Sunday of March, meaning that for a span of three weeks every March, the time lag between, say, Eastern Daylight Time and British Standard Time closes briefly to four hours before opening up again to five hours.

Current DST usage worldwide. Regions in blue currently use DST, orange have scrapped DST, and regions in red have never used DST. Credit: Paul Eggert under a wikimedia Creative Commons Attribution-Share Alike 3.0 Unported license.
Current DST usage worldwide. Regions in blue currently use DST, orange have scrapped DST, and regions in red have never used DST. Credit: Paul Eggert under a Wikimedia Creative Commons Attribution-Share Alike 3.0 Unported license.

And that’s just for starters.

Of course, there are holdouts even among DST observing countries worldwide. The states of Arizona and Hawaii do not observe DST, nor did a portion of Indiana until 2006. When DST is in effect, you can touch on three time zones in just a few hours’ drive from southeastern Arizona crossing southern New Mexico and into Texas east of El Paso. And you can really mix things up driving across the Navajo nation in northeastern Arizona – which observes DST, unlike the rest of the state – into the Hopi Reservation embedded within it, which rejects DST.

In Canada, most of Saskatchewan ignores DST, as do small portions of British Columbia, Quebec and Nunavut. In 2011, Russia opted to remain on Daylight Saving Time year round, and Australia is sharply divided on the issue of keeping DST. Of course, in the southern hemisphere, astronomical spring and fall are reversed, making UK/US/Australia teleconference scheduling even more confusing this time of year, not to mention the often bewildering state of affairs faced by computer programmers seeking to include every new rule and nuisance concerning local timekeeping worldwide.

1918 Poster espousing the benifits of the first DST shift for the U.S. Credit: U.S. Library of Congress image in the Public Domain.
1918 Poster espousing the benefits of the first DST shift for the U.S. Credit: U.S. Library of Congress image in the Public Domain.

Most folks trace the notion of daylight saving time back to Benjamin Franklin, though DST saw its first implementation by Axis powers in 1916 as a cost saving measure. In the United States, the Standard Time Act of 1918 put DST into effect for the first time, and it was an on again, off again affair through most of the 20th century.

And it’s not just your imagination: we do spring forward earlier and fall back later in the year than we used to. The Uniform Time Act was amended in 1986 to begin DST on the first Sunday in April and run until the last Sunday in October. And as mentioned previously, the Energy Policy Act of 2005 modified this even further under President George W. Bush to our present state of affairs, starting DST on the second Sunday of March through the first Sunday in November.

The primary rational behind DST use is to cut energy consumption. Studies done by the U.S. Department of Transportation during the adoption of DST during the 1970’s OPEC Oil Embargo and the energy crisis showed a small but measurable net savings during the implementation of DST, as well as a small decrease in the crime rate. On the down side, many find it difficult to adjust their body clocks to the shift, with many morning commuters now confronted with darkness.

Is DST a conspiracy of the golf crowd and/or the candy lobby? Anecdotal tales abound that some senators simply wanted few more hours on the course each evening, and “Big Sugar” (a great pro-wrestling name, BTW) was all too willing to oblige. Certainly, we do our trick-or-treating in the daylight now on the last day of October, and will soon be waiting later and later each Sunday evening for astronomical darkness and the start of the Virtual Star Party

But there are some rumblings of change. This year, Idaho is pushing to scrap DST altogether. And, as is the norm in the often curious state of Florida, lawmakers have proposed to swing even further in the other direction, with a bill dubbed the “Sunshine Protection Act” looking to put the entire state on permanent DST year round in hopes of increasing tourism.

And just last year, a failed White House petition brought up the issue of ending DST. Perhaps their misspelling of DST as “Daylight Savings” (a frequent mistake) detracted from its credibility. What is it that makes us just want to throw that spurious “s” in there?

And that’s the wacky state of time we’re stuck with. Yes, we’ll be ferreting out those non-networked clocks around Astroguyz HQ Sunday morning, bleary from the loss of an hours’ sleep.

Our modest proposal is to do away with DST and time zones entirely, and adopt the use of Universal Time (also referred to as Zulu or Greenwich Mean Time) across the board. I know, it’s a tall order. In the meantime, we’ll be saying #DownWithDST on Twitter, as we await true astronomical darkness at an ever later hour.

And with that, we’ll open the debate up to you, the astute and intelligent readership of Universe Today. Is Daylight Saving Time worth it?

Astronaut Bill Pogue, Dead At 84, Took Part In Longest Manned Mission Of His Time

NASA astronaut Bill Pogue prior to the launch of Skylab 4 in 1973. Credit: NASA

As the International Space Station prepares to host its first one-year visit next year, it’s worth remembering that NASA didn’t just decide to send one of its astronauts into space that long suddenly. The decision to do that was built on years, nay, decades of experience of long-duration spaceflights and studies on how the human body changes, both in the American and Russian programs.

One of those more memorable excursions was NASA’s Skylab 4 in 1973-4, which Bill Pogue (reported dead yesterday at 84) took part in. In the mission’s 84 days — the longest manned excursion at the time — a lot happened. There was a dispute between ground control in the astronauts that some call a mutiny, but others disagree with. Also, the astronauts were tasked with observing a comet from orbit that was billed as the biggest one of the century, but showed up as a disappointing wash.

Although Skylab is not as well-known among the public today, it was NASA’s first space station and taught the agency a lot about working for the long run in space. In the moments after the station launched, a micrometeoroid shield intended to protect the station’s workshop tore away, exposing the station to harsh solar radiation. The first crew to arrive at Skylab in 1973 (called Skylab 2) had to do emergency fixes on the overheated station before they were able to use it.

Both Skylab 2 and 3 included veteran astronauts on its crews, but Skylab 4 was different. The three men launching to the station Nov. 16, 1973 were all space rookies (Jerry Carr, Ed Gibson, and Bill Pogue), although it should be noted they were sent after plenty of training on the ground and years of experience supporting other crews.  Their mission, however, got off to a bad start.

Skylab 4 NASA astronaut Bill Pogue (upside-down) with Jerry Carr. The mission ran from Nov. 16, 1973, to Feb. 8, 1974. Credit: NASA
Skylab 4 NASA astronaut Bill Pogue (upside-down) with Jerry Carr. The mission ran from Nov. 16, 1973, to Feb. 8, 1974. Credit: NASA

“The crew …  had problems during activation of the workshop that earlier crews had not faced,” reads a chapter of the NASA publication Skylab, Our First Space Station.

“One of its first tasks was to unload and stow within the spacecraft thousands of items needed for their lengthy manned period. The schedule for the activation sequence dictated lengthy work periods with a large variety of tasks to be performed. The crew soon found themselves tired and behind schedule. As the activation period progressed, the astronauts complained of being pushed too hard. Ground crews disagreed; they felt that the flight crew was not working long enough or hard enough.”

What happened next was what some termed a mutiny, and others a reasonable break in work task, as the astronauts took a day off. Another NASA publication, Lifting Aloft: Human Requirements for Extended Spaceflight, says the agency learned a valuable lesson about overprogramming astronauts on longer missions, but notes there were reports of the crew being hostile towards the ground nonetheless.

Skylab 4 commander Gerry Carr flies an astronaut maneuvering experiment in the Skylab space station in December 1973. Credit: NASA
Skylab 4 commander Gerry Carr flies an astronaut maneuvering experiment in the Skylab space station in December 1973. Credit: NASA

Once the crew members and ground control had a discussion about the situation, however, relations reportedly improved. And the crew did much before its Feb. 8, 1974 landing, exceeding its scheduled expectations. For example, they made observations of Comet Kohoutek, which was hyped by some publications such as Time as the “comet of the century” (a phrase that likely sounds familiar to bitter Comet ISON watchers of 2013.) The comet was not as bright as some observers hoped, but still bright enough from orbit for the crew to do visible and ultraviolet light observations.

The crew also reported back on the value of exercise in orbit. International Space Station astronauts typically do two hours a day; the Skylab astronauts did several types for 1.5 hours. Equipment they used included a bicycle ergometer and a treadmill. They did long-term observations of the Earth and the Sun (at a time when there were few space-based observations of our closest star.) Pogue also performed two spacewalks, accumulating 13 hours and 31 minutes of experience “outside.”

Pogue, a veteran of the Korean war and past USAF Thunderbird member, had extensive experience in both American, British and Czech aircraft before being selected as one of a group of 19 astronauts in April 1966, just before the Apollo moon program started. He was a member of the astronaut support crews for Apollos 7, 11 and 14 and was supposed to head to the moon himself on Apollo 19 before that flight was cancelled. Pogue left NASA in 1977, four years before the shuttle program began, and worked as an aerospace consultant.

SOFIA Snapshots: Jupiter And Starbirth Among Achievements For Observatory Facing Sidelines

SOFIA, accompanied by an F/A-18 during the open-door testing in December of 2009. Image Credit: NASA/Jim Ross

Just weeks after becoming fully operational, the Stratospheric Observatory for Infrared Astronomy (SOFIA) is facing storage in 2015. The airborne observatory costs NASA about $85 million annually, making it one of the more expensive missions the agency has. Yesterday, administrator Charlie Bolden told reporters that it was a matter of making choices, and that the money from SOFIA could go to missions such as Cassini.

This isn’t the first time that SOFIA faced budget challenges. Back in 2006, for example, NASA placed the program on hold due to several program and budget challenges that are outlined in this Universe Today article, but after a review the observatory program moved forward.

Much of the expense comes from flying the modified 747 airplane to carry the telescope, which was built by the Germans and has a mirror of about 2.5 meters (100 inches). NASA said it is possible that DLR could take on more of the cost, and said it is in discussions with the German space agency to figure out the telescope’s future.

The telescope saw its first light in 2010. Here are some of the special things it’s spotted in three years and about 400 hours of flying.

Mighty Jupiter’s heat

Infrared image of Jupiter from SOFIA’s First Light flight composed of individual images at wavelengths of 5.4 (blue), 24 (green) and 37 microns (red) made by Cornell University’s FORCAST camera. A recent visual-wavelength picture of approximately the same side of Jupiter is shown for comparison. The white stripe in the infrared image is a region of relatively transparent clouds through which the warm interior of Jupiter can be seen. (Visual image credit: Anthony Wesley)
Infrared image of Jupiter from SOFIA’s First Light flight composed of individual images at wavelengths of 5.4 (blue), 24 (green) and 37 microns (red) made by Cornell University’s FORCAST camera. A recent visual-wavelength picture of approximately the same side of Jupiter is shown for comparison. The white stripe in the infrared image is a region of relatively transparent clouds through which the warm interior of Jupiter can be seen. (Visual image credit: Anthony Wesley)

This is one of the first observations that SOFIA performed. “The crowning accomplishment of the night came when scientists on board SOFIA recorded images of Jupiter,” said USRA SOFIA senior science advisor Eric Becklin in 2010. “The composite image from SOFIA shows heat, trapped since the formation of the planet, pouring out of Jupiter’s interior through holes in its clouds.”

M82 supernova

Image of M82 including the supernova at near-infrared wavelengths J, H, and K (1.2, 1.65, and 2.2 microns), made Feb. 20 by the FLITECAM instrument on SOFIA. (NASA/SOFIA/FLITECAM team/S. Shenoy)
Image of M82 including the supernova at near-infrared wavelengths J, H, and K (1.2, 1.65, and 2.2 microns), made Feb. 20 by the FLITECAM instrument on SOFIA. (NASA/SOFIA/FLITECAM team/S. Shenoy)

Although a lot of observatories are checking out the recent star explosion, SOFIA’s observations found heavy metals being thrown out in the supernova. “When a Type Ia supernova explodes, the densest, hottest region within the core produces nickel 56,” said Howie Marion from the University of Texas at Austin, a co-investigator aboard the flight, a few days ago. “The radioactive decay of nickel-56 through cobalt-56 to iron-56 produces the light we are observing tonight. At this life phase of the supernova, about one month after we first saw the explosion, the H- and K-band spectra are dominated by lines of ionized cobalt. We plan to study the spectral features produced by these lines over a period of time and see how they change relative to each other. That will help us define the mass of the radioactive core of the supernova.”

A star nursery

This mid-infrared image of the W40 star-forming region of the Milky Way galaxy was captured recently by the FORCAST instrument on the 100-inch telescope aboard the SOFIA flying observatory. (NASA / FORCAST image)
This mid-infrared image of the W40 star-forming region of the Milky Way galaxy was captured recently by the FORCAST instrument on the 100-inch telescope aboard the SOFIA flying observatory. (NASA / FORCAST image)

In 2011, SOFIA turned its eyes to star-forming region W40 and was able to peer through the dust to see some interesting things. The telescope was able to look at the bright nebula in the center, which includes six huge stars that are six to 20 times more massive than the sun.

Stars forming in Orion

SOFIA’s mid-infrared image of Messier 42 (right) with comparison images of the same region made at other wavelengths by the Hubble Space Telescope (left) and European Southern Observatory (middle). (Credits: Visible-light image: NASA/ESA/HST/AURA/STScI/O’Dell & Wong; Near-IR image: ESO/McCaughrean et al.; Mid-IR image: NASA/DLR/SOFIA/USRA/DSI/FORCAST Team)
SOFIA’s mid-infrared image of Messier 42 (right) with comparison images of the same region made at other wavelengths by the Hubble Space Telescope (left) and European Southern Observatory (middle). (Credits: Visible-light image: NASA/ESA/HST/AURA/STScI/O’Dell & Wong; Near-IR image: ESO/McCaughrean et al.; Mid-IR image: NASA/DLR/SOFIA/USRA/DSI/FORCAST Team)

These three pictures demonstrate how one famous star-forming region — in the Orion nebula — appears different in three different telescopes. As NASA wrote in 2011, “SOFIA’s observations reveal distinctly different aspects of the M42 star formation complex than the other images. For example, the dense dust cloud at upper left is completely opaque in the visible-light image, partly transparent in the near-infrared image, and is seen shining with its own heat radiation in the SOFIA mid-infrared image. The hot stars of the Trapezium cluster are seen just above the centers of the visible-light and near-infrared images, but they are almost undetectable in the SOFIA image. At upper right, the dust-embedded cluster of high-luminosity stars that is the most prominent feature in the SOFIA mid-infrared image is less apparent in the near-infrared image and is completely hidden in the visible-light image.”

BUDGET 2015: Flying SOFIA Telescope To Be Shelved For ‘Higher-Priority’ Programs Like Cassini

NASA's Stratospheric Observatory for Infrared Astronomy 747SP aircraft flies over Southern California's high desert during a test flight in 2010. Credit: NASA/Jim Ross

NASA is prepared to axe an airborne telescope to keep “higher-priority” programs such as the Saturn Cassini mission going, according to budget documents the agency released today (March 4). We have more information about the budget below the jump, including the rationale for why NASA is looking to shelve its Stratospheric Observatory for Infrared Astronomy (SOFIA).

NASA’s  has been flying the telescope for just over three years and recently took some nice snapsnots of the M82 supernova that astronomers have been eager to image. The agency’s administrator, however, said SOFIA has had its shot and it’s time to reallocate the money for other programs.

“SOFIA has earned its way, and it has done very well, but we had to make a choice,” said NASA administrator Charlie Bolden in a conference call with reporters regarding the fiscal 2015 $17.46 billion budget request. He added that NASA is in discussions with partner DLR (the German space agency) to look at alternatives, but pending an agreement, the agency will shelve the telescope in 2015.

In a short news conference focusing on the telescope only, NASA said the observatory had been slated to run for another 20 years, at a cost of about $85 million on NASA’s end per year. (That adds up to $1.7 billion in that timeframe by straight math, but bear in mind the detailed budget estimates are not up yet, making that figure a guess on Universe Today’s part.) DLR funds about 25% of the telescope’s operating budget, and NASA the rest.

NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) during a flight in 2010. Credit: NASA
NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA) during a flight in 2010. Credit: NASA

“SOFIA does have a rather large operating cost compared to other missions, second only to Hubble [Space Telescope],” said NASA chief financial officer Beth Robinson in the second conference call. “There is a distinct trade in the operating mission universe about how many keep going and how much you free up (for new missions).”

The telescope isn’t the only such “trade” NASA made, Robinson added. Although not an exhaustive list, she said funding for the Orbiting Carbon Observatory 3 (OCO-3) is not in the base budget request, nor funding to accelerate development of the Pre-Aerosol, Clouds and ocean Ecosystem (PACE) mission.

SOFIA examines a “unique” part of the infrared spectrum, added NASA’s Paul Hertz, who heads the astrophysics division, but he noted infrared science is also performed by the Spitzer Space Telescope and the European Southern Observatory’s Atacama Large Millimeter Array. Coming up soon is the James Webb Space Telescope. Also, the budget allocates development money for a new infrared observatory called Wide-Field Infrared Survey Telescope (WFIRST).

Below are other notable parts of the 2015 budget. These are high-level statements missing some detail, as the rest of NASA’s documentation won’t be released publicly until late this week or early next.

The full mosaic from the Cassini imaging team of Saturn on July 19, 2013… the “Day the Earth Smiled”
The full mosaic from the Cassini imaging team of Saturn on July 19, 2013… the “Day the Earth Smiled”

– NASA’s budget falls overall to $17.46 billion, down one percent from $17.64 billion. Planetary science and human exploration each had nearly equal reductions of around three percent, with education taking the deepest cut (24%) in high-level categories as NASA moves to consolidate that directorate with other agencies.

– Funding continues for 14 operating planetary missions, which are presumably the same 14 missions that are contained here. (That list includes Cassini, Dawn, Epoxi, GRAIL, Juno, Lunar Reconnaissance Orbiter, Mars Exploration Rover/Opportunity, Mars Express, Mars Odyssey, Mars Reconnaissance Orbiter, Mars Science Laboratory/Curiosity, MESSENGER, New Horizons and Rosetta.) Separately, James Webb Space Telescope funding stays about the same as fiscal 2014, keeping it on track for a 2018 launch.

– NASA plans a mission to Europa. This was identified as the “second highest priority Flagship mission for the decade” in the National Research Council planetary science decadal survey, which called for a mission for “characterization of Europa’s ocean and interior, ice shell, chemistry and composition, and the geology of prospective landing sites.” NASA has allocated $15 million in fiscal 2015 for this mission, but it’s unclear if it’s going to be a big mission or a small one as the agency is still talking with the science community (and presumably checking its budget, although officials didn’t say that). If this goes through, it would fly in the 2020s.

Reprocessed Galileo image of Europa's frozen surface by Ted Stryk (NASA/JPL/Ted Stryk)
Reprocessed Galileo image of Europa’s frozen surface by Ted Stryk (NASA/JPL/Ted Stryk)

– NASA’s humans-to-asteroid mission gets some more money. The agency requests $133 million for goals including “advancing solar electric propulsion and capture systems, and conduct of the Mission Concept Review in which the mission architecture will be established.” During the conference call with reporters, Bolden said the asteroid capture mission is a key step for NASA’s aim to have a manned Mars mission in the 2030s.

– Funding continues for NASA’s commercial crew program and Orion/Space Launch System program. It remains to be seen if the amounts allocated will be enough for what industry insiders hope for, but on a numbers basis, the Orion/SLS infrastructure funding falls to $2.78 billion (down 12% from $3.115 billion in FY 2014) and commercial crew funding increases to $848.3 million (up 20% from $696 million in FY 2014). Note the 2014 numbers are not finalized yet. NASA says the commercial funding will allow the program to maintain “competition”, although details are under wraps as the agency is evaluating proposals.

The International Space Station is extended to 2024. That news was made public in early January, but technically speaking that is a part of the fiscal 2015 budget.

There’s far more to the budget that could be covered in a single news article, and it should be noted there was an entire aviation component as well. We encourage you to check out the budget documents below for the full story so far.

2015 budget presentation

– 2015 budget overview

2015 budget overall fact sheet

2015 budget category fact sheets (science, aeronautics research, space technology, etc.)

BUDGET 2015: Ukraine Crisis Not Disrupting Russian Soyuz Flights, NASA Admin Says

Expedition 38 crew members proudly sport their national flags in this March 2014 picture from the International Space Station. Pictured (clockwise from top center) are Russian cosmonaut Oleg Kotov, commander; Japan Aerospace Exploration Agency astronaut Koichi Wakata, Russian cosmonaut Sergey Ryazanskiy, NASA astronauts Rick Mastracchio and Mike Hopkins, and Russian cosmonaut Mikhail Tyurin, all flight engineers. Credit: NASA

Astronauts are expected to leave the International Space Station on schedule next week, and training continues on the ground, despite a crisis in Ukraine that is disrupting American and Russian relations, NASA’s administrator said on Tuesday (March 4).

Russian troops moved into the Crimea region of Ukraine last week, triggering condemnation from the United States and other International Space Station partners. At least one ISS participant, Canada, has removed its ambassador from Moscow.

“Everything is nominal right now in our relationship with the Russians. We continue to monitor the situation,” said NASA administrator Charles Bolden in a conference call with reporters.

“The safety of our crews and our assets that has not changed. Safety is the No. 1 of NASA’s core values, so we are constantly doing contingency planning on the International Space Station for emergencies that might arise,” Bolden added, citing the emergency ammonia pump replacement in December as one such example.

“Those are the kinds of things we are always planning for, and in terms of the situation on the ground, we will go into contingency planning for that as the situation dictates. But right now, we don’t see any reason to do so,” he said.

Structure arms for Soyuz TMA-11M (the launching vehicle for Expedition 38) raise into place in this long-exposure photograph taken in Kazakhstan. Credit: NASA/Bill Ingalls
Structure arms for Soyuz TMA-11M (the launching vehicle for Expedition 38) raise into place in this long-exposure photograph taken in Kazakhstan. Credit: NASA/Bill Ingalls

The Russian Soyuz is currently the only way that NASA can bring humans to the space station, although the agency is developing a commercial crew program to start lifting off astronauts from American soil again in 2017. The Soyuz missions depart and return from Kazakhstan under an agreement Russia has with the former Soviet Union republic.

Expedition 38 (which includes Russia’s Oleg Kotov and Sergey Ryazanskiy, and NASA’s Michael Hopkins) is expected to depart the space station March 10. Expedition 39 is scheduled to head to the ISS March 25.

Bolden avoided questions asking what sorts of contingencies NASA would consider if tensions escalated, saying the agency would evaluate that situation if it occurs.

The administrator delivered his comments as part of a conference call concerning NASA’s 2015 budget, which would increase funding for the commercial crew program to $848.3 million, up 21% from a planned $696 million in 2014. Proposals are currently being evaluated and little was said about CCP, except to note that the amount of funding would allow the program to have “competition”, implying multiple companies will be funded.

 Russian Soyuz spacecraft, docked to the International Space Station. Credit: NASA.
Russian Soyuz spacecraft, docked to the International Space Station. Credit: NASA.

Russia was a key partner in the station’s construction from the beginning. It launched the first component (Zarya) to space in 1998, and the station today includes several other Russian modules and docking ports. Additionally, the Russians perform their own spacewalks using the Russian Orlan spacesuit. Cosmonauts also form a large percentage of ISS crews under space station utilization agreements.

NASA collaborations with Russia in space began with the Apollo-Soyuz Test Project in 1975, and expanded under an agreement that saw several shuttles dock with the Mir space station (and NASA astronauts train in Russia) in the 1990s.

Watch the Close Pass of NEO Asteroid 2014 DX110 Wednesday Night

The orbital path and position of Apollo NEO asteroid 2014 DX110 just a week prior to disocvery. Credit- Created using NASA/JPL's Solar System Dynamics Small-Body Database Browser.

BREAKING- No sooner than the cyber-ink was dry on this post than we got notice of another 10-metre NEO asteroid 2014 EC passing Earth at just under 0.2 times the Earth-Moon distance – less than 64,000 kilometres – on Thursday, March 6th at 21:18 UT/4:18 PM EST. And the Virtual Telescope will be carrying this passage live as well on March 6th starting at 19:00 UT/2:00 PM EST. Bring in on, universe!

The Earth-Moon system gets a close shave on the night of Wednesday, March 5th 2014 when Near Earth Object (NEO) asteroid 2014 DX110 passes our fair planet at 216,000 miles or about 345,600 distant at around 21:06 Universal Time (UT)/ 4:06 PM EST.

About 30 metres in diameter, 2014 DX110 was discovered by the Pan-STARRS 1 survey on February 28th, and its orbit was initially refined using follow up observations made by the Great Shefford Observatory in West Berkshire, England.

And although the asteroid is no threat to Earth or the Moon – it makes a pass 232,800 miles from our natural satellite one hour and 22 minutes after its closest passage from the Earth – the asteroid is currently listed on NASA’s risk page for a 1 in 10,000,000 chance of impact with Earth on March 4th, 2046.

Of course, additional observations usually lower this remote possibility even further in the case of most newly discovered near Earth asteroids.  Visually, 2014 DX110 isn’t expected to brighten above +15th magnitude as it glides northward through the constellation of Camelopardalis at closest approach Wednesday night.

But the good news is, you can catch the passage of 2014 through the Earth-Moon system Wednesday night courtesy of our friends at the Virtual Telescope Project:

The webcast of the event is expected to go live at 20:30 UT, and will include live commentary.

Its been a busy last few weeks in terms of asteroid flybys, including a passage of Amor NEO asteroid 2014 DU110 earlier today at 15:54 UT/10:54 AM EST at 0.14 A.U.s or just over 20 million kilometres distant. And the folks at the Virtual Telescope Project will be covering another asteroid flyby on Sunday, March 9th starting at 23:00 UT/6:00 PM EST to track the 180 meter asteroid 2014 CU13. This large Apollo NEO is projected to pass 8 lunar distances or over 3 million kilometres away from the Earth on March 11th at 9:05 UT/4:05 AM EST.

It should be easy to pick out the motion of 2014 DX110 moving against the starry background at closest approach in real time. 2014 DX110 is an Apollo-class asteroid, and has an orbital period of 1192 days or about 3.26 years. It also has a fairly shallow inclined orbit relative to the ecliptic traced out by Earth’s path around the Sun, with a tilt of just over 5.7 degrees. This means that 2014 DX110 is approaching the Earth from just southward and behind it in its orbit around the Sun before crossing just inside of our orbit and northward of the ecliptic plane.

The discovery of asteroid 2014 DX110 was announced by the Minor Planet Center on Sunday, March 2nd in electronic circular 2014-E22. The orbit of 2014 DX110 takes it just interior of Earth’s at a perihelion of 0.83 A.U.s from the Sun and out to an aphelion of 3.6 A.U.s into the realm of the asteroid belt between Mars and Jupiter.

Generally speaking, asteroids passing interior to the Moon’s orbit grab our attention for further scrutiny. Looking back through the European Space Agency’s Near-Earth Objects Dynamics Site, asteroid 2014 DX110 also made an undocumented close passage of Earth on March 17th, 1998 at a minimum possible miss distance of 102,300 miles/163,680 kilometres distant, and a similar passage March 22nd, 1982. 2014 DX110 passed sufficiently close enough to Earth on these passages to alter its orbit so that it now returns to our terrestrial neighborhood every 13 odd years during the span of the 21st century. 2014 DX110 will be moving at a velocity of 14.8 kilometres per second relative to Earth on closest approach Wednesday night and will be inside the Earth’s Hill sphere of gravitational influence from March 4th to March 7th, though of course, it’s moving much too fast for capture.

2014 DX110 will be interior of the Moon’s orbit from 18:06 UT/1:06 PM EST on March 5th until 00:07 UT March 6th (7:07 PM EST on the night of March 5th). The large size – about the size of an office block – and the nature of its orbit, coupled with its relatively large velocity relative to the Earth rule out any potential for 2014 DX110 being space junk in solar orbit returning to Earth’s vicinity, though such objects from the Apollo missions and the Chinese Chang’e-2 Moon mission have been recovered as Earth asteroids before.

Such an impact risk, however remote, merits further study to refine the orbit of this potentially hazardous space rock. Surveys such as PanSTARRS, the Catalina Sky Survey and the B612 Foundation’s asteroid hunting Sentinel  space telescope slated for launch as early as 2017 are working to identify dangerous space rocks. The next and more difficult step will be mitigation and working to nudge these asteroids out of harm’s way, hopefully years in advance.

But you can breathe a sigh of relief Wednesday night as asteroid 2014 DX110 passes us at a safe distance. Thanks to Gianluca Masi at the Virtual Telescope Project for bringing this one to our attention!

How Do You Kill a Black Hole?

How Do You Kill a Black Hole?

Black holes want to absorb all matter and energy in the Universe. It’s just a matter of time. So what can we do to fight back? What superweapons have been devised to destroy black holes?

Black holes are the natural enemies of all spacefaring races. With their bottomless capacity to consume all light and matter, it’s just a few septillion years before all things in the Universe have found their way into the cavernous maw of a black hole, crushed into the infinitely dense singularity. If Star Trek has taught us anything, it’s that it’s mankind’s imperative to survive against all odds.

So will we take this lying down?
Heck no!

Will we strike first and destroy the black holes before they destroy us?
Heck yes!

But how? How could you kill a black hole?
This… gets a little tricky.
Continue reading “How Do You Kill a Black Hole?”

Jellyfish-Like Galaxy Appears To Be Shedding All Over Space

A gas stream from galaxy ESO 137-001 shines brightly in X-rays captured by the Chandra X-Ray Observatory. The galaxy is captured in other wavelengths by the Hubble Space Telescope. Credit: NASA, ESA, CXC

Is that a tractor beam trying to latch on to galaxy ESO 137-001? While the bold blue stripe in the picture above looks like a Star Trek-like technology, this new picture combination captures a stream of gas shining brightly in X-rays.

The “galactic disrobing” is taking place as the galaxy moves through the center of a star cluster full of superheated gas, scientists said. You can see another shot of the chaos below the jump.

From Earth’s perspective, the galaxy (which looks a little like a jellyfish) is found in the Triangulum Australe (The Southern Triangle) , and is part of the Norma Cluster that is about 200 million light-years from the Milky Way (our own galaxy). ESO 137-001 is moving through a galaxy cluster called Abell 3627. All of the superheated gas in this region is making ESO 137-001 bleed gas from its own structure as it goes.

“These streaks are actually hot young stars, encased in wispy streams of gas that are being torn away from the galaxy by its surroundings as it moves through space,” stated the Hubble European Space Agency Information Centre. “This violent galactic disrobing is due to a process known as ram pressure stripping — a drag force felt by an object moving through a fluid. The fluid in question here is superheated gas, which lurks at the centres of galaxy clusters.”

“This image also shows other telltale signs of this process, such as the curved appearance of the disc of gas and dust — a result of the forces exerted by the heated gas,” the centre added. “The cluster’s drag may be strong enough to bend ESO 137-001, but in this cosmic tug-of-war the galaxy’s gravitational pull is strong enough to hold on to the majority of its dust — although some brown streaks of dust displaced by the stripping are visible.”

This stripping has been caught in other images, such as these 2007 and 2010 pictures from the Chandra X-Ray Observatory.

Source: Hubble European Space Agency Information Centre

A Hubble Space Telescope image of spiral galaxy ESO 137-001 moving through galaxy cluster Abell 3627. The tendrils (visible in ultraviolet light) are gas flowing away from the galaxy as it moves through superheated gas in the area. Credit: NASA, ESA
A Hubble Space Telescope image of spiral galaxy ESO 137-001 moving through galaxy cluster Abell 3627. The tendrils (visible in ultraviolet light) are gas flowing away from the galaxy as it moves through superheated gas in the area. Credit: NASA, ESA

Planets Plentiful Around Abundant Red Dwarf Stars, Study Says

Artist's impression of a planet orbiting a red dwarf star. Credit: University of Hertfordshire

Good news for planet-hunters: planets around red dwarf stars are more abundant than previously believed, according to new research. A new study — which detected eight new planets around these stars — says that “virtually” all red dwarfs have planets around them. Moreover, super-Earths (planets that are slightly larger than our own) are orbiting in the habitable zone of about 25% of red dwarfs nearby Earth.

“We are clearly probing a highly abundant population of low-mass planets, and can readily expect to find many more in the near future – even around the very closest stars to the Sun,” stated Mikko Tuomi, who is from the University of Hertfordshire’s centre for astrophysics research and lead author of the study.

The find is exciting for astronomers as red dwarf stars make up about 75% of the universe’s stars, the study authors stated.

The researchers looked at data from two planet-hunting surveys: HARPS (High Accuracy Radial Velocity Planet Searcher) and UVES (Ultraviolet and Visual Echelle Spectrograph), which are both at the European Southern Observatory in Chile. The two instruments measure the effect a planet has on its parent star, specifically by examining the gravitational “wobble” the planet’s orbit produces.

An artist's concept of a rocky world orbiting a red dwarf star. (Credit: NASA/D. Aguilar/Harvard-Smithsonian center for Astrophysics).
An artist’s concept of a rocky world orbiting a red dwarf star. (Credit: NASA/D. Aguilar/Harvard-Smithsonian center for Astrophysics).

Putting the information from both sets of data together, this amplified the planet “signals” and revealed eight planets around red dwarf stars, including three super-Earths in habitable zones. The researchers also applied a probability function to estimate how abundant planets are around this type of star.

The planets are between 15 and 80 light years away from Earth, and add to the 17 other planets found around low-mass dwarfs. Scientists also detected 10 weaker signals that could use more investigation, they said.

The study will be available shortly in the Monthly Notices of the Royal Astronomical Society and is available in preprint version at this link.

Source: University of Hertfordshire