For the past several years, astrophotographer John Chumack has lead a tour to Alaska on how to photograph the northern lights and the night sky, and this year was a great success. “We experienced perfect weather this year: 10 clear nights in a row, with an aurora display every night,” John said via email. Last week, we featured some of images from this year’s trip, but here are some additional images that are really amazing, plus John has put together a stunning timelapse from images he took on March 26, see below:
“Engineering helped create a world in which no injustice could be hidden,” the retired NASA astronaut (now deceased) said in that speech, explaining that engineering is more focused on envisioning possibilities than the facts-based science professions.
While Armstrong makes no direct reference to his historic 1969 moon landing in the speech, the animation is peppered with references including the famous “bootprint” picture taken by his crewmate, Buzz Aldrin.
We’d be interested in knowing what scientists or science fans think of his point of view. Is Armstrong’s view too limited for science, or an accurate description? Watch the video, and let us know in the comments.
As SpaceX pursues its quest of rocket reusability, it recently subjected the first stage of its next generation Falcon 9 rocket (called the Falcon 9-reusable or F9R) to a tie-down test ahead of some more heavy-duty work in the coming months and years. Early indications are that the test was a success, the firm said.
Details of the rocket are still scance on the SpaceX’s website, but the California-based company said that the rocket would generate about a million pounds of thrust at sea level, and 1.5 million pounds in space. It’s also a sort of follow-on from the leaping reusable Grasshopper rocket that retired last year.
Rockets are usually the “throwaway” items in a flight, but SpaceX is betting that by creating a reusable one that it will save on launch costs in the long run. (The rocket has been tested before, such as this long-duration one last June.)
“F9R test flights in New Mexico will allow us to test at higher altitudes than we are permitted for at our test site in Texas, to do more with unpowered guidance and to prove out landing cases that are more-flight like,” SpaceX stated in the YouTube video description.
Much like how an earthquake can teach us about the interior of the Earth, a starquake shows off certain properties about the inside of a star. Studying the closest star we have (the sun) has yielded information about rotation, radius, mass and other properties of stars that are similar to our own. But how do we apply that information to other types of stars?
A team of astronomers attempted to model the inside of a delta-Scuti, a star like Caleum that is about 1.5 to 2.5 times the mass of the sun and spins rapidly, so much more that it tends to flatten out. The model reveals there is likely a correlation between how these types of stars oscillate, and what their average density is. The theory likely holds for stars as massive as four times the mass of our sun, the team said.
“Thanks to asteroseismology we know precisely the internal structure, mass, radius, rotation and evolution of solar type stars, but we had never been able to apply this tool efficiently to the study of hotter and more massive stars,” stated Juan Carlos Suárez, a researcher at the Institute of Astrophysics of Andalusia who led the investigation.
What’s more, knowing how dense a star is leads to other understandings: what its mass is, its diameter and also the age of any exoplanets that happen to be hovering nearby. The astronomers added that the models could be of use for the newly selected Planetary Transits and Oscillations (PLATO) telescope that is expected to launch in 2024.
And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.
A newly-discovered star of magnitude +10.9 has flared to life in the constellation Cygnus the Swan. Koichi Nishiyama and Fujio Kabashima, both of Japan, made their discovery yesterday March 31 with a 105mm f/4 camera lens and electronic camera. They quickly confirmed the observation with additional photos taken with a 0.40-m (16-inch) reflector. Nothing was seen down to magnitude +13.4 in photos taken the on the 27th, but when they checked through images made on March 30 the star present at +12.4. Good news – it’s getting brighter!
While the possible nova will need confirmation, nova lovers may want to begin observing the star as soon as possible. Novae can brighten quickly, sometimes by several magnitudes in just a day. These maps should help you hone in on the star which rises around midnight and becomes well placed for viewing around 1:30-2 a.m. local time in the eastern sky. At the moment, it will require a 4-inch or larger telescope to see, but I’m crossing my fingers we’ll see it brighten further.
To see a nova is to witness a cataclysm. Astronomers – mostly amateurs – discover about 10 a year in our Milky Way galaxy. Many more would be seen were it not for dust clouds and distance. All involve close binary stars where a tiny but extremely dense white dwarfstar steals gas from its companion. The gas ultimately funnels down to the 150,000 degree surface of the dwarf where it’s compacted by gravity and heated to high temperature until it ignites in an explosive fireball. If you’ve ever wondered what a million nuclear warheads would look like detonated all at once, cast your gaze at a nova.
Novae can rise in brightness from 7 to 16 magnitudes, the equivalent of 50,000 to 100,000 times brighter than the sun, in just a few days. Meanwhile the gas they expel in the blast travels away from the binary at up to 2,000 miles per second.
Nishiyama and Kabashima are on something of a hot streak. If confirmed, this would be their third nova discovery in a month! On March 8, they discovered Nova Cephei 2014 at magnitude 11.7 (it’s currently around 12th magnitude) and 10th magnitude Nova Scorpii 2014 (now at around 12.5) on March 26. Impressive.
Charts for the two older discoveries are available on the AAVSO website. Type in either Nova Cep 2014 or TCP J17154683-3128303 (for Nova Scorpii) in the Star finder box and click Create a finder chart. I’ll update this article as soon as a chart for the new object is posted.
** UPDATE April 2, 2014: This star has been confirmed as a nova. You can print out a chart by going to the AAVSO website and following the instructions above using Nova Cyg 2014 for the star name. On April 2.4 UT, I observed the nova at magnitude 11.o.
When the United States helped defeat Germany at the end of World War II, they acquired the German rocket scientist Wernher von Braun. He had already developed the German V2 rocket program, and went on to design all the major hardware of the US rocket program. This week, we talk about von Braun’s life and accomplishments.
This will be the 6th year that the Virtual Telescope Project has on an online Messier Marathon, and they’ll be using their robotic telescopes, providing real time images — all while chatting and sharing the passion and excitement with people from around the world.
Pamela has a day job, remember? As an astronomer? Recently the 45th Lunar and Planetary Science Conference occurred in the The Woodlands, Texas. Pamela and guest astronomer Sondy Springmann will let us know about the big announcements made at this year’s conference.?
At first glance, this beautiful swirling view appears like clouds above a large body of water or possibly the eddies of ocean currents. Surprisingly, this is a desert, the Kavir desert (Dasht-e Kavir – literally ‘desert of salt-marsh’) in Iran, and the image was taken by one of the astronauts on the International Space Station.
You’ll notice the striking pattern of parallel lines and sweeping curves. NASA explains that the lack of soil and vegetation in this desert allows the geological structure of the rocks to appear quite clearly from space and the patterns result from the gentle folding of numerous, thin layers of rock. “Later erosion by wind and water cut a flat surface across the dark- and light-colored folds, not only exposing hundreds of layers but also showing the shapes of the folds. The pattern has been likened to the layers of a sliced onion,” NASA says.
While a quick look at Google Maps (see image below) shows that most of the region does appear to be sand-colored brown from space, there are regions with blue tints due to the folds and layers in the exposed surfaces, and the image is actually just a small part of the 77,600 square kilometer (30,000 sq mile) desert. It’s a bit difficult to get a sense of scale in the top image since there are no fields or roads to provide a reference, but the width of the image is about 105 kilometers (65 miles).
There is some water in this area, however. In the center of the NASA image is a dark s-shaped region is a lake and a small river snakes across the bottom of the image. The irregular, light-toned patch just left of the lake is a sand sheet thin enough to allow the underlying rock layers to be detected.