Here’s a wonderful view of the Sombrero Galaxy (M104, NGC 4594) in Virgo. This multi-hour, deep exposure was taken remotely by astrophotographer Ian Sharp from the Siding Spring Observatory in Australia over the past few weeks, with 12 hours of Luminance and 5 hours each on R, G and B channels.
The Sombrero Galaxy is a spiral galaxy that we see edge-on from Earth. Its outer dust lanes and bright central bulge aare visible in this wonderful image. There’s a zoomed out version, below, and you can see more of Ian Sharp’s great imagery at his website.
Here are the details of the equipment Ian Sharp used to take these images:
Optical Tube Assembly RCOS 12.5” F/9 (2857mm focal length) Carbon-Fibre Tube w/TCC2, PIR and FFC
Equatorial Mount Bisque Paramount ME
Imaging Camera Apogee F16M-D9 (KAF-16803) with 7 slot filter wheel
Imaging Camera Filters Astrodon Series II L,R,G,B, Ha (5nm), OIII (3nm) and SII (3nm)
Guide Camera MMOAG with SBIG ST-402ME
The system delivers a 44×44 arcmin FoV operating at .65 arcsec/pixel
Processed entirely in PixInsight.
Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.
Curiosity snaps selfie at Kimberley waypoint with towering Mount Sharp backdrop on April 27, 2014 (Sol 613). Inset shows MAHLI camera image of rovers mini-drill test operation on April 29, 2014 (Sol 615) into “Windjana” rock target at Mount Remarkable butte. MAHLI color photo mosaic assembled from raw images snapped on Sol 613, April 27, 2014. Credit: NASA/JPL/MSSS/Marco Di Lorenzo/Ken Kremer – kenkremer.com See more Curiosity photo mosaics below[/caption]
The answer has come Fast and Furious – “Drill, Baby, Drill !”
After spending the weekend inspecting an enticing slab of sandstone rock at “Kimberley”, the team directed NASA’s Curiosity rover to bore a test hole into a Martian rock target called “Windjana” on Tuesday, April 29, Sol 615, that exhibited interesting bumpy textures. See above our illustrative “Kimberley” photo mosaic.
“A decision about full drilling is planned in coming days,” NASA JPL press officer Guy Webster told me today.
Engineers commanded Curiosity to perform the so called “mini-drill” operation at “Windjana”- as the site of the robots third drilling operation since touching down on the Red Planet back in August 2012.
The 1 ton robot drilled a test hole 0.63 inch (1.6 centimeters) in diameter and to a depth of about 0.8 inch (2 centimeters) using the hammering drill at the terminus of the robotic arm.
Windjana is an outcrop of sandstone located at the base of a Martian butte named Mount Remarkable at “The “Kimberley” waypoint – a science stopping point reached by the rover in early April 2014 along its epic trek to towering Mount Sharp, the primary destination of the mission.
See our photo mosaics illustrating Curiosity’s science activities and drilling operations on “Windjana” and roving around the “Mount Remarkable” butte at “The Kimberley Waypoint” – above and below – by the image processing team of Marco Di Lorenzo and Ken Kremer.
The team is evaluating the resulting hole and powdery, gray colored tailings with the arm’s high resolution MAHLI camera and other instruments to determine whether to follow up with a deep drilling operation to a depth of 2.5 inches (6.4 centimeters).
To prepare for the “mini drill” operation, Curiosity first brushed the candidate drill site off with the wire-bristle Dust Removal Tool (DRT) this past weekend, to clear away obscuring Red Planet dirt and dust hindering observations with the cameras and spectrometers.
“In the brushed spot, we can see that the rock is fine-grained, its true color is much grayer than the surface dust, and some portions of the rock are harder than others, creating the interesting bumpy textures,” said Curiosity science team member Melissa Rice of the California Institute of Technology, Pasadena., in a NASA statement
“All of these traits reinforce our interest in drilling here in order understand the chemistry of the fluids that bound these grains together to form the rock.”
“Windjana,” is named after a gorge in Western Australia.
Why was Kimberley chosen as a science destination ?
“The Kimberley” has interesting, complex stratigraphy,” Curiosity Principal Investigator John Grotzinger, of the California Institute of Technology, Pasadena, told me.
If the team decides that Windjana meets the required criteria, Curiosity will bore a full depth hole into the sandstone rock, and then pulverize and filter it prior to delivery to the two onboard miniaturized chemistry labs – SAM and CheMin.
Windjana would be the first sandstone drill target, if selected. The first two drill locations at ‘John Klein’ and ‘Cumberland’ inside Yellowknife Bay were mudstone.
Curiosity departed the ancient lakebed at the Yellowknife Bay region in July 2013 where she discovered a habitable zone with the key chemical elements and a chemical energy source that could have supported microbial life billions of years ago – and thereby accomplished the primary goal of the mission.
Stay tuned here for Ken’s continuing Curiosity, Opportunity, Chang’e-3, SpaceX, Orbital Sciences, LADEE, MAVEN, MOM, Mars and more planetary and human spaceflight news.
We’ve discovered dozens of so-called “hypervelocity stars” — single stars that break the stellar speed limit. But today astronomers multiplied the number of these ‘runaway’ stars by hundreds of thousands. The Virgo Cluster galaxy, M87, has ejected an entire star cluster, throwing it toward us at more than two million miles per hour.
“Astronomers have found runaway stars before, but this is the first time we’ve found a runaway star cluster,” said lead author Nelson Caldwell of the Harvard-Smithsonian Center for Astrophysics, in a press release.
About one in a billion stars travel at a speed roughly three times greater than our Sun (which clocks in at 220 km/s with respect to the galactic center). At a speed that fast, these stars can easily escape the galaxy entirely, traveling rapidly throughout intergalactic space.
But this is the first time an entire star cluster has broken free.
What would cause an entire cluster — hundreds of thousands of stars packed together a million times more closely than in the neighborhood of our Sun — to reach such a tremendous speed?
Single hypervelocity stars have puzzled astronomers for years. But by observing their speed and direction, astronomers can trace these stars backward, finding that some began moving quickly in the Galactic Center. Here, an interaction with the supermassive black hole can kick a star away at an alarming speed. Another option is that a supernova explosion propelled a nearby star to a huge speed.
Caldwell and colleagues think M87 might have two supermassive black holes at its center. The star cluster wandered too close to the pair, which picked off many of the cluster’s outer stars while the inner core remained intact. The black holes then acted like a slingshot, flinging the cluster away at a tremendous speed.
The star cluster is moving so fast it should soon by sailing into intergalactic space. It may already be, but its distance remains unknown.
The team found the globular cluster — dubbed HVGC-1 — with a stroke of luck. They had been analyzing 2,500 globular cluster candidates for years. While a computer algorithm automatically calculated the speed of every cluster, any oddity was analyzed by hand.
Over 1,000 candidates have measured velocities between 500 and 3000 km/s. These speeds are typical for Virgo Cluster members. But HVGC-1 has a radial velocity of -1026 km/s. “This is the most negative, bulk velocity ever measured for an astronomical object not orbiting another object,” writes Caldwell.
“We didn’t expect to find anything moving that fast,” said coauthor Jay Strader of Michigan State University.
Future measurements pinpointing the exact distance to the globular cluster will help shed light on its exact origins.
The paper will be published in The Astrophysics Journal Letters and is available for download here.
Striking a Buzz Lightyear-like pose above is the winning design for NASA’s Z-2 spacesuit prototype. The version, called “technology”, was by far the popular vote in an online contest the agency held to choose between three prototypes, garnering 62% of 233,431 votes.
While this will never be used in space, NASA said the next-generation prototype will be useful in helping design future spacesuits. And this prototype will go through a “test campaign” that includes vacuum tests, pool tests in NASA’s Neutral Buoyancy Laboratory and in an area at the Johnson Space Center that simulates the surface of Mars.
“With the agency laser focused on a path to Mars, work to develop the technologies astronauts one day will use to live and work on Mars has already begun. Each iteration of the Z-series will advance new technologies that one day will be used in a suit worn by the first humans to step foot on the Red Planet,” NASA stated.
To learn more about the suit and the differences from its predecessor, the Z-1, check out this recent Universe Today article.
Video released today by SpaceX confirms the landing legs deployed successfully on the Falcon 9’s first stage booster, paving the way for future vertical soft touchdowns on land. SpaceX’s next-generation Falcon 9 rocket was tested following the launch of the CRS-3 mission for the Dragon spacecraft, which launched from Cape Canaveral Air Force Station on April 18. This was the first test of the landing legs deployment with a re-entry burn and soft landing in the Atlantic Ocean.
The SpaceX CEO had mentioned the success during a post launch briefing and later tweeted further updates that the Falcon 9 first stage actually made a good water landing despite rough seas, with waves swelling at least six feet. He also spoke briefly of the success during a news conference at the National Press Club on April 25, saying video would be released soon.
The video above is actually a cleaned-up (repaired) version of the original. There are a short few frames which show the landing legs deployed just before splashdown, which Musk highlighted in a recent Tweet. Obviously this is not the greatest-quality video ever released, but exciting still the same. SpaceX is actually looking for help in cleaning up the video even further.
Between the time you got to work this morning and the time you leave today — assuming an eight-hour work cycle — an entire day will have passed on Beta Pictoris b, according to new measurements of the exoplanet.
This daily cycle, mapped for the first time on a planet outside of the solar system, may reveal a link between how big a planet is and how fast it rotates, astronomers stated. That said, caution is needed because there are only a handful of planets where the rotation is known: the eight planets of our Solar System and Beta Pictoris b.
The planet’s day is shorter than any other planet in our Solar System, which at first blush makes sense because the planet is also larger than any other planet in our Solar System. Beta Pictoris b is estimated at 16 times larger and 3,000 times more massive than Earth. (For comparison, Jupiter is about 11 times larger and 318 times more massive than Earth.)
“It is not known why some planets spin fast and others more slowly,” stated says co-author Remco de Kok, “but this first measurement of an exoplanet’s rotation shows that the trend seen in the Solar System, where the more massive planets spin faster, also holds true for exoplanets. This must be some universal consequence of the way planets form.”
Astronomers mapped the planet’s equatorial rotation using the CRIRES instrument on the Very Large Telescope. What helped was not only the planet’s large size, but also its proximity to Earth: it’s about 63 light-years away, which is relatively close to us.
As the planet ages (it’s only 20 million years old right now) it is expected to shrink and spin more quickly, assuming no other external forces. The Earth’s rotation is slowed by the moon, for example.
The study (“Fast spin of a young extrasolar planet” will soon be up on Nature’s website and was led by Leiden University’s Ignas Snellen.
Observatories around the world and in space have been honed-in on the center of our galaxy, looking for possible fireworks to erupt as a mystery object heads towards our galaxy’s supermassive black hole. The object – called G2 – is being watched in an intense observing campaign across all wavelengths with multiple observatories. This is the first time astronomers have been able to watch an encounter with a black hole like this in real time, and the hope is that watching G2’s demise will reveal not only what this object actually is, but also provide more information on how matter behaves near black holes and how supermassive black holes “eat” and evolve.
“We’re indeed working on new observation of G2 right now,” astronomer Leo Meyer from UCLA told Universe Today, “and we’re in a position to make a significant new statement about it very soon.”
G2 was first spotted in 2011 and was quickly deemed to be heading towards our galaxy’s supermassive black hole, called Sgr A*. Astronomers estimate G2 has a mass roughly three times that of Earth (versus the black hole, which is 4 million times the mass of our Sun). G2 is not falling directly into the black hole, but it will pass Sgr A* at about 100 times the distance between Earth and the Sun. But that’s close enough to predict that G2 is doomed for destruction.
By last July, observations from the Very Large Telescope showed the object being stretched over more than 160 billion kilometers by the black hole’s extreme gravitational field.
Closest approach was expected to have happened by now (April 2014), but nobody’s talking publicly yet about what has been observed, although Meyer hinted news would be coming soon.
The last notification on the G2 Gas Cloud Wiki page (put together by Stefan Gillessen of the Max Planck Institute in Germany, who has lead several observing runs) was posted on April 21, 2014. This notification reported no strong flare of Sgr A* although it was around the expected time peri-center passing for G2, but there has been a rather constant radio detection of 22 GHz at that location with Japanese VLBI Network.
Northwestern University’s Daryl Haggard said in an early April 2014 press release that recent Chandra observations do not show any enhanced emissions in X-rays, adding “from the X-ray perspective, the gas cloud is late to the party, but it remains to be seen whether G2 is fashionably late or a no show.”
And that points to one question about G2: what is it exactly? Haggard called it a gas cloud, but UCLA astronomer Andrea Ghez said there’s actually a debate about what it is.
“There are two camps on that,” she told Universe Today. “Some people have suggested this is a gas cloud. But I think it’s a star. Its orbit looks so much like the orbits of other stars. There’s clearly some phenomenon that is happening, and there is some layer of gas that’s interacting because you see the tidal stretching, but that doesn’t prevent a star being in the center.”
Some astronomers argue that they aren’t seeing the amount of stretching or “spaghettification” that would be expected if this was just a cloud of gas.
Meyer said the stretching from the object tidally reacting to the back hole clearly points to gas, but that doesn’t tell you if something is hidden inside it or not.
“While it is getting stretched, the luminosity is staying surprisingly constant, and that is puzzling the theorists,” Meyer said.
Another puzzle is the timing of when G2’s closest approach would take place. When news of G2 first broke, it was thought that the time of closest approach to the black hole would be in mid-2013. But further observations determined that that estimate was not accurate and Spring 2014 was actually when closest approach would occur.
“This makes this year’s observations so relevant and our upcoming report significant — especially regarding the issue whether there is a star inside the cloud or not,” Meyer told Universe Today via email.
But, Ghez said, we’ll soon know the answer of what this object is.
“This is just the process of science and it’s interesting – because we’ll have a limited set of observations to find out what this is,” she said. “And it may be a gas cloud or it may be a star, but it’s pretty exciting in astronomy to have an event that everybody gets to line up and buy tickets for.”
Another question is if there actually will be any “fireworks” – as Meyer called it – when G2 meets its ultimate doom as it gets shredded and possibly eaten by the black hole. As the object approaches the black hole and gets disrupted, the gas will rain down onto the back hole, increasing the black hole’s mass, possibly making it brighter. Will this create a “flash” or possibly even a jet from the black hole?
“We don’t know, and there are a lot of uncertainties,” Meyer said at the American Astronomical Society meeting in January 2014. “This is something we haven’t seen before, and even if we don’t know if something will happen or not, it still is worth looking. It’s a unique opportunity to learn about fundamental astrophysics. Even if it’s not super-spectacular, we can still learn things.”
Meyer hinted in January that astronomers might not see much at all.
“Whatever gas might end up in the black hole might get smeared out so much that the amount of mass that gets dumped into the back might be very little,” he said. “This dietary supplement might be very little, like a pea or something!”
Our galaxy’s supermassive black hole has long been fairly inactive, but in 2013, NASA’s Swift Gamma-Ray Burst mission detected the brightest flare ever observed from Sgr A*. However, it’s not certain if this burst was related to G2 or not.
Ghez has said these observations of G2 are similar to the search for extraterrestrial life: the odds to see something are against you, but you still have to look, because if you find something, it will be spectacular.
This is exciting for astronomers, since they usually don’t get to see events like this take place “in real time.” In astrophysics, timescales of events taking place are usually very long — not over the course of several months. But it’s important to note that G2 actually met its demise around 25,000 years ago. Because of the amount of time it takes light to travel, we can only now observe this event which happened long ago.
Unfortunately, this event is beyond what amateur astronomers can observe.
“We really need to use the worlds’ most advanced observatories to observe this,” Meyer said in January, “as we have to go to multiple wavelengths and use adaptive optics since the galactic center is not visible to light in seen by our eyes, and you need a high angular resolution to see it.”
Facing sanctions from the United States government, a high-ranking Russian official took to Twitter today (April 29) to express his frustration, warning that NASA has few options should Soyuz flights to the International Space Station cease.
“After analyzing the sanctions against our space industry, I suggest to the USA to bring their astronauts to the International Space Station using a trampoline,” wrote Dmitry Rogozin, Russia’s deputy prime minister, in a Russian-language tweet highlighted by NBC News.
The jibe points to the fact that only the Russians can bring crews up to the space station right now. Rogozin also linked to a story in Russian RT where he is quoted as saying (if Google Translate is correct) that the Americans will see a “boomerang” of sanctions laid upon Russian officials.
On April 2, as part of a larger policy of the Obama administration, NASA announced it would cease most connections with Russia except for those essential ones related to the International Space Station. NASA administrator Charles Bolden has repeatedly said that things are normal with the Russians when it comes to the station.
The United States is dependent on the Russian Soyuz to bring astronauts to the space station. The U.S. method of transportation ceased in 2011 after the space shuttle retired, and commercial spacecraft — though being developed — are not expected to be ready until about 2017.
That said, one of the developers of these spacecraft — SpaceX CEO Elon Musk — wrote on Twitter that the public will soon see the unveiling of the human-rated Dragon spacecraft that the company has been working on with contract money from NASA. (The other funded spacecraft proposals are Boeing’s CST-100 and Sierra Nevada’s Dream Chaser).
Sounds like this might be a good time to unveil the new Dragon Mk 2 spaceship that @SpaceX has been working on w @NASA. No trampoline needed — Elon Musk (@elonmusk) April 29, 2014
Cover drops on May 29. Actual flight design hardware of crew Dragon, not a mockup.
The Russian situation is expected to weigh heavily on NASA budget discussions for fiscal 2014 and 2015 as agency officials try to make their case that commercial funding should be sustained, or even increased, for Americans to be able to launch from their own soil again quickly.
This timelapse of the lunar eclipse that took place April 15, 2014 will have you checking over your shoulder for aliens! Photographer Andrew Walker shot this footage at the Caltech’s CARMA Array (Combined Array for Research in Millimeter-wave Astronomy) in the Inyo Mountains of California. You can find out more about his impressive equipment details here, but the very fitting music you may be familiar with: it’s from the movie “2001: A Space Odyssey.” Continue reading “Dramatic Timelapse of the Recent “Blood Moon” Eclipse”