“There is no problem so bad that you can’t make it worse.” So with that old astronaut principle in mind, what is the best reaction to take when your eyes become blinded while you’re working on the International Space Station, in no more protection than with a spacesuit?
The always eloquent Canadian (retired) astronaut Chris Hadfield — commander of Expedition 35 — faced this situation in 2001. He explains the best antidotes to fear: knowledge, practice and understanding. And in this TED talk uploaded this week, he illustrates how to conquer some dangers in space with the simple analogy of walking into a spiderweb.
Say you’re terrified of spiders, worried that one is going to poison you and kill you. The first best thing to do is look at the statistics, Hadfield said. In British Columbia (where the talk was held), there is only one poisonous spider among hundreds. In space, the odds are grimmer: a 1 in 9 chance of catastrophic failure in the first five shuttle flights, and something like 1 in 38 when Hadfield took his first shuttle flight in 1995 to visit the space shuttle Mir.
So how do you deal with the odds? For spiders, control the fear, walk through spiderwebs as long as you see there’s nothing poisonous lurking. For space? “We don’t practice things going right, but we practice things going wrong, all the time so you are always walking through those spiderwebs,” Hadfield said.
Be sure to watch the talk to the end, as Hadfield has a treat for the audience. And as always, listening to Hadfield’s descriptions of space is a joy: “A self propelled art gallery of fantastic changing beauty that is the world itself,” is among the more memorable phrases of the talk.
TED, a non-profit that bills itself as one that spreads ideas, charged a hefty delegate fee for attendees at this meeting (reported at $7,500 each) but did free livestreaming at several venues in the Vancouver area. It also makes its talks available on the web for free.
Hadfield rocketed to worldwide fame last year after doing extensive social media and several concerts from orbit.
Delta 4 Heavy rocket and super secret US spy satellite roar off Pad 37 on June 29, 2012 from Cape Canaveral, Florida. NASA’s Orion EFT-1 capsule will blastoff atop a similar Delta 4 Heavy Booster in December 2014. Credit: Ken Kremer- kenkremer.com
Stroy updated[/caption]
CAPE CANAVERAL AIR FORCE STATION, FL – The urgent need by the US Air Force to launch a pair of previously classified Space Situational Awareness satellites into Earth orbit this year on an accelerated schedule has bumped the inaugural blastoff of NASA’s highly anticipated Orion pathfinder manned capsule from September to December 2014.
It’s a simple case of US national security taking a higher priority over the launch of NASA’s long awaited unmanned Orion test flight on the Exploration Flight Test-1 (EFT-1) mission.
The EFT-1 flight is NASA’s first concrete step towards sending human crews on Beyond Earth Orbit (BEO) missions since the finale of the Apollo moon landing era in December 1972.
The very existence of the covert Geosynchronous Space Situational Awareness Program, or GSSAP, was only recently declassified during a speech by General William Shelton, commander of the US Air Force Space Command.
Shelton made the announcement regarding the top secret GSSAP program during a Feb. 21 speech about the importance of space and cyberspace at the Air Force Association Air Warfare Symposium and Technology exposition, in Orlando, FL.
US national security requirements forced NASA’s Orion EFT-1 mission to swap launch slots with the GSSAP satellites – which were originally slated to launch later in 2014.
Since both spacecraft will blast off from the same pad at Complex 37 and atop Delta rockets manufactured by United Launch Alliance (ULA), a decision on priorities had to be made – and the military won out.
At a Cape Canaveral media briefing with Delta first stage boosters on Monday, March 17, Universe Today confirmed the order and payloads on the upcoming Delta IV rockets this year.
“The firing sequence for the Delta’s is the USAF Global Positioning System GPS 2F-6 [in May], GSSAP [in September] and Orion EFT-1 [in December], Tony Taliancich, ULA Director of East Coast Launch Operations, told me.
Universe Today also confirmed with the top management at KSC that NASA will absolutely not delay any Orion processing and assembly activities.
Despite the EFT-1 postponement, technicians for prime contractor Lockheed Martin are pressing forward and continue to work around the clock at the Kennedy Space Center (KSC) so that NASA’s Orion spacecraft can still meet the original launch window that opens in mid- September 2014 – in case of future adjustments to the launch schedule sequence.
“Our plan is to have the Orion spacecraft ready because we want to get EFT-1 out so we can start getting the hardware in for Exploration Mission-1 (EM-1) and start processing for that vehicle that will launch on the Space Launch System (SLS) rocket in 2017,” Bob Cabana, director of NASA’s Kennedy Space Center and former shuttle commander, told me.
Shelton stated that two of the GSSAP military surveillance satellites would be launched on the same launch vehicle later this year.
“GSSAP will present a significant improvement in space object surveillance, not only for better collision avoidance, but also for detecting threats,” Shelton said.
“GSSAP will bolster our ability to discern when adversaries attempt to avoid detection and to discover capabilities they may have, which might be harmful to our critical assets at these higher altitudes.”
According to a new GSSAP online fact sheet, the program will be a space-based capability operating in near-geosynchronous orbit, supporting U.S. Strategic Command space surveillance operations as a dedicated Space Surveillance Network sensor.
“Some of our most precious satellites fly in that orbit – one cheap shot against the AEHF [Advanced Extremely High Frequency] constellation would be devastating,” added Shelton. “Similarly, with our Space Based Infrared System, SBIRS, one cheap shot creates a hole in our environment. GSSAP will bolster our ability to discern when adversaries attempt to avoid detection and to discover capabilities they may have which might be harmful to our critical assets at these higher altitudes.”
GSSAP will allow more accurate tracking and characterization of man-made orbiting objects, uniquely contribute to timely and accurate orbital predictions, enhance knowledge of the geosynchronous orbit environment, and further enable space flight safety to include satellite collision avoidance.
The GSSAP satellites were covertly developed by Orbital Sciences and the Air Force.
Two additional follow on GSSAP satellites are slated for launch in 2016.
“We must be prepared as a nation to succeed in increasingly complex and contested space and cyber environments, especially in these domains where traditional deterrence theory probably doesn’t apply,” Shelton explained. “We can’t afford to wait … for that catalyzing event that will prod us to action.”
Orion is NASA’s first spaceship designed to carry human crews on long duration flights to deep space destinations beyond low Earth orbit, such as asteroids, the Moon, Mars and beyond.
The inaugural flight of Orion on the unmanned Exploration Flight Test – 1 (EFT-1) mission had been on schedule to blast off from the Florida Space Coast in mid September 2014 atop a Delta 4 Heavy booster, Scott Wilson, NASA’s Orion Manager of Production Operations at KSC, told Universe Today during a recent interview at KSC.
The two-orbit, four- hour EFT-1 flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.
Stay tuned here for Ken’s continuing Orion, Chang’e-3, Orbital Sciences, SpaceX, commercial space, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
Learn more at Ken’s upcoming presentations at the NEAF astro/space convention, NY on April 12/13 and at Washington Crossing State Park, NJ on April 6. Also evenings at the Quality Inn Kennedy Space Center, Titusville, FL, March 24/25 and March 29/30
Earth’s inner radiation belt displays a curiously zebra-esque striped pattern, according to the latest findings from NASA’s twin Van Allen Probes. What’s more, the cause of the striping seems to be the rotation of the Earth itself — something that was previously thought to be impossible.
“…it is truly humbling, as a theoretician, to see how quickly new data can change our understanding of physical properties.”
– Aleksandr Ukhorskiy, Johns Hopkins University Applied Physics Laboratory
Our planet is surrounded by two large doughnut-shaped regions of radiation called the Van Allen belts, after astrophysicist James Van Allen who discovered their presence in 1958. (Van Allen died at the age of 91 in 2006.) The inner Van Allen belt, extending from about 800 to 13,000 km (500 to 8,000 miles) above the Earth, contains high-energy electrons and protons and poses a risk to both spacecraft and humans, should either happen to spend any substantial amount of time inside it.
Launched aboard an Atlas V rocket from Cape Canaveral AFS on the morning of Aug. 30, 2012, the Van Allen Probes (originally the Radiation Belt Storm Probes) are on a two-year mission to investigate the belts and find out how they behave and evolve over time.
One of the instruments aboard the twin probes, the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE), has detected a persistent striped pattern in the particles within the inner belt. While it was once thought that any structures within the belts were the result of solar activity, thanks to RBSPICE it’s now been determined that Earth’s rotation and tilted magnetic axis are the cause.
“It is because of the unprecedented high energy and temporal resolution of our energetic particle experiment, RBSPICE, that we now understand that the inner belt electrons are, in fact, always organized in zebra patterns,” said Aleksandr Ukhorskiy of the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Md., co-investigator on RBSPICE and lead author of the paper. “Furthermore, our modeling clearly identifies Earth’s rotation as the mechanism creating these patterns. It is truly humbling, as a theoretician, to see how quickly new data can change our understanding of physical properties.”
The model of the formation of the striped patterns is likened to the pulling of taffy.
“If the inner belt electron populations are viewed as a viscous fluid,” Ukhorskiy said, “these global oscillations slowly stretch and fold that fluid, much like taffy is stretched and folded in a candy store machine.”
“This finding tells us something new and important about how the universe operates,” said Barry Mauk, a project scientist at APL and co-author of the paper. “The new results reveal a new large-scale physical mechanism that can be important for planetary radiation belts throughout the solar system. An instrument similar to RBSPICE is now on its way to Jupiter on NASA’s Juno mission, and we will be looking for the existence of zebra stripe-like patterns in Jupiter’s radiation belts.”
Jupiter’s Van Allen belts are similar to Earth’s except much larger; Jupiter’s magnetic field is ten times stronger than Earth’s and the radiation in its belts is a million times more powerful (source). Juno will arrive at Jupiter in July 2016 and spend about a year in orbit, investigating its atmosphere, interior, and magnetosphere.
Thanks to the Van Allen Probes. Juno now has one more feature to look for in Jupiter’s radiation belts.
“It is amazing how Earth’s space environment, including the radiation belts, continue to surprise us even after we have studied them for over 50 years. Our understanding of the complex structures of the belts, and the processes behind the belts’ behaviors, continues to grow, all of which contribute to the eventual goal of providing accurate space weather modeling.”
– Louis Lanzerotti, physics professor at the New Jersey Institute of Technology and principal investigator for RBSPICE
The Van Allen Probes are the second mission in NASA’s Living With a Star program, managed by NASA’s Goddard Space Flight Center in Greenbelt, MD. The program explores aspects of the connected sun-Earth system that directly affect life and society.
Check out the groove! In the blink of a geological lifetime, a new gully has appeared on the planet Mars. These images from NASA’s Mars Reconnaissance Orbiter show a new channel in the southern hemisphere region of Terra Siernum that appeared between November 2010 and May 2013.
While there’s a lot of chatter about water on Mars, this particular feature is likely not due to that liquid, the agency added.
“Gully or ravine landforms are common on Mars, particularly in the southern highlands. This pair of images shows that material flowing down from an alcove at the head of a gully broke out of an older route and eroded a new channel,” NASA stated.
It’s unclear in what season the activity occurred because the observations took place more than a Martian year apart, NASA added. These ravines tend to happen in the southern highlands and other mid-latitude regions on Mars.
“Before-and-after HiRISE pairs of similar activity at other sites demonstrate that this type of activity generally occurs in winter, at temperatures so cold that carbon dioxide, rather than water, is likely to play the key role,” the agency said.
Last week, the agency also announced that MRO recovered from an unplanned computer swap that put the spacecraft into safe mode. Incidents of this nature have happened four times before, the agency noted.
It’s safe to say that the Polish astronomer Nicolaus Copernicus shook up the whole Universe. Well, our understanding of our place in the Universe. It was Copernicus who came up with the heliocentric model, placing the Sun at the center of the Solar System, with the Earth as just another planet.
The March full Moon, sometimes called the “Worm Moon” for signaling the coming of spring in the northern hemisphere. This artistically stunning image taken by astrophotopher Miguel Claro is a sequence of 93 images taken at 2-minute intervals as the Moon traveled across the sky and past the Cape Espichel lighthouse near Sesimbra, Portugal. Miguel tells us that the lighthouse originally opened in 1790, and by 1865 it was powered by olive oil, changing to regular fuel in 1886, and much later by electricity by about 1926. The lighthouse measures 32 meters high and lies at an altitude of 168m above the see level. Presently, its luminous range is 20 nautical miles, about 38 km out to sea on a clear night.
Miguel used a Canon 60D – 35mm at f/4 ISO500; 1/5 sec. The sequence was taken on March 16, 2014 between 19:16 and 20:42.
You can check out other recent full Moon photos and more taken by our readers at our Flickr page.
Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.
Hot off of the popularity of the Cosmos reboot, host Neil deGrasse Tyson is going to host a panel at 7:30 p.m. EDT (11:30 p.m. UTC) tonight about “selling space.” Check it out in the livestream above. Here is the description from the American Museum of Natural History in New York City, which is hosting the event:
From serving NASA’s cargo needs to sending tourists on space vacations to mining asteroids for profit, aerospace engineers could transform space into our backyard. The sold-out 2014 Isaac Asimov Memorial Debate at the American Museum of Natural History will explore the idea of “selling space” with a panel of six entrepreneurs and space historians.
Besides Tyson (who is director of the museum’s Hayden Planetarium), here is who else is participating:
Wanda M. Austin, President and CEO, The Aerospace Corportation
Michael Gold, Director of DC Operations and Business Growth, Bigelow Aerospace
John Logsdon, Professor Emeritus, Space Policy and International Affairs, George Washington University
Elliot Pulham, Chief Executive Officer, Space Foundation
Tom Shelley, President, Space Adventures, Ltd.
Robert Walker, Executive Chairman, Wexler & Walker Public Policy Associates
There are no tickets left for the event, but you can watch it in the livestream above and interact with the hashtag #AsimovDebate.
For more information on Tyson, visit his website. The 13-part Cosmos series is airing every Sunday or Monday in many jurisdictions; check your local listings for more information.
Every few dozen million years there’s a devastating event on Earth that kills nearly all the living creatures on our planet. Dr. Michael Habib explains how life always finds a way of recovering.
“Hello, my name is Michael Habib, and I’m an assistant professor of Cell and Neurobiology at the University of Southern California. I’m a biomechanist and paleontologist.”
How does life survive a mass extinction?
“One of the most amazing things about life on earth is that if you don’t kill EVERYTHING, it will eventually recover. Extinction is forever – if you kill a group, you’ll never have that group again, but what we find is that often the same ecologies show up again after a major extinction, because other groups end up diversifying to do the same things as groups we’d seen elsewhere.”
“So the world doesn’t end up looking entirely different after a mass extinction, although it would be quite different in a lot of ways. And even the great End Permian extinction killed about 99 percent of all species, or at least all the ones we can measure in the fossil record, and left that one percent, that’s all it takes to eventually recover.”
“Now, I imagine if you took a time machine to the first six months of the Triassic, it would be a very lonely, kinda ugly world. You’d notice that animals and plants were missing. The massive extinction affected all sorts of organisms.But, at the scales we’re looking at in the geologic record – tens of millions of years, a time span that’s pretty much unfathomable to human experience, you can eventually recover that diversity, with speciation event after speciation event kicks in and eventually creates a new diversity.”
“But after each mass extinction event, the world looks a bit different. You know, if I were to drop you in a time machine before the End Permian extinction, you’d notice a lot of things different about the world. You’d notice strange large mammal-like reptiles with large saber teeth running around as the large terrestrial organisms. You would see a few of the major groups of vertebrates that exist today, especially marine, but a lot of the terrestrial groups would be very different.”
“If I jump to after the End Permian extinction, enough that life had recovered, you’ll see those ancestors to dinosaurs, those terrasaurs, would show up in the mid to late Triassic. Then you start to see some plant groups that look more familiar to us, like plants that look a little bit more like modern conifers, things like that. So the world would definitely look different, but life does go on.”
If you’ve ever felt insecure about your height, orbit is a great place to be. Astronaut spines lengthen up to 2.75 inches (7 centimeters) while they’re in microgravity. There are big downsides, however. First there’s the backache. Second, you’re four times as likely to get a slipped disc when you return to Earth.
The solution could be as simple as tight clothing. Above you can see French astronaut Thomas Pesquet (already flying high this week after he was publicly named to a flight in 2016) trying out a prototype of the skinsuit. Essentially, it’s so tight that it could prevent you from growing, which in turn would stop the pain and risk of damage.
“The skinsuit is a tailor-made overall with a bi-directional weave specially designed to counteract the lack of gravity by squeezing the body from the shoulders to the feet with a similar force to that felt on Earth. Current prototypes are made of spandex, although new materials are being examined,” the European Space Agency wrote.
The first astronaut to test the suit out in space will be Andreas Mogensen, who will launch to the International Space Station next year.
ESA says if it works, the suit would not only be useful for astronauts, but also could be great for people with back pain on Earth — and possibly, even those with conditions such as cerebral palsy.
Prototypes are being developed between ESA’s Space Medicine Office, King’s College London (United Kingdom), University College London (United Kingdom) and the Massachusetts Institute of Technology (United States).
North America’s brightest predicted asteroid occultation may be one-upped by a much bigger occultation – a solid blanket of clouds. Asteroid 163 Erigone will cover or occult the bright star Regulus shortly after 2 a.m. Eastern Daylight Time tomorrow morning March 20. Observers along a 45-mile-wide (73-km) belt stretching from the wilderness of Nunavut to the salty seas of Bermuda could see the star vanish for up to 14 seconds. Provided they can find a hole in the clouds.
Overcast skies with a mix of rain or snow are predicted along virtually the entire track from the tiny berg of Cochrane in northern Ontario south through New York City, Connecticut and New Jersey. A sluggish cold front isn’t expected to clear skies until … no surprise here … after the event is over.
But there is one place where maybe, just maybe, the clouds may part to let Erigone do its job. Bermuda. The Bermuda Weather Service forecast calls for highs in the low 70s mid-week, but that balmy air may come packaged with a partly to mostly cloudy sky at the time of the occultation. A few determined observers are on their way there right now, hoping for better weather. In case the islands are socked in, some plan to rent planes to rise above the low-lying clouds typical this time of year and revel in the shadow of an asteroid. Even if clear, Bermuda lies near the eastern edge of the path. Any occultation there will be brief.
Yes, there will be more occultations, but bright ones that the public can enjoy with the naked eye are rare.
Skywatchers are nothing if not hopeful. We believe in the sucker hole, the name given to rogue clearings in an otherwise overcast sky. We are patient and steadfast when it comes to glimpsing the rarest of the rare. I know this because my friends and I have stood outside on winter mornings staring at the western sky, waiting for clouds to peel back that we might glimpse a Martian dust storm or new comet.
If there’s an astronomer’s credo, it’s this: “The sky might clear yet!” The latest weather word (9 a.m. March 19) for U.S. and Canadian observers indicates thinner clouds along the southern end of the track in New Jersey. Many of us considered driving to the event but changed our minds because of work, worries about weather and other commitments. Assuming the credo holds true, you’ll be able to watch Regulus disappear live from the comfort of your home thanks to the efforts of several observers planning to stream the event on the Web.
Here’s a list of streamers so far:
* Brad Timerson plans to go live with audio at 2 a.m. at a rest area along I-90 just west of Syracuse, NY.