And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.
Space historian Andrew Chaikin sat down with planetary scientist Carolyn Porco, and she discusses how her career has ended up focusing on the Saturn system. I love how Porco relates how even she has been “blown away” by some of the imagery sent back by the missions — just like the rest of us! — saying she’s had to call members of her team several times to verify she wasn’t looking at computer simulations vs. real images.
Enjoy this candid interview of one of the leading planetary scientists of our day.
If you’re interested in planets, the good news is there’s plenty of variety to choose from in our own Solar System. From the ringed beauty of Saturn, to the massive hulk of Jupiter, to the lead-melting temperatures on Venus, each planet in our solar system is unique — with its own environment and own story to tell about the history of our Solar System.
What also is amazing is the sheer size difference of planets. While humans think of Earth as a large planet, in reality it is dwarfed by the massive gas giants lurking at the outer edges of our Solar System. This article explores the planets in order of size, with a bit of context as to how they got that way.
A Short History of the Solar System:
No human was around 4.5 billion years ago when the Solar System was formed, so what we know about its birth comes from several sources: examining rocks on Earth and other places, looking at other solar systems in formation and doing computer models, among other methods. As more information comes in, some of our theories of the Solar System must change to suit the new evidence.
Today, scientists believe the Solar System began with a spinning gas and dust cloud. Gravitational attraction at its center eventually collapsed to form the Sun. Some theories say that the young Sun’s energy began pushing the lighter particles of gas away, while larger, more solid particles such as dust remained closer in.
Over millions and millions of years, the gas and dust particles became attracted to each other by their mutual gravities and began to combine or crash. As larger balls of matter formed, they swept the smaller particles away and eventually cleared their orbits. That led to the birth of Earth and the other eight planets in our Solar System. Since much of the gas ended up in the outer parts of the system, this may explain why there are gas giants — although this presumption may not be true for other solar systems discovered in the universe.
Until the 1990s, scientists only knew of planets in our own Solar System and at that point accepted there were nine planets. As telescope technology improved, however, two things happened. Scientists discovered exoplanets, or planets that are outside of our solar system. This began with finding massive planets many times larger than Jupiter, and then eventually finding planets that are rocky — even a few that are close to Earth’s size itself.
The other change was finding worlds similar to Pluto, then considered the Solar System’s furthest planet, far out in our own Solar System. At first astronomers began treating these new worlds like planets, but as more information came in, the International Astronomical Union held a meeting to better figure out the definition.
The result was redefining Pluto and worlds like it as a dwarf planet. This is the current IAU planet definition:
“A celestial body that (a) is in orbit around the Sun, (b) has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape, and (c) has cleared the neighborhood around its orbit.”
Jupiter (69,911 km / 43,441 miles) – 1,120% the size of Earth
Saturn (58,232 km / 36,184 miles) – 945% the size of Earth
Uranus (25,362 km / 15,759 miles) – 400% the size of Earth
Neptune (24,622 km / 15,299 miles) – 388% the size of Earth
Earth (6,371 km / 3,959 miles)
Venus (6,052 km / 3,761 miles) – 95% the size of Earth
Mars (3,390 km / 2,460 miles) – 53% the size of Earth
Mercury (2,440 km / 1,516 miles) – 38% the size of Earth
Jupiter is the behemoth of the Solar System and is believed to be responsible for influencing the path of smaller objects that drift by its massive bulk. Sometimes it will send comets or asteroids into the inner solar system, and sometimes it will divert those away.
Saturn, most famous for its rings, also hosts dozens of moons — including Titan, which has its own atmosphere. Joining it in the outer solar system are Uranus and Neptune, which both have atmospheres of hydrogen, helium and methane. Uranus also rotates opposite to other planets in the solar system.
The inner planets include Venus (once considered Earth’s twin, at least until its hot surface was discovered); Mars (a planet where liquid water could have flowed in the past); Mercury (which despite being close to the sun, has ice at its poles) and Earth, the only planet known so far to have life.
To learn more about the Solar System, check out these resources:
The SpaceX 3 Dragon commercial cargo freighter successfully arrived at the International Space Station (ISS) on Easter Sunday morning, April 20, as planned and was deftly captured by Expedition 39 Commander Koichi Wakata at 7:15 a.m. EDT at the controls of the Canadian built robotic arm.
The next step due shortly is berthing of Dragon at the Earth facing port of the Harmony module at approximately 9:30 a.m. EDT.
Berthing was officially completed at 10:06 a.m. EDT while the massive complex was soaring 260 miles above Brazil.
This story is being updated as events unfold. The mission is the company’s third cargo delivery flight to the station.
The Dragon vehicle loaded with nearly 2.5 tons of science experiments and supplies moved ever so slowly closely to within grappling distance – dramatically backdropped with gorgeous and ever changing scenery of our Home Planet sliding below.
The million pound orbiting lab complex and free flying SpaceX Dragon were soaring some 260 miles above Egypt and the Nile River as the 57 foot long robotic arm grappled the resupply ship.
Dragon was approximately 30 feet (10 meters) away from the stations hull at the time of capture.
Wakata, of the Japan Aerospace Exploration Agency, was assisted by NASA astronaut Rick Mastracchio, while both were working from inside the 7 windowed Cupola robotics work station. Newly arrived NASA astronaut Steve Swanson observed the proceedings with a big smile.
“Congratulations to the entire ops team for the successful launch, rendezvous and capture of Dragon,” Wakata radioed mission control moments after the successful grapple.
“Great work catching the Dragon, enabling fantastic science,” radioed Capcom Steve Fisher from NASA Houston Mission Control.
Cheers and celebrations erupted at SpaceX Mission Control at the firms headquarters in Hawthorne, Calif.
Dragon arrived this morning following Friday afternoons, Apr 18, spectacular blastoff from Cape Canaveral, Fla, atop an upgraded SpaceX Falcon 9 booster.
A two day orbital chase ensued with a series of critical engine burns targeting the ISS for Easter Sunday’s rendezvous and docking activities.
Rick Mastracchio was at the controls for the actual berthing and latching in place at Harmony with Dragon’s Common Berthing Mechanism (CBM).
The berthing process started at about 9:30 a.m. EDT.
4 latches were driven for 1st stage of capture. Followed by all 16 bolts and latches in total during second stage capture to firmly hold Dragon in place.
The crew and mission control concluded the berthing procedure at 10:06 a.m. EDT flying over Brazil.
The next step is for the crew to pressurize the vestibule connecting Dragon to station.
Hatch opening is set to take place on Monday morning.
It’s a busy week ahead for the six person international crew representing the US, Russia and Japan.
A Russian Progress departs on Wednesday followed by the 2 person US spacewalk to replace the failed MDM unit.
Dragon will remain attached to the station until May 18.
This story is being updated. Check back.
The SpaceX-3 mission marks the company’s third operational resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the ISS during a dozen Dragon cargo spacecraft flights through 2016.
There are over 150 science experiments loaded aboard the Dragon capsule for research to be conducted by the crews of ISS Expeditions 39 and 40.
This unmanned SpaceX mission dubbed CRS-3 mission will deliver some 5000 pounds of science experiments, a pair of hi tech legs for Robonaut 2, a high definition Earth observing imaging camera suite (HDEV), a laser optical communications experiment (OPALS) and essential gear, the VEGGIE lettuce growing experiment, spare parts, crew provisions, food, clothing and supplies to the six person crews living and working aboard the ISS soaring in low Earth orbit under NASA’s Commercial Resupply Services (CRS) contract.
NASA TV coverage of the Easter Sunday grappling process began at 5:45 a.m. EDT with berthing coverage beginning at 9:30 a.m. EDT: http://www.nasa.gov/ntv
Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
Why does Russia seem to get so many bright meteors? Well at 6.6 million square miles it’s by far the largest country in the world plus, with dashboard-mounted cameras being so commonplace (partly to help combat insurance fraud) statistically it just makes sense that Russians would end up seeing more meteors, and then be able to share the experience with the rest of the world!
This is exactly what happened early this morning, April 19 (local time), when a bright fireball flashed in the skies over Murmansk, located on the Kola Peninsula in northwest Russia near the border of Finland. Luckily not nearly as large or powerful as the Chelyabinsk meteor event from February 2013, no sound or air blast from this fireball has been reported and nobody was injured. Details on the object aren’t yet known… it could be a meteor (most likely) or it could be re-entering space debris. The video above, some of which was captured by Alexandr Nesterov from his dashcam, shows the object dramatically lighting up the early morning sky.
One Russian astronomer suggests this bolide may have been part of the debris that results in the Lyrid meteor shower, which peaks on April 22-23. (Source: NBC)
Blastoff of SpaceX Falcon 9 rocket from Cape Canaveral Air Force Station in Florida on April 18, 2014. Credit: Alan Walters/AmericaSpace
Story updated[/caption]
The powerful SpaceX Falcon 9 rocket that launched successfully on a cargo delivery run for NASA bound for the Space Station on Friday, April 18, from Cape Canaveral, Fla, also had a key secondary objective for the company aimed at experimenting with eventually recovering the rockets first stage via the use of landing legs and leading to the boosters refurbishment and reuse further down the road.
Marking a first of its kind test, this 20 story tall commercial Falcon 9 rocket was equipped with a quartet of landing legs to test controlled soft landing techniques first in the ocean and then back on solid ground at some later date this year or next – by reigniting the 1st stage engines for a guided touchdown.
The 12 foot diameter Falcon 9 rocket would sprout the legs just prior to water impact for the controlled soft landing in the Atlantic Ocean, guided by SpaceX engineers.
Prior to the launch SpaceX managers were careful not to raise expectations.
“The entire recovery of the first stage is completely experimental,” said Hans Koenigsmann, SpaceX vice president of mission assurance. “It has nothing to do with the primary mission.”
He estimated the odds of successfully retrieving an intact booster at merely 30 or 40 percent.
Following Friday’s blastoff, SpaceX reported they made significant strides towards that goal of a 1st stage recovery.
SpaceX engineers had preprogrammed the spent first stage to relight several Merlin 1 D engines after completing the boost phase and stage seperation to stabilize it, reduce its roll rate and then gradually lower its altitude back down to the Atlantic Ocean’s surface for a soft landing attempt and later possible recovery by retrieval ships.
All these critical steps seemed to go fairly well in initial reports that are subject to change.
SpaceX CEO and founder Elon Musk reported at a post launch briefing and later tweeted further updates that the Falcon 9 first stage actually made a good water landing despite rough seas, with waves swelling at least six feet.
“Roll rate close to zero (v important!).”
“Data upload from tracking plane shows landing in Atlantic was good! Several boats enroute through heavy seas,” Musk tweeted.
Furthermore he reported that the 1st stage survived the ocean touchdown.
“Flight computers continued transmitting for 8 seconds after reaching the water. Stopped when booster went horizontal.”
Because of the high waves, the recovery boats had difficulty reaching the booster in the recovery area located some two hundred miles off shore from Cape Canaveral.
Several previous attempts by SpaceX to recover the first stage via parachutes and thrusters were not successful. So SpaceX adopted this new approach with the landing legs and 1st stage Merlin 1 D engines.
Further details will be proved when they become available.
The attachment of the 25 foot long 1st stage landing legs to SpaceX’s next-generation Falcon 9 rocket for ocean recovery counts as a major step towards the firm’s future goal of building a fully reusable rocket and dramatically lowering launch costs compared to expendable boosters.
The eventual goal is to accomplish a successful first stage touchdown by the landing legs on solid ground back somewhere near on Cape Canaveral, Florida.
Musk said that SpaceX is still working out the details on finding a suitable landing location with NASA and the US Air Force.
Extensive work and testing remains to develop and refine the technology before a land landing will be attempted by the company, says Musk.
It will be left to future missions to accomplish a successful first stage touchdown by the landing legs back on solid ground back through a series of ramped up rocket tests at Cape Canaveral, Florida.
“Even though we probably won’t get the stage back, I think we’re really starting to connect the dots of what’s needed,” Musk said at the briefing.
“There are only a few more dots that need to be there to have it all work. I think we’ve got a decent chance of bringing a stage back this year, which would be wonderful.”
Overall Musk was very pleased with the performance of the rocket and the landing leg test.
“I would consider it a success in the sense that we were able to control the boost stage to a zero roll rate, which is previously what has destroyed the stage, an uncontrolled roll, where the on-board nitrogen thrusters weren’t able to control the aerodynamic torque and spun up.”
“This time, with more powerful thrusters and more nitrogen propellant, we were able to null the roll rates.”
“I’m feeling pretty excited,” Musk stated. “This is a happy day. Most important of all is that we did a good job for NASA.”
This extra powerful new version of the Falcon 9 dubbed v1.1 is powered by a cluster of nine of SpaceX’s new Merlin 1D engines that are about 50% more powerful compared to the standard Merlin 1C engines. The nine Merlin 1D engines 1.3 million pounds of thrust at sea level rises to 1.5 million pounds as the rocket climbs to orbit.
Therefore the upgraded Falcon 9 can boost a much heavier cargo load to the ISS, low Earth orbit, geostationary orbit and beyond.
Indeed Dragon is loaded with nearly 5000 pounds of cargo, about double the weight carried previously.
If all goes well, Dragon will reach the ISS early on Easter Sunday morning after a two day orbital chase.
Station crew members Rick Mastracchio and Steven Swanson will grapple the Dragon cargo freighter with the 57 foot long Canadarm2 on Easter Sunday at about 7:14 a.m. and then berth it at the Earth-facing port of the Harmony module.
NASA TV coverage of the Easter Sunday grappling process will begin at 5:45 a.m. with berthing coverage beginning at 9:30 a.m. : http://www.nasa.gov/ntv
Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
UPDATE:Thanks to several people on Twitter who pointed out that what is seen in the footage here is the the upper stage of the Falcon 9, the Dragon capsule, and the ejected solar panel covers moving along together in orbit around the Earth. And as Phil Plait pointed out, since this was taken a few minutes after the capsule separated from the rocket upper stage, all the individual things you see here were still near each other in space.
We need to say it: astrophotographer Thierry Legault has done it again! Here’s an absolutely fantastic capture of the SpaceX Dragon capsule just 25 minutes after it launched from Cape Canaveral Air Force Station, as it passed over Europe. Here, Legault captured footage of Dragon crossing the Big Dipper as seen from Paris at 19:50 UTC, April 18, 2014.
“It was an incredible vision: 4 bright dots moving together!” Legault told Universe Today via email.
Check out more of his amazing astrophotography and even some of his tips and tricks at Thierry’s website.
SpaceX Falcon 9 rocket and Dragon resupply ship launch from the Cape Canaveral Air Force Station in Florida on April 18, 2014. Credit: Jeff Seibert/Wired4Space See expanding launch gallery below[/caption]
A mighty SpaceX rocket carrying the firms commercial Dragon resupply ship loaded with nearly 2.5 tons of NASA science instruments and critical supplies thundered to space this afternoon on a two day journey bound for the International Space Station.
The Dragon vessel launched atop the 20 story tall, upgraded Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida precisely on time at 3:25 p.m. EDT (1925 GMT), Friday, April 18.
“I want to congratulate SpaceX. Everyone did a great job” said William Gerstenmaier, NASA associate administrator for human exploration and operations, at a post launch briefing at the Kennedy Space Center press site.
“The SpaceX team went the extra mile to get everything ready for an on time launch.”
The spectacular blastoff went off without a hitch despite a poor weather prognosis in the morning that brightened considerably in the final hours leading up to the afternnon liftoff.
“Everything went well with the ascent,” said SpaceX CEO and founder Elon Muck at the briefing.
“I’m pretty excited. We did a good gob for our NASA customer and that’s very important,” Musk added.
The on time blastoff sets the stage for an Easter Sunday, April 20, rendezvous and berthing of the Dragon resupply spacecraft at the massive orbiting outpost packed with a striking variety of science experiments and needed supplies for the six person crew.
Station crew members Rick Mastracchio and Steven Swanson will grapple the Dragon cargo freighter with the 57 foot long Canadarm2 on Easter Sunday at about 7:14 a.m. if all goes well and then berth it at the Earth-facing port of the Harmony module.
The SpaceX-3 mission marks the company’s third resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the ISS during a dozen Dragon cargo spacecraft flights through 2016.
There are over 150 science experiments loaded aboard the Dragon capsule for research to be conducted by the crews of ISS Expeditions 39 and 40.
“SpaceX is delivering important research experiments and cargo to the space station,” said Gerstenmaier.
“The diversity and number of new experiments is phenomenal. The investigations aboard Dragon will help us improve our understanding of how humans adapt to living in space for long periods of time and help us develop technologies that will enable deep space exploration.”
This unmanned SpaceX mission dubbed CRS-3 mission will deliver some 5000 pounds of science experiments, a pair of hi tech legs for Robonaut 2, a high definition imaging camera suite, an optical communications experiment (OPALS) and essential gear, the VEGGIE lettuce growing experiment, spare parts, crew provisions, food, clothing and supplies to the six person crews living and working aboard the ISS soaring in low Earth orbit under NASA’s Commercial Resupply Services (CRS) contract.
To date SpaceX had completed two operational cargo resupply missions and a test flight. The last flight dubbed CRS-2 blasted off a year ago on March 1, 2013 atop the initial version of the Falcon 9 rocket.
The next launch of Orbital Sciences Antares/Cygnus commercial rocket to the ISS from NASA Wallops, VA, was tentatively slated for May 6. But the target date will now slip to into mid-June since it can’t arrive until the Dragon departs.
Both the Dragon and Antares dock at the same port on the Harmony module at the end of the station.
This extra powerful new version of the Falcon 9 dubbed v1.1 is powered by a cluster of nine of SpaceX’s new Merlin 1D engines that are about 50% more powerful compared to the standard Merlin 1C engines. The nine Merlin 1D engines 1.3 million pounds of thrust at sea level rises to 1.5 million pounds as the rocket climbs to orbit
Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
When large asteroids or comets strike the Earth — as they have countless times throughout our planet’s history — the energy released in the event creates an enormous amount of heat, enough to briefly melt rock and soil at the impact site. That molten material quickly cools, trapping organic material and bits of plants and preserving them inside fragments of glass for tens of thousands, even millions of years.
Researchers studying impact debris on Earth think that the same thing could very well have happened on Mars, and that any evidence for ancient life on the Red Planet might be found by looking inside the glass.
A research team led by Pete Schultz, a geologist at Brown University in Providence, Rhode Island, has identified the remains of plant materials trapped inside impact glass found at several different sites scattered across Argentina, according to a university news release issued Friday, April 18.
Melt breccias from two impact events in particular, dating back 3 and 9 million years, were discovered to contain very well-preserved fragments of vegetation — providing not only samples of ancient organisms but also snapshots of the local environment from the time of the events.
“These glasses preserve plant morphology from macro features all the way down to the micron scale,” said Schultz. “It’s really remarkable.”
Schultz believes that the same process that trapped once-living material in Argentina’s Pampas region — which is covered with windblown, Mars-like sediment, especially in the west — may have occurred on Mars, preserving any early organics located at and around impact sites.
“Impact glass may be where the 4 billion-year-old signs of life are hiding,” Schultz said. “On Mars they’re probably not going to come out screaming in the form of a plant, but we may find traces of organic compounds, which would be really exciting.”
The research has been published in the latest issue of Geology Magazine.