Is it stretching it too far to think of a Lord of the Rings-esque “Entmoot” when reading the phrase “Council of Giants”? In this case, however, it’s not trees gathering in a circle, but galaxies.
A new map of the galactic neighborhood shows how the Milky Way may be restricted by a bunch of galaxies surrounding and constricting us with gravity.
“All bright galaxies within 20 million light years, including us, are organized in a ‘Local Sheet’ 34-million light years across and only 1.5 million light years thick,” stated Marshall McCall of York University in Canada, who is the sole author of a paper on the subject.
“The Milky Way and Andromeda are encircled by twelve large galaxies arranged in a ring about 24-million light years across. This ‘Council of Giants’ stands in gravitational judgment of the Local Group by restricting its range of influence.”
Here’s why McCall thinks this is the case. Most of the Local Sheet galaxies (the Milky Way, Andromeda, and 10 more of the 14 galaxies) are flattened spiral galaxies with stars still forming. The other other two galaxies are elliptical galaxies where star-forming ceased long ago, and of note, this pair lie on opposite sides of the “Council.”
“Winds expelled in the earliest phases of their development might have shepherded gas towards the Local Group, thereby helping to build the disks of the Milky Way and Andromeda,” the Royal Astronomical Society stated. The spin in this group of galaxies, it added, is unusually aligned, which could have occurred due to the influence of the Milky Way and Andromeda “when the universe was smaller.”
The larger implication is the Local Sheet and Council likely came to be in “a pre-existing sheet-like foundation composed primarily of dark matter”, or a mysterious substance that is not measurable by conventional instruments but detectable on how it influences other objects. McCall stated that on a small scale, this could help us understand more about how the universe is constructed.
In astronomy we love focusing on the bigger picture. We’re searching for exoplanets in the vast hope that we may begin to paint a picture of how planetary systems form; We’re using the Hubble Space Telescope to peer into the earliest history of the cosmos; And we’re building gravitational wave detectors in order to better understand the physical laws that dominate our universe.
All the while we continue to learn about our very own neighborhood. Only recently we learned that Europa has geysers, Mars was perhaps once a lush planet, and comets can in fact disintegrate. Discoveries in our solar system alone never cease to amaze.
For the first time researchers are able to probe the hidden interiors of gas giants such as Jupiter and Saturn. With very little experimental knowledge about the hydrogen deep within such planets, we have always had to rely on mathematical models. But now, researchers have simulated the lower atmospheric layers of these planets in the lab.
The team of physicists led by Dr. Ulf Zastrau from the University of Jena heated cold liquid hydrogen to resemble the dense liquid hydrogen deep within a gas giant’s atmospheric layers.
The team used an X-ray laser operated by a national research center in Germany, Deutsches Elektronen-Synchrotron (DESY), to heat the liquid hydrogen, nearly instantaneously, from -253 to +12,000 degrees Celsius. Initially the X-ray heats only the electrons. But because each electron is bound to a proton, they transfer heat to the proton until a thermal equilibrium is reached. The molecular bonds break during this process, and a plasma of electrons and protons is formed.
In just under a trillionth of a second, physicists are able to create a plasma that’s thought to be radically similar to the plasma deep within the atmospheres of our beloved gas giants.
But first the team had to create cold hydrogen. While it’s abundant throughout the universe, it’s hard to get our hands on the stuff here on Earth. Instead researchers cooled gaseous hydrogen to -253 degrees Celsius using liquid helium. This was a very temperamental process, requiring precise temperature control. If the hydrogen got too cold it would freeze and the researchers would have to use a small heater to re-liquefy it. At the end of the day a jet of cold liquid hydrogen with a diameter no greater than 20 micrometers would flow into a vacuum.
Physicists would then shoot intense pulses of the X-ray laser at the cold hydrogen. They could control the precise timing of the X-ray laser’s “flash” in order to study the properties of liquid hydrogen. The first half of the flash heats up the hydrogen, but the second half of the flash is delayed by varying lengths, which allows the team to understand exactly how thermal equilibrium is established between the electrons and the protons.
The experimental results provide information on the liquid hydrogen’s thermal conductivity and its internal energy exchange, which are both crucial to better understanding gas giants. The experiments will have to be repeated at other temperatures and pressures in order to create a detailed picture of the entire planetary atmosphere.
“Hopefully the results will provide us among others with an experimentally based answer to the question, why the planets discovered outside our solar system do not exist in all imaginable combinations of properties as age, mass, size or elemental composition, but may be allocated to certain groups,” said Dr. Thomas Tschentscher, scientific director of the European XFEL X-ray laser in a press release.
The paper has been accepted in the scientific journal Physical Review Letters and is available for download here.
What happens to a battery in a dead satellite? Despite nearly 60 years of sending these machines into space, this is a “relative blind spot” among designers, the European Space Agency says. And that’s a big problem, because there’s a chance that these power sources can rupture and cause debris — adding to the growing problem in orbit.
With NASA estimating more than 500,000 dead satellites and other debris cluttering up the environment around Earth, the risk of something smashing into an important space thing — a spacecraft, a GPS satellite, a weather monitor — increases. So space policy-makers are doing what they can to reduce the problem (while also creating methods to clean it up.)
A few satellite breakups in the ’90s were linked to battery failures, but ESA notes these were older, non-lithium types. To figure out what’s happened more recently, the agency wants to learn more about battery behavior after the satellite shuts down, and how to prevent a breakup from happening.
“As a satellite drifts freely, could batteries endure the harsh environment of orbit – including wild temperature swings, degradation of thermal control and components as well as radiation exposure – without leakage or bursting?” ESA asks.
For more information, go to the ESA tendering website and look for solicitation AO7840, called “Spacecraft Power System Passivation At End Of Mission.” The tender is valued between 200,000 and 500,000 Euros and closes April 23.
“The goal of the activity is to study and implement the most adequate means to achieve this power system passivation,” the tender states.
“This may involve the discharge and disconnection of the batteries and the disconnection of the solar arrays. This passivation needs to be reliable enough to avoid to deactivate the power system before the end of the mission. The proposed concept should be universal enough to be compatible with most space applications (but in priority European institutional market).”
Chinese satellite image of suspected floating objects from the missing Malaysia Airlines plane MH 370. Credit: China SASTIND/China Resources Satellite Application Center See more satellite imagery below[/caption]
Chinese government satellites orbiting Earth may have detected floating, crash related debris from the missing Malaysian Airline flight MH-370 that disappeared without a trace last week – and which could be a key finding in spurring the ongoing and so far fruitless search efforts.
Today, Wednesday, March 12, Chinese space officials released a trio of images that were taken by Chinese satellites on Sunday, March 9, showing the possible crash debris in the ocean waters between Malaysia and Vietnam.
China’s State Administration of Science, Technology and Industry for National Defence (SASTIND) posted the images on its website today, although they were taken on Sunday at about 11 a.m. Beijing local time.
I found the images today directly on SASTIND’s Chinese language website and they are shown here in their full resolution – above and below.
The Boeing 777-200ER jetliner went missing on Saturday on a flight en route from Kuala Lampur, Malaysia to Beijing, China.
The images appear to show “three floating objects in the suspected site of missing Malaysian plane,” according to SASTIND.
The plane carrying 227 passengers and 12 crew members mysteriously lost radio contact and vanished from radar while flying over the South China Sea. The transponder stopped sending signals.
And not a trace of the jetliner has been found despite days of searching by ships and planes combing a vast search area that expands every day.
Smaller versions of the satellites images and a video report have also been posted on China’s government run Xinhua and CCTV news agencies.
The three suspected floating objects measure 13 by 18 meters (43 by 59 feet), 14 by 19 meters (46 by 62 feet) and 24 by 22 meters (79 feet by 72 feet).
These suspected debris are surprising large, about the size of the jetliners wing, according to commentators speaking tonight on NBC News and CNN.
SASTIND said that “the three suspected objects were monitored at 6.7 degrees north latitude and 105.63 degrees east longitude, spreading across an area with a radius of 20 kilometers, according to Xinhua.
These coordinates correspond with the ocean waters between Malaysia and Vietnam, near the expected flight path.
“Some 10 Chinese satellites have been used to help the search and rescue operation,” reported CCTV.
China, the US, Malaysia and more than a dozen counties are engaged in the continuing search and rescue effort that has yielded few clues and no answers for the loved ones of the missing passengers and crew on board. Our hearts and prayers go out to them.
The search area currently encompasses over 35,000 nautical square miles.
Ships and planes are being dispatched to the location shown by the new satellite imagery to help focus the search effort and find the black boxes recording all the critical engineering data and cockpit voices of the pilot and copilot and aid investigators as to what happened.
No one knows at this time why the Malaysia Airlines flight mysteriously disappeared.
When you think of the asteroid belt, you probably imagine a region of rock and dust, with asteroids as far as the eye can see. Such a visual has been popularized in movies, where spaceships must swerve left and right to avoid collisions. But a similar view is often portrayed in more scientific imagery, such as the artistic rendering above. Even the first episode of the new Cosmos series portrayed the belt as a dense collection of asteroids. But the reality is very different. In reality the asteroid belt is less cluttered than often portrayed. Just how much less might surprise you.
The Sloan digital sky survey (SDSS) has identified more than 100,000 asteroids in the solar system. Not all of these lie within the asteroid belt, but there are about 80,000 asteroids in the belt larger than a kilometer. Of course there are asteroids smaller than that, but they are more difficult to detect, so we aren’t exactly sure how many there are.
We have a pretty good idea, however, because the observations we have indicate that the size distribution of asteroids follows what is known as a power law distribution. For example, with a power law of 1, for every 100-meter wide asteroid there would be 10 with a diameter of 10 meters and 100 with a diameter of 1 meter. Based upon SDSS observations, asteroids seem to follow a power law of about 2, which means there are likely about 800 trillion asteroids larger than a meter within the belt. That’s a lot of rock. So much that sunlight scattering off the asteroid belt and other dust in the solar system is the source of zodiacal light.
But there is also a lot of volume within the asteroid belt. The belt can be said to occupy a region around the Sun from about 2.2 to 3.2 times the distance from the Earth to the Sun from the Sun (AU), with a thickness of about 1 AU. A bit of math puts that at about 50 trillion trillion cubic kilometers. So even though there are trillions of asteroids, each asteroid has billions of cubic kilometers of space on average. The asteroid belt is hardly something you would consider crowded. It should be emphasized that asteroids in the belt are not evenly distributed. They are clustered into families and groups. But even such clustering is not significant compared to the vast space it occupies.
You can even do a very rough calculation to get an idea of just how empty the asteroid belt actually is. If we assumed that all the asteroids lay within a single plane, then on average there is 1 asteroid within an area roughly the size of Rhode Island. Within the entire United States there would be about 2000 asteroids, most of them only a meter across. The odds of seeing an asteroid along a cross-country road trip, much less hitting one, would be astoundingly small. So you can see why we don’t worry about space probes hitting an asteroid on their way to the outer solar system. In fact, to get even close to an asteroid takes a great deal of effort.
It’s one of those rumors that just won’t quiet down — a large planet lurking at the solar system’s edge. Back in the 1840s, when Neptune was discovered, its orbit seemed to be a little “off” from what was expected.
Some astronomers of the time said that was caused by a planet further out. Although the Neptune perturbations are now ascribed to observational errors, the tale of Planet X continues, and has sometimes even been linked with doomsday. (See this past Universe Today story for the full tale.)
NASA’s latest survey puts even less credence in that theory. A scan of the sky showed nothing Saturn’s size or bigger at a distance of 10,000 Earth-sun distances, or astronomical units. Nothing bigger than Jupiter exists as far as 26,000 AU. (To put that in perspective, Pluto is 40 AU from the sun.)
“The outer solar system probably does not contain a large gas giant planet, or a small, companion star,” stated Kevin Luhman of the Center for Exoplanets and Habitable Worlds at Penn State University, author of a paper in the Astrophysical Journal describing the results.
Astronomers used information from NASA’s Wide-Field Infrared Survey Explorer, which did two full-sky scans in 2010 and 2011 to look at asteroids, stars and galaxies. NASA’s AllWISE program, released in November 2013, allows astronomers to find moving objects by comparing the two surveys.
A second study of the data found other objects further out in space — 3,525 stars and brown dwarfs (objects just below the threshold for fusion) within 500 light-years of the sun.
“We’re finding objects that were totally overlooked before,” stated Davy Kirkpatrick of NASA’s Infrared and Processing Analysis Center at the California Institute of Technology, who led the second paper.
Both papers will be published in the Astrophysical Journal.
A recent analysis of a star in the south hemisphere constellation of Centaurus has highlighted the role that amateurs play in assisting with professional discoveries in astronomy.
The find used of the European Southern Observatory’s Very Large Telescope based in the Atacama Desert in northern Chile — as well as data from observatories around the world — to reveal the nature of a massive yellow “hypergiant” star as one of the largest stars known.
The stats for the star are impressive indeed: dubbed HR 5171 A, the binary system weighs in at a combined 39 solar masses, has a radius of over 1,300 times that of our Sun, and is a million times as luminous. Located 3,600 parsecs or over 11,700 light years distant, the star is 50% larger than the famous red giant Betelgeuse. Plop HR 5171 A down into the center of our own solar system, and it would extend out over 6 astronomical units (A.U.s) past the orbit of Jupiter.
Researchers used observations going back over 60 years – some of which were collected by dedicated amateur astronomers – to pin down the nature of this curious star. A variable star just below naked eye visibility spanning a magnitude range from +6.1 to +7.3, HR 5171 A also has a relatively small companion star orbiting across our line of sight once every 1300 days. Such a system is known as an eclipsing binary. Famous examples of similar systems are the star Algol (Alpha Persei), Epsilon Aurigae and Beta Lyrae. The companion star for HR 5171 is also a large star in its own right at around six solar masses and 400 solar radii in size. The distance from center-to-center for the system is about 10 A.U.s – the distance from Sol to Saturn – and the surface-to-surface distance for the A and B components of the system are “only” about 2.8 A.U.s apart. This all means that these two massive stars are in physical contact, with the expanded outer atmosphere of the bloated primary contacting the secondary, giving the pair a distorted peanut shape.
“The companion we have found is very significant as it can have an influence on the fate of HR 5171 A, for example stripping off its outer layers and modifying its evolution,” said astronomer Olivier Chesneau of the Observatoire de la Côte d’Azur in Nice France in the recent press release.
Knowing the orbital period of a secondary star offers a method to measure the mass of the primary using good old Newtonian mechanics. Coupled with astrometry used to measure its tiny parallax, this allows astronomers to pin down HR 5171 A’s stupendous size and distance.
Loading player…
Along with luminous blue variables, yellow hypergiants are some of the brightest stars known, with an absolute magnitude of around -9. That’s just 16x times fainter than the apparent visual magnitude of a Full Moon but over 100 times brighter than Venus – if you placed a star like HR 5171 A 32 light years from the Earth, it would easily cast a shadow.
Astronomers used a technique known as interferormetry to study HR 5171 A, which involves linking up several telescopes to create the resolving power of one huge telescope. Researchers also culled through over a decade’s worth data to analyze the star. Though much of what had been collected by the American Association of Variable Star Observers (the AAVSO) had been considered to be too noisy for the purposes of this study, a dataset built from 2000 to 2013 by amateur astronomer Sebastian Otero was of excellent quality and provided a good verification for the VLT data.
The discovery is also crucial as researchers have come to realize that we’re catching HR 5171 A at an exceptional phase in its life. The star has been getting larger and cooling as it grows, and this change can be seen just over the past 40 year span of observations, a rarity in stellar astronomy.
“It’s not a surprise that yellow hypergiants are very instable and lose a lot of mass,” Chesneau told Universe Today. “But the discovery of a companion around such a bright star was a big surprise since any ‘normal’ star should at least be 10,000 times fainter than the hypergiant. Moreover, the hypergiant was much bigger than expected. What we see is not the companion itself, but the regions gravitationally controlled and filled by the wind from the hypergiant. This is a perfect example of the so-called Roche model. This is the first time that such a useful and important model has really been imaged. This hypergiant exemplifies a famous concept!”
Indeed, you can see just such photometric variations as the secondary orbits its host in the VLTI data collected by the AMBER interferometer, backed up by observations from GEMINI’s NICI chronograph:
The NIGHTFALL program was also used for modeling the eclipsing binary components.
These latest measurements place HR 5171 A firmly in the “Top 10” for largest stars in terms of size known, as well as the largest yellow hypergiant star known This is due mainly to tidal interactions with its companion. Only eight yellow hypergiants have been identified in our Milky Way galaxy. HR 5171 A is also in a crucial transition phase from a red hypergiant to becoming a luminous blue variable or perhaps even a Wolf-Rayet type star, and will eventually end its life as a supernova.
HR 5171 A is also known as HD 119796, HIP 67261, and V766 Centauri. Located at Right Ascension 13 Hours 47’ 11” and declination -62 degrees 35’ 23,” HR 5171 culminates just two degrees above the southern horizon at local midnight as seen from Miami in late March.
HR 5171 A is a fine binocular object for southern hemisphere observers.
But the good news is, there’s another yellow hypergiant visible for northern hemisphere observers named Rho Cassiopeiae:
Rho Cass is one of the few naked eye examples of a yellow hypergiant star, and varies from magnitude +4.1 to +6.2 over an irregular period.
It’s amusing read the Burnham’s Celestial Handbook entry on Rho Cass. He notes the lack of parallax and the spectral measurements of the day — the early 1960s — as eluding to a massive star with a “true distance… close to 3,000 light years!” Today we know that Rho Cassiopeiae actually lies farther still, at over 8,000 light years distant. Robert Burnham would’ve been impressed even more by the amazing nature of HR 5171 as revealed today by ESO astronomers!
– The AAVSO is always seeking observations from amateur astronomers of variable stars.
The Cosmic Microwave Background Radiation is the afterglow of the Big Bang; one of the strongest lines of evidence we have that this event happened. UCLA’s Dr. Ned Wright explains.
“Ok, I’m Ned Wright, and I’m a professor of physics and astronomy at UCLA, and I work on infrared astronomy and cosmology.”
How useful is the cosmic microwave background radiation?
“Well, the most important information we get is from the cosmic microwave background radiation come from, at the lowest level, is it’s existence. When I started in astronomy, it wasn’t 100 percent certain that the Big Bang model was correct. And so with the prediction of a cosmic microwave background from the Big Bang and the prediction of no cosmic microwave background from the competing theory, the steady state, that was a very important step in our knowledge.”
“And then the second aspect of the cosmic microwave background that is very important, is that it’s spectrum is extremely similar to a black body. And so, by being a black body means that universe relatively smoothly transitioned from being opaque to being transparent, and then we actually see effectively an isothermal cavity when we look out, so it looks very close to a black body.”
“And the fact that we are moving through the universe can be measured very precisely by looking at what is called the dipole anisotropy of the microwave background. So one side of the sky is slightly hotter (about 3 millikelvin hotter) and one side of the sky – the opposite side of the sky – is slightly colder (about 3 millikelvin colder), so that means that we are moving at approximately a tenth of a percent of the speed of light. And in fact we now know very precisely what that value is – it’s about 370 kilometers per second. So that’s our motion, the solar system’s motion, through the universe.”
“An then the final piece of information we’re getting from the microwave background now, in fact the Planck satellite just gave us more information along these lines is measurement of the statistical pattern of the very small what I call anisotropies or little bumps and valleys in the temperature. So in addition to the 3 millikelvin difference, we actually have plus or minus 100 microkelvin difference in the temperature from different spots. And so, when you look at these spots, and look at their detailed pattern, you can actually see a very prominent feature, which is there’s about a one and a half degree preferred scale, and that’s what’s caused by the acoustic
waves that are set up by the density perturbations early in the history of the universe, and how far they could travel before the universe became transparent. And that’s a very strong indicator about the universe.”
What does it tell us about dark energy?
“The cosmic microwave background actually has this pattern on a half degree scale, and that gives you effectively a line of position, as you have with celestial navigation where you get a measurement of one star with a sextant, then you get a line on the map where you are. But you can look at the same pattern – the acoustic wave setup in the universe, and you see that in the galaxy’s distribution a lot more locally. We’re talking about galaxies, so it might be a billion light years away, but to cosmologists, that’s local. And these galaxies also show the same wave-like pattern, and you can measure that angle at scale locally and compare it to what you see in history and that gives you the crossing line of position. And that really tells us where we are in the universe, and how much stuff there is and it tells us that we have this dark energy which nobody really understands what it is, but we know what it’s doing. It’s making the universe accelerate in it’s expansion.”
Which way to the center of the galaxy? This very creative — and gorgeous — view of the Milky Way was taken this past weekend (March 9, 2014) by astrophotographer Carlos Orue from Australia. Carlos said the Milky Way was so bright under these dark skies that “I almost needed sunnies to turn down the glare! Lots of green airglow visible too.” Also visible are the large and small Magallanic clouds.
While taking the images for this 14-image panorama, Carlos said he had lots of company: “Kangaroos, wallabies, wombats, emus, bunny rabbits and foxes.”
And just remember, according to Walt Disney, “That second star to the right shines in the night for you, to tell you that the dreams you plan really can come true.”
Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.
Did some of the oldest galaxies grow up quickly? That’s an intriguing possibility raised by a research team that found “mature” galaxies some 12 billion light years away, when the universe was less than 2 billion years old.
“Today the universe is old and filled with galaxies that have largely stopped forming stars, a sign of galactic maturity,” stated Caroline Straatman from the Netherlands’ Leiden University, a graduate student who led the research. “However, in the distant past, galaxies were still actively growing by consuming gas and turning it into stars. This means that mature galaxies are expected to be almost non-existent when the universe was still young.”
Using data from the Magellan Baade Telescope’s FourStar Galaxy Evolution Survey and combining with other observatories, researchers looked at the young universe using near infrared wavelengths and found 15 galaxies at an average of 12 billion light-years away. While the galaxies are faint using visual wavelengths, they were easy to spot in infrared — and hosted as many as 100 billion stars per galaxy, on average.
These galaxies each have a similar mass to the Milky Way, but stopped making stars when the universe was “only 12 percent of its current age”, researchers said. This implies that star-forming happened much more quickly in the past than right now, since the rate is estimated at several hundred times higher than what is observed in the Milky Way now.
It’s not clear what caused the rapid aging, but you can be sure researchers will look into this further. You can read the research in Astrophysical Journal Letters or in preprint version on Arxiv. Other databases used include Hubble’s Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey and the Great Observatories Origins Deep Survey.