Seeing Red: Spectacular Views of this Morning’s Total Lunar Eclipse

Photos by author.

Did the Moon appear a little on crimson side to you last night? It’s not your imagination, but it was a fine textbook example of a total lunar eclipse. This was the first total lunar eclipse visible from the Earth since late 2011, and the first of four visible from the Americas over the next 18 months.  

And although much of the U.S. and Canadian eastern seaboard was under cloud cover, those west of the Mississippi River were treated to a fine show. We were the lucky exception here at Astroguyz HQ just north of Tampa Bay in Florida, as the storm front held off juuusst long enough to witness the eclipse in its entirety.

We will admit, though, that there were some tense moments. A wave of thick clouds threatened to end our session altogether just moments before the onset of totality before finally abating. We shot stills, streamed video, made observations, and heck, just stepped back once in a while to stare at the ruby-tinged beauty that was totality.

And judging from the flurry of web traffic, the odd late Monday night/ early Tuesday morning timing for this eclipse did little to stem folks interest. We noted to Virtual Star Party co-host that the excitement was reminiscent to the early morning landing of Curiosity on the Red Planet.

Anyhow, here’s just a sampling of some of the great pics currently pouring in to Universe Today:

 Credit: Henry Weiland of Honolulu, Hawaii
An eclipsed Moon+Spica. Credit: Henry Weiland of Honolulu, Hawaii

Visually, we’d place this morning’s eclipse between a Danjon value of 3 and 4, with a bright yellowish rim contrasting with a dark, coppery core near the center of the umbra. One astute viewer noted during the webcast that the eclipsed Moon took on a decidedly 3-D appearance, versus its usual flat look when nearing Full.

The eclipsed Moon, Mars and Spica. Credit: @Astrocolors
The eclipsed Moon, Mars and Spica. Credit: @Astrocolors

And speaking of Mars, we fielded lots of “what are those bright stars nearby?” questions as well. The bright blue-white star Spica and the planet Mars “photobombed” many eclipse images. Spica just missed being occulted by the Moon during the eclipse by less than two degrees, And Mars just passed opposition this week and was at its closest approach to the Earth for 2014 on the night of the eclipse.

Approaching totality as seen from Jacksonville, Florida. Credit Richard Hay @WinObs
Approaching totality as seen from Jacksonville, Florida. Credit: Richard Hay @WinObs.

As totality approached, shutter-speeds became longer as the red edge of the Moon became apparent. It always amazes me to think that the Earth casts that long red shadow back into the void of space every night, but its only during a lunar eclipse that you actually get to see it. We’re always told that the Earth is round, but during a lunar eclipse is one of the only times that you can really witness this curve, up close and personal.

NYC Credit: AstroVal1
A gathering of red objects, both celestial and terrestrial. Credit: AstroVal1, New York City.

This eclipse was placed reasonably high in the sky for Northern hemisphere viewers, though that also meant a lack of pics with foreground, except of course for creative shots like the one above. And with the explosion of digital imaging technology, its amazing what folks are doing to image eclipses, even using mobile phones:

IPhone eclipse. Credit: Mike Weasner.
An IPhone eclipse. Credit: Mike Weasner.

We’ve come a long way since the days of film and doing back of the envelope calculations for afocal SLR photography of the Moon, that’s for sure. Unlike solar totality, lunar eclipses are a long at stately affair. In fact, totality during this eclipse lasted for one hour and 18 minutes, about 29 minutes short of the theoretical maximum. This morning’s eclipse won’t be topped in length until 2018.

Credit: Rob Sparks.
A brick red Moon in eclipse. Credit: Rob Sparks.

This also marked our first attempts at adventures in live-streaming an eclipse both on UStream and G+, which was a blast. Thanks to co-hosts and saros chasers Scott Lewis, Fraser Cain, Thad Szabo and Katie Mack (@AstroKatie) for making the broadcast a success!

As of yet, there’s no images of the eclipse from space-based assets, though some may surface. Universe Today’s Elizabeth Howell noted that NASA engineers took precautions to protect the Lunar Reconnaissance Orbiter during the event: an extended lack of sunlight is a bad thing for solar-powered spacecraft. As of yet, there’s no word as to how the LADEE spacecraft also in orbit around the Moon fared, though its due to complete its mission and crash into the Moon this month.

Moon and Spica. Photo by Author.
The eclipsed Moon and Spica. Photo by Author.

And like the “Blue,” “Super” and “Mini” Moon, the Blood Moon meme is now — for better or worse — here to stay. We’ve already fielded  multiple queries for media sources asking if the current tetrad of eclipses has any special significance, and the answer is no; I would still file your taxes on this April the 15th. Eclipses happen, as do wars, earthquakes and lost car keys… each and every year.

Credit: John O'Connor, Fort Pierce, Florida.
Approaching totality. Credit: John O’Connor, Fort Pierce, Florida.

Want more? There’s no word yet as to if anyone caught any of the more bizarre challenges during this eclipse, such as completing a triple saros exeligmos, catching an ISS transit, spotting a selenelion or catching a stellar occultation during the eclipse. If you did any of the above, let us know!

And finally, the biggest post-eclipse question on everyone’s mind is always: when’s the next one? Well, Australians only have to wait two weeks until a partial solar eclipse graces their continent on April 29th… and the next total lunar eclipse once again favors North America and the Pacific region on October 8th, 2014.

T’was a great kickoff this morning of eclipse season 1 of 2 for 2014!

 

 

 

 

 

 

 

Handy! 3-D Printing Could Build Moon Bases And Improve Items Used In Space

Two 3-D replicas of a glove worn by European Space Agency astronaut Hans Schlegel. The one on right is lifesize and the other at one-tenth scale. The models were created "using fused deposition modelling of thermoplastic", ESA stated, at a mechanical workshop at the Netherlands' European Space Research and Technology Centre. Credit: ESA-Anneke Le Floc'h

Star Trek replicators, here we come. The European Space Agency has released a list of how 3-D printing could change space exploration forever. And lest you think this type of printing is far in the future, images like those disembodied hands above show you it’s come a long way. Those are 3-D replicas of a glove worn by European Space Agency astronaut Hans Schlegal.

The applications range from the small — making lighter valves, for example — to ambitious projects such as constructing a moon base. Below are some ESA images showing uses for 3-D printing, and if they’ve missed some, be sure to let us know in the comments.

Two valves -- which is the 3-D printed one? It's the one on the right. The original (left) is a water on-off valve (Woov) flown on the European Space Agency's Columbus module on the International Space Station. The replica is 40 percent less massive. Credit: ESA
Two valves — which is the 3-D printed one? It’s the one on the right. The original (left) is a water on-off valve (Woov) flown on the European Space Agency’s Columbus module on the International Space Station. The replica is 40 percent less massive. Credit: ESA
Artist's conception of a lunar dome based on 3-D printing. Credit: ESA/Foster + Partners
Artist’s conception of a lunar dome based on 3-D printing. Credit: ESA/Foster + Partners
A 3-D printed showerhead injector that apparently saves on time in the normal manufacturing process: usually it takes "more than 100 separate welds to produce", according to the European Space Agency. The holes, however, are made by secondary processing. Credit: ESA
A 3-D printed showerhead injector that apparently saves on time in the normal manufacturing process: usually it takes “more than 100 separate welds to produce”, according to the European Space Agency. The holes, however, are made by secondary processing. Credit: ESA
A closeup of a titanium lattice ball made using a 3-D printer. According to the European Space Agency, the hollow spheres have a "complex external geometry" that cannot be made with the usual manufacturing processes. Credit: ESA
A closeup of a titanium lattice ball made using a 3-D printer. According to the European Space Agency, the hollow spheres have a “complex external geometry” that cannot be made with the usual manufacturing processes. Credit: ESA

Let’s Put a Sailboat on Titan

An illustration showing how a sailboat mission to Titan might land and become operational. Copyright: Estevan Guzman for Universe Today.

The large moons orbiting the gas giants in our solar system have been getting increasing attention in recent years. Titan, Saturn’s largest moon, is the only natural satellite known to house a thick atmosphere. It’s surface, revealed in part by the Cassini probe, is sculpted by lakes and rivers. There is interest in exploring Titan further, but this is tricky from orbit because seeing through the thick atmosphere is difficult. Flying on Titan has been discussed around the web (sometimes glibly), and this was even one of the subjects treated by the immensely popular comic, XKCD.

However, there remains the problem of powering propulsion. The power requirements for flight are quite minimal on Titan, so solar wings might work. But Titan also presents an alternative: sailing.

Images from the Cassini mission show river networks draining into lakes in Titans north polar region. Credit: NASA/JPL/USGS.
Images from the Cassini mission show river networks draining into lakes in Titans north polar region. Credit: NASA/JPL/USGS.

With all those lakes and rivers, exploring Titan with a surface ship might be a great way to see much of the moon. The vehicle wouldn’t be sailing on water, though. The lakes on Titan are composed of liquid methane. The challenge is therefore making the vessel buoyant: liquid methane is only 45% as dense as liquid water. This means we would need a lot of displacement. A deep, hollow hull could do this, however, and it turns out that the liquid methane has an advantage that helps make up for the low density: it is much less viscous than water.

Reynolds number is proportional to the ratio of density to viscosity, and it turns out that friction drag on a hull is inversely proportional to Re. While Titan’s seas and lakes have only 45% the density of water, they also have only 8% of the viscosity. This means that the Titan sailing vessel would only experience about 26% of the friction drag as its Earth equivalent. [Yacht designers have found that the friction drag is about equal to 0.075/(log(Re)-2)^2)]. That leaves us room to make the hull deeper (important to compensate for the density as above), and longer (if we want a longer waterline, which will make the bow waves longer and improve maximum speed).

The sail itself would get less wind, on average, on Titan than Earth. Average wind speeds on Titan seem to be about 3 meters/s, according to Cassini, though it might be higher over the lakes. Average wind speed over Earth oceans is closer to 6.6 meters/s. But, the Titan atmosphere is also about 4x denser than Earth’s, and both lift and drag are proportional to fluid density. All told, this means that the total fluid force on the sail will be about 83% of what you’d get on Earth, all else being equal, which could be sufficient. There would be a premium on sail efficiency and size, and so we might have to take advantage of the low-friction hull to examine shapes with more stability that can house a larger, taller (and presumably high aspect ratio) sail.

This is all quite speculative, of course, but it provides a fun exercise and perhaps provides inspiration as we imagine tall-sailed robotic vessels silently cruising the lakes of Titan.

Titan Mare Explorer. Image credit: NASA/JPL
Titan Mare Explorer. Image credit: NASA/JPL

One concept for a boat on Titan has already been proposed: the Titan Mare Explorer (TiME) would send a floating high-tech buoy to land in a methane sea on this moon of Saturn to study its composition and its interaction with the atmosphere. But this Discovery-class mission concept was nixed in favor of sending the InSight lander to Mars.

But with all the recent discoveries on Titan by the Cassini spacecraft — things like lakes, seas, rivers and weather and climate patterns that create both fog and rain — a mission like this will be given more consideration in the future.

Why The Eclipse Forced A Shutdown Of Lunar Spacecraft’s Instruments

Lunar Reconnaissance Orbiter
Lunar Reconnaissance Orbiter. Image Credit: NASA

While people across North America marvelled at the blood-red moon early this morning, some NASA engineers had a different topic on their minds: making sure the Lunar Reconnaissance Orbiter would survive the period of extended shadow during the eclipse.

LRO uses solar panels to get energy for its batteries, so for two passes through the Earth’s shadow it would not be able to get any sunlight at all. Tweets on the official account show all as well in the first few hours after the eclipse.

“The spacecraft will be going straight from the moon’s shadow to the Earth’s shadow while it orbits during the eclipse,” stated Noah Petro, LRO’s deputy project scientist at NASA’s Goddard Space Flight Center, in a release before the eclipse occurred.

“We’re taking precautions to make sure everything is fine,” Petro added. “We’re turning off the instruments and will monitor the spacecraft every few hours when it’s visible from Earth.”

LRO’s Twitter account asked “Who turned off the heat and lights?” during the eclipse, then reported a happy acquisition of signal after the shadow passed by. “AOS, and sunlight, sweet sunlight! My batteries are charging again before I make another trip to the lunar far side.”

Hear more about LRO’s eclipse journey in the video below. For more information, check out NASA’s LRO website.  UPDATE, 10:28 a.m. EDT: NASA’s Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft also is fine after the eclipse, according to its Twitter account.

Is Saturn Making a New Moon?

A 750-mile (1,200-km) -long feature spotted on Saturn's A ring by Cassini on April 15, 2013

Congratulations! It’s a baby… moon? A bright clump spotted orbiting Saturn at the outermost edge of its A ring may be a brand new moon in the process of being born, according to research recently published in the journal Icarus.

“We have not seen anything like this before,” said Carl Murray of Queen Mary University in London, lead author of the paper. “We may be looking at the act of birth, where this object is just leaving the rings and heading off to be a moon in its own right.”

In images acquired with Cassini’s narrow-angle camera in 2013, a 1,200-kilometer-long, 10-kilometer-wide arc of icy material was observed traveling along the edge of the A ring. The arc is thought to be the result of gravitational perturbations caused by an as-yet unseen embedded object about a kilometer wide — possibly a miniature moon in the process of formation.

Cassini image of the 179-km-wide Janus from April 2010. Janus' gravity may have helped spur the formation of Peggy. (NASA/JPL-Caltech/SSI)
Cassini image of 179-km-wide Janus from April 2010. Janus’ gravity may have helped spur the formation of Peggy. (NASA/JPL-Caltech/SSI)

The half-mile-wide object has been unofficially named “Peggy,” after lead author Murray’s mother-in-law (whose 80th birthday it was on the day he was studying the Cassini NAC images.) Murray first announced the findings on Dec. 10, 2013 at the AGU 13 meeting in San Francisco.

According to the team’s paper, Peggy’s effects on the A ring has been visible to Cassini since May 2012.

Eventually Peggy may coalesce into a slightly larger moon and move outward, establishing its own orbital path around Saturn. This is how many of Saturn’s other moons are thought to have formed much further back in the planet’s history. Now, its rings having been depleted of moon-stuff, can only create tiny objects like Peggy.

“Witnessing the possible birth of a tiny moon is an exciting, unexpected event.”
– Linda Spilker, Cassini Project Scientist at JPL

While it is possible that the bright perturbation is the result of an object’s breakup rather than formation, researchers are still looking forward to finding out more about its evolution.

Read more on the NASA/JPL news release here.

To find out more about the Cassini mission visit saturn.jpl.nasa.gov and www.nasa.gov/cassini. The Cassini imaging team’s website is at ciclops.org.

The Search for Gravitational Waves: New Documentary About LIGO Premieres Soon

Laser Interferometer Gravitational-Wave Observatory Hanford installation - each arm extends for four kilometres. Credit: Caltech.

What happens when stars or black holes collide? Scientists have theorized that the energy released would disturb the very fabric of the space-time continuum, much like ripples in a pond. These ripples are called gravitational waves, and while proving the existence of these waves has been difficult, their detection would open a brand new window on our understanding of the Universe.

The Laser Interferometer Gravitational-wave Observatories (LIGO) have been searching for these elusive waves. A new documentary about LIGO will be available soon here on Universe Today, and it documents the science and people behind the unprecedented astronomical tool designed to catch sight of violent cosmic events trillions of miles from our planet.

The new documentary titled, “LIGO, A Passion for Understanding,” follows scientists working with LIGO. It is produced by filmmaker Kai Staats, and this will actually be the first installment to a multi-video series, in fact. Watch the trailer, above.

“A Passion for Understanding” brings to life one of the most important astronomical tools of our time while telling the human story of creativity, passion, and drive to understand the very fabric of the Universe in which we live.
Operated by teams from the California Institute of Technology and Massachusetts Institute of Technology, LIGO’s observatories use 4 km laser beams to hunt for gravitational waves. The LIGO scientific collaboration consists of hundreds of scientists from around the world.

LIGO’s enhanced run ended in 2010, but the Advanced LIGO project featuring newly upgraded instruments is set to begin its run in late 2015. Advanced LIGO will probe deeper into the universe in search of gravitational waves.

Find out more about the documentary on the film’s Facebook page, at the LIGO collaboration website, and on Space.com.

LIGO, A Passion for Understanding – Trailer from Kai Staats on Vimeo.

How Do We Know the Moon Landing Isn’t Fake?

How Do We Know the Moon Landing Isn't Fake?

There’s a conspiracy theory that astronauts never landed on the Moon. Is it all a conspiracy? Were the Moon landings faked? What is the evidence that we actually went to the Moon?

Apparently, there’s an organization called “NASA”, who’s done a remarkable job of sticking to their story. They say Neil Armstrong and Buzz Aldrin landed on the Moon on July 20, 1969, and set foot on the surface 6 hours later.This same organization claims there were 5 additional missions which successfully landed on the Moon, and an alleged total of 12 people went for a walk there.

Can you imagine? According to them, they spent $24 billion, which is more than $150 billion in inflation adjusted dollars. Their so-called “Apollo” program allegedly employed 400,000 people, supported by more than 20,000 companies and research institutions. I say “alleged”, as some people choose to think the Moon landings were acts of cinematic chicanery.

More than 10 years ago, Fox popularized the Moon landing conspiracy with a show called “Did We Land On The Moon?”. They revealed several pieces of evidence about the hoax and cover-up citing incorrect shadows on the Moon, lack of background stars, and more. Each of the pieces of evidence they present is wrong and easily explained once you understand the underlying science.… Or at least, that’s what they would have us believe.

Phil Plait successfully brings a NASA supporting voice to this story, explaining how the evidence against moon landings is at best, fantasy and misunderstanding. A more cynical view might be to suggest it’s a deliberate manipulation created to maintain an anti-scientific narrative to foster ignorance, mistrust and uphold a larger political agenda. Do a little search for “Phil Plait moon landing” and you’ll see him present even-handed science over any one of the arguments. In fact, if you buy into that whole “evidence” idea, he appears to successfully tear apart the conspiracy arguments.

Some still, are not convinced, possibly including you. “NASA and Phil, they’re in cahoots. Phil’s a PhD astronomer, which means he studies space, one of the letters in NASA stands for SPACE, I think it’s the A.” Coincidence? I think not. There’s collusion going on there.

The main pillar of any conspiracy requires a few select people keeping a really, really, really big secret. Looking at the numbers, the select group required to successfully fabricate the appearance of hurling metal capsules containing humans at our orbiting neighbor and then retrieving them, additionally keep their story straight for at best 45 years, and never, ever slip up… is about 400,000 humans.

Was the Moon Landing Real
Neil Armstrong on the Lunar Surface

So, there are really two sides to this story, the NASA side which is… They went to the Moon. and everyone is telling the truth. OR, they never went to the Moon, and somehow 400,000 people have never, ever, ever, ever let it slip that they made a bunch of fake moon rocks, or the rockets shot up didn’t really go anywhere. It’s all a big ruse. The thought 400,000 people have managed to keep their mouths shut is definitely the more romantic perspective. Seeing people come together to screw with everyone, and then never blabbing. This truly is a triumph of the human spirit.

When something big does happen, like the Chelyabinsk meteor, we see the evidence everywhere – for example captured on Russian dashboard cameras. For the lunar landing, NASA suggests something similar. There are independent astronomers who tracked the rockets escape from Earth’s gravity, and are either providing unsolicited, nonpartisan unfunded support of the events, or they’re in on the whole thing. The Russians, who were in a race with the Americans to be the first to set foot on the Moon, allegedly tracked the missions in horror and disappointment.

NASA just keeps sticking to this story that they sent people to the moon. In fact, they just keep on producing more of their “evidence”. They recently published high resolution images of the surface of the Moon captured by their own Lunar Reconnaissance Orbiter. Adding a whole new generation of secret keepers, who now know the secret handshake and get participate in the rigging of Oscar nights.

Apollo moon landing sites
Apollo moon landing sites

They imaged all of the alleged Apollo landing sites, and they haven’t missed any detail. You can see the landers, rovers, and even the astronauts’ footsteps. The images show that all the flags planted are still standing, except Apollo 11, which was blown over by the exhaust from the ascent engine. Or alleged exhaust from an alleged ascent engine, if you’re still thinking 400,000 people are continuing to punk the triumphs of mankind. Some might suggest that a big paycheck was sent on over to China and Japan, to have them verify the landing sites by photographing them with their own spacecraft.

According to NASA the astronauts placed retro-reflectors during their missions which reflect light directly back to Earth. Apparently these can be used this to calculate the distance to the Moon with 1 cm accuracy. So, if you want to confirm that humans went to the Moon for yourself, you could just point a high-power laser at the landing sites. Sure, there are many large independent institutions which have verified the existence of these retro-reflectors, but who knows, maybe they’re some how pawns of our silent and vigilant 400,000 co-conspirators.

What do you think? Make up a conspiracy theory for your favorite triumph of human innovation and exploration! Post it in the comments below.

Comet ISON Photo Contest Winners Rock the House!

"Comet ISON" -- People's Choice award winner: Eric Cardoso, Setúbal, Portugal, Credit: Eric Cardoso

Comet ISON’s gone but positively not forgotten. The National Science Foundation today shared the results of their Comet ISON Photography Contest. You’ll recognize many of the names because so many of their photos have graced stories written for Universe Today. 

Come take a look back at the high points of one of the most highly anticipated and studied comets of all time. Click each photo for a full-sized view. Congratulations to all the winners!

"Broom Star" -- 1st place in the Through the Telescope category: Damian Peach, Hampshire, U.K., Credit: Damian Peach
“Broom Star” — 1st place in the Through the Scope category: Damian Peach, Hampshire, U.K., Credit: Damian Peach
"C/2012 S1 ISON" -- 2nd place Through the Scope: Gerald Rhemann, Vienna, Austria. Credit: Gerald Rhemann
“C/2012 S1 ISON” — 2nd place Through the Scope: Gerald Rhemann, Vienna, Austria. Credit: Gerald Rhemann
"Comet ISON over Pokhara City, Nepal" -- 1st place Cameras and Tripods: Atish Aman, Delhi, India,  Credit: Atish Aman
“Comet ISON over Pokhara City, Nepal” — 1st place Cameras and Tripods category: Atish Aman, Delhi, India. Credit: Atish Aman
"Comet ISON, Port Medway, Nova Scotia" -- 2nd place Cameras and Tripods: Barry Burgess, Nova Scotia, Canada. Credit: Barry Burgess
“Comet ISON, Port Medway, Nova Scotia” — 2nd place Cameras and Tripods category: Barry Burgess, Nova Scotia, Canada. Credit: Barry Burgess
"Comet ISON Gossamer Tail & Disconnection Event" -- 1st place Piggyback Cameras: John Chumack, Ohio, USA. Credit: John Chumack
“Comet ISON Gossamer Tail & Disconnection Event” — 1st place Piggyback Cameras category: John Chumack, Ohio, USA. Credit: John Chumack
 "Mercury and ISON" 2nd place Piggyback Cameras: Gaeul Song, Korea. Credit: Gaeul Song
“Mercury and ISON” — 2nd place Piggyback Cameras: Gaeul Song, Korea. Credit: Gaeul Song

Webcasts and Forecasts for Tonight’s Total Lunar Eclipse

The December 21st 2010 Solstice eclipse. Photos by author.

Are you ready for some eclipse action? We’re now within 24 hours of the Moon reaching its ascending node along the ecliptic at 13:25 Universal Time (UT)/ 9:25 AM EDT on Tuesday morning and meeting the shadow of the Earth just over seven hours earlier.

We’ve written about viewing prospects for tonight’s lunar eclipse. This eclipse is the first total lunar eclipse since December 10th, 2011 and is the first in a series of four — known as an eclipse tetrad — visible from North America in 2014 and 2015. Totality lasts 1 hour and 18 minutes and falls just 29 minutes short of the theoretical maximum, which was last neared on January 21st, 2000 and won’t be topped until July 27th, 2018.

This will be an early morning event for U.S. East Coasters spanning 2:00 to 5:30 AM local (from the start of the partial umbral phases and totality), and a midnight spanning-event for the Pacific coast starting at 11:00 PM Monday night until 2:30 AM Tuesday morning on the 15th.

And as always with celestial events, the chief question on every observer’s mind is: will the skies be clear come show time? Should I stay put, or ponder going mobile?

When it comes to astronomical observing, a majority a mainstream weather resources only tell part of the story, often only listing cloud cover and precipitation percentages. Seeing, transparency, and low versus middle and high cloud decks can often mean the difference between a successful observing session and deciding to pack it in and watch Cosmos reruns online. But the good news is, you don’t need crystal clear skies to observe a total lunar eclipse, just a view of the Moon, which can easily “burn through” a high cirrus cloud deck. We’re going to share a few sites that are essential tools for planning an observing session and what they say about the prospects for seeing tonight’s eclipse.

Cloud cover prospects. Credit: NOAA.
Cloud cover prospects towards the end of tomorrow morning’s lunar eclipse. Credit: NOAA.

Now the bad news: things aren’t looking good for eastern North America. In fact, the dividing line between “cloudy” and “clear” runs right down through central Ontario and follows the Mississippi River at mid-eclipse, which occurs at 7:47 UT/3:47 AM EDT. There’s a high pressure front sweeping eastward, bringing rain and cloudy skies with it. The Florida peninsula and parts of New England and the Canadian Maritimes may have shots at viewing the eclipse through partly cloudy skies.

The National Oceanic and Atmospheric Administration maintains a great interactive site with graphical interactive forecasts, to include satellite maps. Another long-standing source of good info is the Weather Underground. For tailor-made astronomy forecasts, we’re checking Clear Sky Chart (formerly Clear Sky Clock) and SkippySky daily for upcoming prospects. A great feature in SkippySky is that it not only gives you cloud cover maps, but layers them with high versus middle and low clouds… again, a thin high cloud deck during the lunar eclipse could still mean game on!

Clouded out? There’s a half dozen webcasts planned for tonight’s lunar eclipse as well.

Dependable Slooh will have a live broadcast with commentary on the eclipse starting at 2AM EDT/6:00 UT:

Also, our good friends at the Virtual Telescope Project will be covering the lunar eclipse as part of their ongoing Global Astronomy Month campaign and will utilize several North American observers to cover the event:

NASA is also planning a broadcast out of the Marshall Space Flight Center of the eclipse along with a discussion on Reddit with NASA planetary scientist Renee Weber also starting at 2:00 AM EDT:

Video streaming by Ustream

The Coca-Cola Space Science Center and Columbus State University also plans host a webcast of the lunar eclipse starting at 3:00 UT/11:00 PM EDT.

Also, the PBS Star Gazers project is planning on hosting a broadcast of the eclipse starting at 1:30 AM EDT/5:30 UT:

Video streaming by Ustream

And finally, we hope to launch our very own initiation into the world of eclipse webcasting with an hour-long broadcast of the crucial phase transition from partial to total eclipse starting at 2:30 AM EDT/6:30 UT, weather willing:

Live streaming video by Ustream

And hey, word is that doomsday purveyor John Hagee is planning a broadcast of a more “End of the World” bent tonight as well. We didn’t know he was an astronomy fan…

Prospects call for a brighter than normal eclipse, as atmospheric sciences professor at the University of Colorado Richard Keen notes that the Earth’s stratosphere is currently relatively clear of dust and volcanic ash. Still, we’ve been surprised before. The darkness and color of the eclipsed Moon is expressed on what’s known as the Danjon scale. As during eclipses previous, we’ll be data-mining Twitter for estimates and averages to see how they stack up… tweet those observations to #DanjonNumber.

Opportunities to catch the ISS transiting the Moon... during tonight's eclipse. Credit: CALSky.
Opportunities to catch the ISS transiting the Moon during tonight’s eclipse. Credit: CALSky.

We also ran the possibilities for catching a shadow transit of the International Space Station in front of the eclipsed Moon for North American observers. To our knowledge, this has never been done before. Live near one of the two paths depicted above? You may be the first to accomplish this unusual feat.   Check in with CALSky for specifics.

Our backyard "eclipse broadcasting station."
Our backyard “eclipse broadcasting station.”

Finally, ever wonder when the next eclipse will occur during the Sunday night Virtual Star Party? If you’re like us, you consider and ponder such astronomical occurrences… and it turns out, the very last lunar eclipse in the current tetrad next year on September 28th, 2015 does just that. And stick around until July 13th, 2037 and we’ll have the first ever total solar eclipse occurring during the show… we just need someone in Australia to stream it!

Tonight’s eclipse is number 56 of saros 122. Reader Rob Sparks notes that the last eclipse (55) in this series occurred on April 4th 1996 and also hosted an extra-special celestial treat, as Comet Hyakutake was just beginning to put on its memorable performance.

In short, don’t fear the “Blood Moon,”  but do get out and catch tonight’s fine lunar eclipse… we’ll be doing a post-eclipse photo roundup tomorrow, so be sure to send those pics in to Universe Today!

Spin! Crab Pulsar Speed Jumps Linked To Billions Of Tiny Vortices

Artist's conception of a gamma-ray pulsar. Gamma rays are shown in purple, and radio radiation in green. Credit: NASA/Fermi/Cruz de Wilde

Pulsars — those supernova leftovers that are incredibly dense and spin very fast — may change their speed due to activity of billions of vortices in the fluid beneath their surface, a new study says.

The work is based on a combination of research and modelling and looks at the Crab Nebula pulsar, which has periodic slowdowns in its rotation of at least 0.055 nanoseconds. Occasionally, the Crab and other pulsars see their spins speed up in an event called a “glitch”. Luckily for astronomers, there is a wealth of data on Crab because the Jodrell Bank Observatory in the United Kingdom looked at it almost daily for the last 29 years.

A glitch, the astronomers said in a statement, is “caused by the unpinning and displacement of vortices that connect the [pulsar’s] crust with the mixture of particles containing superfluid neutrons beneath the crust.”

“Surprisingly, no one tried to determine a lower limit to glitch size before. Many assumed that the smallest glitch would be caused by a single vortex unpinning. The smallest glitch is clearly much larger than we expected,” stated Danai Antonopoulou from the University of Amsterdam.

The astronomers added they will need more observations of other pulsars to better understand the results.

You can read the paper at the Monthly Notices of the Royal Astronomical Society or in preprint version on Arxiv. The research was led by C.M. Espinoza of the University of Manchester and Chile’s Pontifical Catholic University.

Source: NOVA