Confused by how particles can be in two places at once? Wondering how particles can instantly communicate with each other no matter what the distance? Quantum physics is a field of study that defies common sense at every turn, and quantum entanglement might lead the way in the defying common sense department. Entanglement is the unusual behavior of elementary particles where they become linked so that when something happens to one, something happens to the other; no matter how far apart they are. This bizarre behavior of particles that become inextricably linked together is what Einstein supposedly called “spooky action at a distance.”
This new video from PHD Comics provides a combination of live action and animation to try to explain entanglement.
“Not surprisingly, it was really hard to draw this video,” says animator Jorge Cham. “How do you depict something that has never existed before? And more importantly, do you draw alligators differently from crocodiles?”
Yes, that sentence actually makes sense when it comes to entanglement. And the advice at the end of the video from physicist Jeff Kimble is applicable to entanglement — and life in general — as well: “If you know what you’re doing, don’t do it…”
Yesterday evening you may have dropped by to watch Slooh’s live coverage of asteroid 2000 EM26 as it passed just 8.8 lunar distances of Earth. Surprise – the space rock never showed up! Slooh’s robotic telescope attempted to recover the asteroid and share its speedy travels with the world but failed to capture an image at the predicted position.
Now nicknamed Moby Dick after the elusive whale in Herman Melville’s novel of the same name, the asteroid’s gone missing in the deep sea of space. Earthlings need fear no peril; it’s not headed in our direction anytime soon. Either the asteroid’s predicted path was in error or the object was much fainter than expected. More likely the former.
Last night’s coverage attempt of 2000 E26’s close flyby of Earth
2000 EM26’s predicted brightness at the time was around magnitude 15.4, not bright but well within range of the telescope. Rather than throwing their hands up in the air, the folks at Slooh are calling upon amateur astronomers make a photographic search for the errant space rock in the next few nights.
Since the asteroid was last observed 14 years ago for only 9 days, it isn’t too surprising that uncertainties in its position could add up over time, shifting the asteroid’s position and path to a different part of the sky by 2014. According to Daniel Fischer, German amateur astronomer and astronomy writer, the positions were off by 100 degrees! As Paul Cox, Slooh’s Observatory Director, points out:
“Discovering these Near Earth Objects isn’t enough. As we’ve seen with 2000 EM26, all the effort that went into its discovery is worthless unless followup observations are made to accurately determine their orbits for the future. And that’s exactly what Slooh members are doing, using the robotic telescopes at our world-class observatory site to accurately measure the precise positions of these asteroids and comets.”
If a determined, modern-day Ahab doesn’t find this asteroidal Moby Dick, one of the large scale robotic telescope surveys probably will. Here’s a link to the NASA/JPL particulars including brightness, coordinates and distance for 2000 EM26.
Similar sized asteroids, including ones passing even closer to Earth, zip by every month. 2000 EM26 received a lot of coverage yesterday likely because it arrived near the time of the anniversary of the Chelyabinsk meteorite fall over Russia. Though it remains scarce for now, eyes are on the sky to find the asteroid again and refine its orbit. Hopefully the beast won’t get away next time.
Every Thanksgiving when I was home from college, at least one family member would turn to me and ask me how that astrology degree was going, or tell me about a new astrology article they read. It wasn’t that my family members really thought I was studying astrology or even believed astrology was scientific, it was just that they mixed up “astronomy” with “astrology.” In all fairness, for those who don’t follow either astrology or astronomy very closely, it might be considered an honest mistake.
So when a report from the National Science Foundation claimed a majority of young Americans believed astrology was scientific I had my doubts. But so did psychologist, Richard Landers from Old Dominion University who performed a small second study and found the report to be biased.
Since 1979, NSF surveys have asked Americans whether they view astrology — the study of how the movement of celestial bodies affects the here and now — as being scientific.
Their most recent survey showed that nearly half of all Americans (42 percent) believe astrology to be scientific. But what’s more alarming, according to the NSF, is that American understandings of science are moving in the wrong direction. It seems our golden year was in 2004, when 66 percent of Americans said astrology was not at all scientific. That number has been dropping ever since.
It should come as no surprise that those with a higher education are more willing to demote astrology entirely. In 2012, 72 percent of those with graduate degrees indicated that astrology is not scientific, compared with only 34 percent of those who didn’t graduate high school.
Shockingly, age was also related to perceptions of astrology. Younger respondents (ages 18-24) seemed to give astrology a high vote of confidence,with only 42 percent claiming that it isn’t scientific. So roughly six in every 10 young adults believe astrology is absolutely scientific.
But such dramatic conclusions are being drawn from a single question: “Is astrology scientific?” It’s based on the crucial assumption that people are correctly interpreting the word “astrology.”
Landers guessed that the survey respondents might be mixing up the term “astrology” with “astronomy.” So he performed a quick survey himself, using Amazon Mechanical Turk (MTurk) — a crowdsourcing internet marketplace. He collected 100 responses to a survey that asked three questions:
— Please define astrology in 25 words or less.
— Do you believe astrology to be scientific?
— What is your highest level of education completed?
His initial assessment — without taking into account how the respondent defined astrology — showed results very similar to the original survey provided by the NSF — approximately 30 percent found astrology to be scientific. While this percentage is less than what the NSF report found, Landers believes this is due to a user bias (MTurk users tend to be more educated and older than the average American).
But once Landers included the answer to the first question into his results, he saw a very clear trend: those who defined astrology correctly did not believe it to be scientific, while those who confused astrology with astronomy did believe it to be scientific.
Among those that correctly identified astrology, only 13.5 percent found it to be “pretty scientific.” And only one person found it to be “very scientific.” Among those that confused astrology with astronomy, the discipline was overwhelmingly seen as scientific.
“My little quick study doesn’t ‘overturn’ the NSF results” Landers told Universe Today. “It only suggests that the NSF results are probably biased to some degree.”
With such small number statistics Landers certainly didn’t prove the NSF results wrong, but he does call the study into question. Landers also noted an additional study from the European Commission which corroborated his findings.
I for one would love to see the NSF conduct a more detailed study. Including a definition of astrology in the next round of surveys would certainly bring clarification and shed light on the root of the problem.
—
Update: After posting this article, a reader informed me of a critique of Richard landers’ assessment, posted by The Washington Post’s Jim Lindgren. He conducted another follow-up study to explore the issue. In his own sample, Lindgren found that probably only one respondent out of 108 confused “astrology” with “astronomy.” He claims it’s unlikely the NSF report was biased at all.
However, the back and forth banter between experts suggests these words and their corresponding definitions do need to be clarified. Science journalists have their work cut out for them.
Looking for something off of the beaten celestial path to observe? The coming weeks will offer telescope users a rare chance to catch a well known asteroid, as it puts on its best show for over two decades.
Over the coming weeks, 2 Pallas, one of the “big four” asteroids – or do you say minor/dwarf planet/planetoid? – reaches a favorable observing point known as opposition. Gliding northward through the constellations of Hydra and Sextans through February and March 2014, 2 Pallas presents a favorable binocular challenge for both northern and southern hemisphere observers as it rises to the east opposite to the setting Sun and transits the local meridian around midnight.
And although 2 Pallas reaches opposition roughly every 16 months as seen from our Earthly vantage point, 2014 provides a chance to catch it under exceptional circumstances. And to top it off, the other “Big 4” asteroids – 1 Ceres, 3 Juno and 4 Vesta – are all currently visible as well and reach opposition in the January through April time frame.
Pallas and its brethren also have a checkered history though the course of 19th century astronomy. The second minor planet to be discovered, Heinrich Wilhelm Olbers spied 2 Pallas near opposition on the night of March 28th, 1802. Olbers made this discovery observing from his home rooftop observatory in Bremen, Germany using a five foot – telescopes were often measured in focal length rather than aperture in those days – Dollond refractor.
Olbers discovered 2 Pallas on the border of the astronomical constellations of Virgo and Coma Berenices shining at magnitude +7.5.
If the name Olbers sounds familiar, it’s because he also lent it to the paradox that now bears his name. Obler’s paradox was one of the first true questions in cosmology posed in a scientific framework that asked: if the universe is actually infinite in time and space, then why isn’t the sky infinitely bright? And, on a curious side note, it was American horror author Edgar Allan Poe that delivered the answer.
But now back to our solar system. Olbers also discovered 4 Vesta just five years after Pallas.
He was definitely on a roll. The discoveries of these space rocks also grabbed the attention of Olbers contemporary, Johann Bode. Bode had formulated a law now known as the Titus-Bode Law that seemed to put the spacing of then known bodies of the solar system in tidy order. In fact, the Titus-Bode law seemed to predict that a body should lie between Mars and Jupiter, and for a brief time in the 18th century — and again in 2006 when the International Astronomical Union let Eris and Pluto in the door before kicking them back out — Ceres, Pallas, Juno and Vesta were all considered planets.
Today, we now know that 2 Pallas is a tiny world about 575 kilometres in diameter. 2 Pallas orbits the Sun once every 4.62 years and has a relatively high inclination of 34.8 degrees relative to the ecliptic. Pallas has no confirmed satellites, though one was once hinted at during a May 29th, 1979 stellar occultation. And though we’ve yet to send a mission to examine Pallas up close, there were early planning considerations to send NASA’s Dawn spacecraft there after its visit to 1 Ceres.
This month, look for 2 Pallas as a +7th magnitude wandering star at dusk. Mid-February finds 2 Pallas in the constellation Hydra, and it crosses briefly into Sextans starting on March 22nd until it passes just three degrees east of the 2nd magnitude Alphard (Alpha Hydrae) on March 1st, making a good guidepost to find it at its brightest.
2 Pallas last broke +7th magnitude visibility as seen from Earth in 1991 and won’t do so again til 2028. This is because 18.5 Earth years very nearly equals four orbits of Pallas around the Sun, bringing the two worlds back “into sync.” According to calculations by Belgian astronomer Jean Meeus, the 2014 opposition season offers the closest passage to Earth for Pallas from 1980-2060. Pallas can appear at a maximum brightness of magnitude +6.5 — just on the threshold of naked eye visibility — as seen from Earth.
Opposition for Pallas occurs on February 22nd, 2014, when the asteroid is 1.23 AUs distant from our fair planet. Watch for 2 Pallas near opposition this year moving at just under half a degree a day — about the diameter of the Full Moon — headed northward at closest approach.
Hunting asteroids at the eyepiece can be a challenge, as they visually resemble pinpoint stars and show no apparent disks even at high magnification. Sketching or photographing the field of view on successive nights is a fun and easy way to cross this object off of your life list. For those who own scopes with digital setting circles, Heavens-Above is a great quick look source for current coordinates.
2 Pallas just passed perihelion at 2.13 Astronomical Units from the Sun on December 6th, 2013, and passes closest to Earth on February 24th at 1.2 A.U.s distant.
Don’t miss the chance to spy this fascinating an enigmatic worldlet coming to a sky near you this season!
-Got pics of 2 Pallas and friends? Be sure to send ‘em in to Universe Today!
Following a picture perfect blastoff from NASA’s frigid Virginia spaceport and a flawless docking at the International Space Station (ISS) in mid-January, the privately built Cygnus cargo resupply vehicle has completed its five week long and initial operational station delivery mission and departed the facility early this morning, Tuesday, Feb. 18.
The Expedition 38 crewmembers Michael Hopkins of NASA and Koichi Wakata of the Japan Aerospace Exploration Agency (JAXA) demated the Orbital Sciences Cygnus commercial spacecraft from the Earth-facing port of the Harmony node using the Canadian built robotic arm at about 5:15 a.m. EST.
The cylindrically shaped ship was released from the grappling snare on the terminus of the 57 foot long extended arm at about 6:41 a.m. EST and with a slight shove as both vehicles were flying at 17500 mph and some 260 miles (415 km) altitude above Earth over the southern tip of Argentina and the South Atlantic Ocean.
The astronauts were working at a robotics work station in the windowed Cupola module facing the Earth. The arm was quickly pulled back about 5 feet (1.5 m) after triggering the release from the grappling pin.
NASA TV carried the operation live. Station and arm cameras provided spectacular video views of the distinctive grey cylindrical Cygnus back dropped by the massive, cloud covered blue Earth as it was released and sped away.
Cygnus was commanded to fire its jets for the departure maneuvers to quickly retreat away from the station. It was barely a speck only 5 minutes after the arm release maneuver by Wakata and Hopkins.
“The departure was nominal,” said Houston mission control. “Cygnus is on its way.”
The solar powered Cygnus is America’s newest commercial space freighter and was built by Orbital Sciences Corporation with seed money from NASA in a public-private partnership aimed at restoring the cargo up mass capabilities lost following the retirement of NASA’s space shuttles in 2011.
Cygnus, as well as the SpaceX Dragon cargo vessel, functions as an absolutely indispensable “lifeline” to keep the massive orbiting outpost alive and humming with the science for which it was designed.
The freighter delivered a treasure trove of 1.5 tons of vital research experiments, crew provisions, two dozen student science projects, belated Christmas presents, fresh fruit and more to the million pound orbiting lab complex and its six man crew.
The milestone flight dubbed Orbital 1, or Orb-1, began with the flawless Jan. 9 blast off of Cygnus mounted atop Orbital Sciences’ two stage, private Antares booster on the maiden operational launch from NASA’s Wallops Flight Facility along Virginia’s eastern shore. See a gallery of launch photos and videos – here and here.
“Today’s launch gives us the cargo capability to keep the station going,” said Frank Culbertson, executive vice president and general manager of Orbital’s advanced spaceflight programs group, and former Space Shuttle astronaut.
And NASA’s commercial cargo initiative is even more important following the recent extension of station operations to at least 2024.
“I think it’s fantastic that the Administration has committed to extending the station,” Culbertson told me following the launch at NASA Wallops.
“So extending it gives not only commercial companies but also researchers the idea that Yes I can do long term research on the station because it will be there for another 10 years. And I can get some significant data.”
Following a two day orbital chase the Cygnus spacecraft reached the station on Jan. 12.
The ship is named in honor of NASA shuttle astronaut C. Gordon Fullerton who passed away in 2013.
Science experiments weighing 1000 pounds accounted for nearly 1/3 of the cargo load.
Among those were 23 student designed experiments representing over 8700 K-12 students involving life sciences topics ranging from amoeba reproduction to calcium in the bones to salamanders.
The students are participants of the Student SpaceFlight Experiments Program (SSEP) sponsored by the National Center for Earth and Space Science Education (NCESSE).
Over 20 of the students attended the launch at Wallops. The student experiments selected are from 6 middle school and high school teams from Washington, DC, Traverse, MI, Downingtown and Jamestown, PA, North Charleston, SC and Hays County, TX.
“More than half the student experiments were activated within four days of arrival,” Dr. Jeff Goldstein, Director of the NCESSE, told Universe Today exclusively.
Ant colonies from three US states were also on board to study “swarm behavior.” The “ants in space” experiment was among the first to be unloaded from Cygnus to insure they are well fed for their expedition on how they fare and adapt in zero gravity.
33 cubesats were also aboard. Several of those were deployed last week from the Japanese Experiment Module airlock.
The Orbital-1 mission was the first of 8 operational cargo logistics flights scheduled under Orbital Sciences’ multi-year $1.9 Billion Commercial Resupply Services contract (CRS) with NASA to deliver 20,000 kg (44,000 pounds) of cargo through 2016.
Cygnus was berthed at the ISS for some 37 days.
After fully unpacking the 2,780 pounds (1,261 kilograms) of supplies packed inside Cygnus, the crew reloaded it with all manner of no longer need trash and have sent it off to a fiery and destructive atmospheric reentry to burn up high over the Pacific Ocean on Feb. 19.
“The cargo ship is now a trash ship,” said NASA astronaut Cady Coleman.
“Getting rid of the trash frees up a lot of valuable and much needed space on the station.”
When it reaches a sufficiently safe separation distance from the ISS, mission controllers will fire its engines two times to slow the Cygnus and begin the final deorbit sequence starting at about 8:12 a.m. on Wednesday.
Two additional Antares/Cygnus flights are slated for this year.
They are scheduled to lift off around May 1 and early October, said Culbertson.
Indeed there will be a flurry of visiting vehicles to the ISS throughout this year and beyond – creating a space traffic jam of sorts.
Stay tuned here for Ken’s continuing Orbital Sciences, SpaceX, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
Pop quiz. How did Einstein win his Nobel prize? Was it for relativity? Nope, Einstein won the Nobel Prize in 1921 for the discovery of the photoelectric effect; how electrons are emitted from atoms when they absorb photons of light. But what is it? Let’s find out. Continue reading “Astronomy Cast Ep. 335: Photoelectric Effect”
You’ve probably heard the saying “everything’s relative”. When you consider our place in the Universe, everything really is relative. I’m recording this halfway up Vancouver Island, in the Pacific Ocean, off the West Coast of Canada. And where I’m standing is about 6,370 kilometers away from the center of the Earth, that way.
From my perspective, the Sun is over there. It’s as large as a dime held at arm’s length. For me it’s really, really far away. In fact, at this exact time it’s further away than any object I you can see with the naked eye.I’m about 150 million kilometers away from the Sun, and so are you.
We’re carving out an elliptical orbit which takes one full year to complete one whole trip around. You, me and the Earth are all located inside our Solar System. Which contains the Sun, 8 planets and a vast collection of ice, rocks and dust. We’re embedded deep within our galaxy, the Milky Way. It’s a big flat disk of stars measuring up to 120,000 light years across.
Our Solar System is located in the middle of this galactic disk. And by the middle, I mean the center of the galaxy is about 27,000 light years that way, and the edge of the galaxy is about the same distance that way.
Our Milky Way is but one galaxy in a larger collection of galaxies known as the Local Group. There are 36 known objects in the local group. Which are mostly dwarf galaxies. However, there’s also the Triangulum Galaxy, the Milky Way, and the Andromeda galaxy… which is by far the largest, most massive object in the Local Group, It’s twice the size and 4 times the mass of the Milky Way.
But where is it?
From me, and you, Andromeda is located just an astronomically distant 2.5 million light years that way. Or would that be just short 2.5 million light-years that away? I’m sure you see where this is going.
The Local Group is embedded within a much larger group known as the Virgo Supercluster, containing at least 100 galaxy groups and clusters. The rough center of the supercluster is in the constellation Virgo. Which as of right now, is that way, about 65 million light years away. Which certainly makes the 2.5 million light years to Andromeda seem like an afternoon jaunt in the family car.
Unsurprisingly, The Virgo Supercluster is a part of a larger structure as well. The Pisces-Cetus Supercluster Complex. This is a vast filament of galactic superclusters measuring about 150 million light years across AND a billion light years long. The middle is just over that way. Right over there.
One billion light years in length? Well that makes Andromeda seem right around the corner. So where are we? Where are you, and I and the Earth located in the entire Universe? The edge of the observable Universe is about 13.8 billion light years that way. But it’s also 13.8 billion light years that way. And that way, and that way.
And cosmologists think that if you travel in any direction long enough, you’ll return to your starting point, just like how you can travel in any one direction on the surface of the Earth and return right back at your starting point. In other words, the Earth is located at the very, very center of the Universe. Which sounds truly amazing.
What a strange coincidence for you and I to be located right here. Dead center. Smack dab right in the middle of the Universe. Certainly makes us sound important doesn’t it? But considering that every other spot in the Universe is also located at the center of the universe.
You heard me right. Every single spot that you can imagine inside the Universe is also the center of the Universe. That definitely complicates things in our plans for Universal relevance. And all this sure does make Andromeda seem close by….and it’s still just right over there, at the center of the Universe. Oh, and about every spot in the universe being the center of the Universe? Well, we’ll save that one for another episode.
And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.
Zooniverse — the renowned home of citizen science projects — is now one million strong. That’s one million registered volunteers since the project began less than seven years ago.
It all began when Galaxy Zoo launched in July 2007. The initial response to this project was overwhelming. Since then the Zooniverse team has created almost 30 citizen science projects ranging from astronomy to zoology.
“We are constantly amazed by the effort that the community puts into our projects,” said the Zooniverse team in an email regarding the news late last week.
Many projects have produced unique scientific results, ranging from individual discoveries to classifications that rely on input from thousands of volunteers. As of today there are 60+ papers listed on the websites publications page, many of which have made the news.
In the first two weeks after Galaxy Zoo’s launch, registered citizen scientists classified more than a million galaxies. Each volunteer was presented with an image from the Sloan Digital Sky Survey and asked to classifiy the galaxy as belonging to one of six categories: elliptical, clockwise spiral, anticlockwise spiral, edge-on, merger, or unsure.
But citizen scientists weren’t simply labeling galaxies, they were helping astronomers to answer crucial questions and raise new ones about our current understandings of galaxy evolution. One significant finding showed that bar-shaped features in spiral galaxies has doubled over the latter half of the history of the Universe. This confirms that bars signify maturity in spiral galaxies and play an important role in shutting down star formation.
Another finding downplayed the importance of collisions in forming supermassive black holes. Citizen scientists found 13 bulgeless galaxies — suggesting they had never experienced a major collision — with supermassive black holes, nonetheless. All healthy black holes, with masses at least millions of times that of the Sun, must have grown through less dramatic processes.
Planet Hunters — a citizen science project developed in 2010 — has also seen wide success. Ordinary citizens examine the Kepler Space Telescope’s light curves of stars and flag any slight dips in brightness that might indicate a planet crossing in front of the star. Many eyes examine each light curve, allowing some to cross check others.
In roughly three years, citizen scientists examined more than 19 million Kepler light curves. Contrary to what many astronomers expected, ordinary citizens were able to spot transiting objects that many computer algorithms missed.
In 2012, Planet Hunter volunteers, Kian Jek and Robert Gagliano discovered an exoplanet in a four-star system. The Neptune-size planet, labeled “Planet Hunters 1” (PH1), orbits its two parent stars every 138 days. A second pair of stars, approximately 90 billion miles away, are also gravitationally bound to the system. This wacky system was later confirmed by professional astronomers.
In 2013, Planet Hunter volunteers discovered yet another planet candidate, which, if confirmed, would make a known six-planet system really the first seven-planet system. The five innermost planets are smaller than Neptune, while the two outer planets are gas giants. All orbit within Earth’s orbit around the Sun.
These are only a few of Zooniverse’s citizen science projects. Others allow ordinary citizens to help analyze how whales communicate with one another, study the lives of the ancient Greeks, and even look at real life cancer data. So join today and become number one million and one.
Zooniverse is produced by the Citizen Science Alliance, which works with many academic and other partners worldwide.
Who wants Adam Savage’s job right now? The cohost of Mythbusters spent the last year working with a San Francisco Bay-area costume designer to come up with this remarkable Mercury spacesuit. While it’s not a faithful replica of any one mission — it’s more a blend of greatest hits from the designs of several — it really looks like Savage could step into a spacecraft at any moment.
“The whole point of the Mercury program … was to figure out how to safely get people into space and what would happen to them,” Savage says in a new video, which you can see below.
“So every single time they came down from a Mercury mission they [the astronauts] would talk to the engineers and spend weeks in meetings going ‘Okay, I couldn’t move my arm this way. I couldn’t hit this switch in this way. I couldn’t turn my head.”