This Alien Landscape is Actually a Microscopic View of an Atomic Clock

This looks like the landscape feature called penitentes that form in the icy cold on Pluto. But it's actually a glass surface that's part of an atomic clock. Image Credit: Safran/ESA

Navigation satellites couldn’t accomplish anything without extremely accurate clocks. But a regular clock won’t do. Only atomic clocks are accurate enough, and that’s because they tell time with electrons.

Those atomic clocks wear out over time, and that’s what the image shows.

Continue reading “This Alien Landscape is Actually a Microscopic View of an Atomic Clock”

Half of this Exoplanet is Covered in Lava

Like Kepler-10 b, illustrated above, the exoplanet HD 63433 d is a small, rocky planet in a tight orbit of its star. HD 63433 d is the smallest confirmed exoplanet younger than 500 million years old. It's also the closest discovered Earth-sized planet this young, at about 400 million years old. NASA/Ames/JPL-Caltech/T. Pyle

Astronomers working with TESS (Transiting Exoplanet Survey Satellite) have discovered a planet that’s been left out in the Sun too long. Or at least half of it has. The newly discovered planet is tidally locked to its star, and one side is completely molten.

Continue reading “Half of this Exoplanet is Covered in Lava”

The Meteorites That Made Earth Were Filled With Water

Water's Early Journey in a Solar System
Somehow, life originated on Earth. Even without knowing everything about how that happened, can we learn how likely it is to happen elsewhere? Image Credit: NASA/JPL-Caltech

According to the most widely accepted scientific theory, our Solar System formed from a nebula of dust and gas roughly 4.56 billion years ago (aka. Nebula Theory). It began when the nebula experienced gravitational collapse at the center, fusing material under tremendous pressure to create the Sun. Over time, the remaining material fell into an extended disk around the Sun, gradually accreting to form planetesimals that grew larger with time. These planetesimals eventually experienced hydrostatic equilibrium, collapsing into spherical bodies to create Earth and its companions.

Based on modern observations and simulations, researchers have been trying to understand what conditions were like when these planetesimals formed. In a new study, geologists from the California Institute of Technology (Caltech) combined meteorite data with thermodynamic modeling to better understand what went into these bodies from which Earth and the other inner planets formed. According to their results, the earliest planetesimals have formed in the presence of water, which is inconsistent with current astrophysical models of the early Solar System.

Continue reading “The Meteorites That Made Earth Were Filled With Water”

Dark Matter Could Map the Universe's Early Magnetic Fields

Illustration of magnetic field lines running between galaxies. Credit: Chris Mihos/ CWRU

We think of magnetic fields as a part of planets and stars. The Earth and Sun have relatively strong magnetic fields, as do more exotic objects such as neutron stars and the accretion disks of black holes. But magnetic field lines also run throughout galaxies, and even between the vast voids of intergalactic space. Magnetic fields are quite literally everywhere, and we aren’t entirely sure why. One idea is that faint magnetic fields formed during the earliest moments of the Universe. If that’s the case, we might be able to prove it through the distribution of dark matter.

Continue reading “Dark Matter Could Map the Universe's Early Magnetic Fields”

A Self-Eating Engine Could Make Rockets More Efficient

There can’t be many ideas that beat the crazy yet ingenious idea of a rocket engine that uses part of the fuselage for fuel! Typically a rocket will utilise multiple stages so that excess weight can be jettisoned allowing the rocket to be as efficient as possible. Now a team in Scotland is working on a rocket engine that consumes part of its body to use as fuel, reducing weight and providing even more thrust so that greater payloads can be used. 

Continue reading “A Self-Eating Engine Could Make Rockets More Efficient”

There are Mysteries at Venus. It’s Time for an Astrobiology Mission

NASA's Magellan spacecraft captured this image of Venusian craters. Image Credit: NASA/JPL

When scientists detected phosphine in Venus’ atmosphere in 2020, it triggered renewed, animated discussions about Venus and its potential habitability. It would be weird if the detection didn’t generate interest since phosphine is a potential biomarker. So people were understandably curious. Unfortunately, further study couldn’t confirm its presence.

But even without phosphine, Venus’ atmosphere is full of chemical intrigue that hints at biological processes. Is it time to send an astrobiology mission to our hellish sister planet?

Continue reading “There are Mysteries at Venus. It’s Time for an Astrobiology Mission”

Planetesimals Are Buffeted by Wind in their Nebula, Throwing Debris into Space

This artist's illustration shows planetisimals around a young star. New research shows that planetesimals are blasted by headwind, losing debris into space. Image Credit: NASA/JPL

Before planets form around a young star, the protosolar disk is populated with innumerable planetesimals. Over time, these planetesimals combine to form planets, and the core accretion theory explains how that happens. But before there are planets, the disk full of planetesimals is a messy place.

Continue reading “Planetesimals Are Buffeted by Wind in their Nebula, Throwing Debris into Space”

Solar Electric Propulsion Systems are Just What we Need for Efficient Trips to Mars

There are many different ways to get to Mars, but there are always tradeoffs. Chemical propulsion, proven the most popular, can quickly get a spacecraft to the red planet. But they come at a high cost of bringing their fuel, thereby increasing the mission’s overall cost. Alternative propulsion technologies have been gaining traction in several deep space applications. Now, a team of scientists from Spain has preliminary studied what it would take to send a probe to Mars using entirely electric propulsion once it leaves Earth.

Continue reading “Solar Electric Propulsion Systems are Just What we Need for Efficient Trips to Mars”

Satellite Data Shows US East Coast is Sinking

Map shows vertical land motion along the East Coast. The yellow, orange and red areas on these maps denote areas of sinking. Image courtesy of Leonard Ohenhen.Virginia Tech.

Based on satellite imagery, geologists have determined major cities on the U.S. Atlantic coast are sinking, some areas as much as 2 to 5 millimeters (.08-0.2 inches) per year. Called subsidence, this sinking of land is happening at a faster rate than was estimated just a year ago. In a new paper published in the Proceedings of the National Academies of Sciences, researchers say their analysis has far-reaching implications for community and infrastructure resilience planning, particularly for roadways, airport runways, building foundations, rail lines, and pipelines.

Continue reading “Satellite Data Shows US East Coast is Sinking”