Ever since the first relay for the 1936 summer Olympic games in Berlin, Olympic torches have traditionally been used to carry a burning flame — symbolically and physically — from Greece to the host country’s stadium. These journeys, undertaken by privileged individuals and athletes from around the world, span months and many thousands of miles… but this year, the fire illuminating the 2014 Winter Olympics in Sochi, Russia will be ignited with a torch that has truly traveled around the globe — many times, in fact.
On Nov. 6, 2013 (Nov. 7 UT) a Soyuz TMA-11M rocket launched from Baikonur Cosmodrome in Kazakhstan ferrying the Expedition 38/39 crew to the ISS. Along with their mission supplies and personal items, the crew members brought along something special: a torch for the 2014 Olympics.
The torch was brought into space two days later by Expedition 38 crew members Oleg Kotov and Sergei Ryazanskiy during an EVA on Nov. 9, and handed off from one cosmonaut to the other in a symbolic relay in orbit, the first to be carried out 265 miles above the planet traveling 17,500 mph. (Watch a video of the EVA below.)
I say “symbolic” because the torch was not lit during its time aboard the ISS or, obviously, while in space. (Open flames are highly frowned upon aboard Station!) Still, it was the first time in history an Olympic torch, a symbol of peace, human achievement, and international cooperation, has been brought aboard the Space Station — which itself represents the same noble values.
Considering the ISS travels around the Earth 16 times each day, and the torch spent nearly four days in space, that’s one well-traveled fire bearer!
The spacefaring torch was carried back to Earth with Expedition 37 crew members Karen Nyberg of NASA, Fyodor Yurchikhin of the Russian Federal Space Agency, and Luca Parmitano of the European Space Agency on Sunday, Nov. 10. And while the actual Olympic flame had continued to be carried by torchbearers across more than 40,000 miles through 2,900 towns and villages in Russia, it will be that particular spacefaring torch that will be used to light the 2014 Olympic cauldron during the Opening Ceremony in Sochi on Feb. 7.
“As the torch is used to light the Olympic flame in Sochi, and symbolizes harmony and goodwill throughout the games, the space station will remain one of the brightest objects in the night sky, a beacon of international cooperation and research providing tangible benefits for all humanity.” (NASA)
Read more in a recent NASA news article here, and learn more about the 2014 Sochi Olympic torch here.
From a lonely outpost in space, the European Space Agency’s Gaia telescope is getting ready to map out the Milky Way. It will take some time to calibrate the instruments to make sure they’re ready for work, however, and that’s why you’re looking at the image above.
Controllers aimed the telescope at the Large Magellanic Cloud, which is a satellite galaxy to our own Milky Way, and snapped this picture of star cluster NGC 1818.
“This test picture, taken as part of commissioning the mission to ‘fine tune’ the behaviour of the instruments, is one of the first proper ‘images’ to be seen from Gaia, but ironically, it will also be one of the last, as Gaia’s main scientific operational mode does not involve sending full images back to Earth,” ESA stated.
This is one crucial step along the road to making sure Gaia’s measurements are accurate. In the next five years, it will examine a billion stars (an astounding number, but still only 1 percent of the galaxy’s population). Gaia will build up a database of key stellar properties such as brightness, what it is made of and temperature.
Since the dawn of the Space Age in 1957, thousands of artifacts and memorabilia have been flown into space. Some have been hoisted on brief suborbital flights, while others have been flung out of the solar system, never to return. And of course, it’s become a fashionable — and highly commercialized — trend as of late to briefly loft products, stuffed animals, etc via balloon towards the tenuous boundary of space. Fly a souvenir or artifact into orbit, and it goes from mundane to priceless. But a few may also serve as a final testament to the our ephemeral existence as a species long after our passing.
Here’s a look at some of the most memorable objects sent into space:
New Horizons Memorabilia
Launched on January 19th, 2006, New Horizons is headed towards a historic encounter with Pluto and its moons next year. From there, New Horizons will survey any Kuiper Belt objects of opportunity along its path and then head out of the solar system, becoming the fifth spacecraft to do so. In addition to a suite of scientific instruments, New Horizons also carries the ashes of Pluto discoverer Clyde Tombaugh, a Florida & Maryland state quarter, a piece of Scaled Composites SpaceShipOne, and an American flag. These will doubtless confuse any extraterrestrial salvagers!
The Pioneer Plaques
The first spacecraft sent on escape trajectories out of our solar system, the Pioneer 10 and 11 spacecraft each carry a plaque which serves as a sort of postcard “greeting” to any future interceptors. The plaque depicts a diagram of the solar system, a map of our location in the galaxy using the positions of known pulsars, and a nude man & woman, which actually generated lots of controversy. Scientist James Van Allen tells of deliberately placing a fingerprint on the Pioneer 10 plaque in his biography The First Eight Billion Miles.
The Voyager 1 and 2 Golden Records
Conceived and designed in part by Carl Sagan, these records contain images and sounds of the Earth that’ll most likely outlive humanity. The records carry greetings in 55 languages, music ranging from Mozart to Chuck Berry, 116 images and more, along with instructions and a stylus for playback. The record is also enclosed in an aluminum cover electroplated with Uranium-238, which an alien civilization could use to date its manufacture via half-life decay.
The Mars Curiosity Penny
Strange but true: The Mars rover Curiosity carries a 1909 U.S. Penny for a backup camera calibration target. The penny itself is embedded just below the primary color calibration targets used by Curiosity’s MArs Hand Lens Imager (MAHLI). Rare enough on Earth, the 1909 Lincoln “Mars penny” will be priceless to future collectors!
Juno’s LEGO Figurines
Mini-figurines of Galileo and the Roman deities Jupiter and Juno were launched in 2011 aboard NASA’s Juno spacecraft en route to Jupiter . LEGO has flown products aboard the U.S. Space Shuttles and to the International Space Station previously, but Juno’s cargo represents the “most distant LEGO launch” ever. The figurines will burn up in Jupiter’s atmosphere along with the spacecraft at the end of the mission in October 2017.
Apollo 15 Postal Covers Fiasco
Apollo 15 astronauts got in some hot water over a publicity scheme. The idea that stamp collector and dealer Hermann Sieger approached the astronauts with was simple: 400 commemorative postage stamp covers would be postmarked at point of departure from the Kennedy Space Center and again at the return point of arrival aboard the USS Okinawa after their circuitous journey via the Moon. NASA was less than happy with the whole affair, and Command Module Pilot Al Worden recounts the aftermath in his book, Falling to Earth.
Haiku for MAVEN
Last year’s MAVEN mission to Mars also carried haiku submitted by space fans. Over 12,530 valid entries were submitted and over 1,100 haiku received the necessary minimum of two votes to be included on a DVD disk affixed to the spacecraft. MAVEN reaches orbit around Mars in October 2014.
Luna 2: A Russian Pennant on Moon
On September 12th, 1959, the Soviet Union’s Luna 2 spacecraft became the first man-made object to impact the Moon. Luna 2 carried two spherical “pennants” composed of pentagon-shaped elements engraved with the USSR Coat of Arms and Cyrillic letters translating into “CCCP/USSR September 1959.” An identical pennant is now on display in the Kansas Cosmosphere.
A GeoSat Time Capsule Aboard EchoStar XVI
A disk entitled Last Pictures similar to the Voyager records was placed on a satellite headed to geosynchronous orbit in 2012. Launched aboard EchoStar XVI, Last Pictures is an ultra-archival disk containing 100 snapshots of modern life along with interviews with several 21st century artists and scientists. Geosynchronous satellites aren’t subject to atmospheric drag, and may be the last testament to the existence of humanity on Earth millions of years hence.
Lunar Prospector Carries An Astro-Geologist’s Ashes to the Moon
Though he never made the selection to become an astronaut, scientist Eugene Shoemaker did make a posthumous trip to the Moon. The Lunar Prospector spacecraft departed Earth with Shoemaker’s ashes on January 7th, 1998 in a capsule wrapped in brass foil. Lunar Prospector impacted the south pole of the Moon on July 31st, 1999.
SpaceX Takes Star Trek Actor to Space
The ashes actor James Doohan (AKA Scotty) were launched aboard a 2012 SpaceX flight to the International Space Station. The COTS Demo Flight, or COTS 2, was the first commercial spacecraft to berth at the ISS. SpaceX had flown a small amount of Doohan’s ashes on the 2008 unsuccessful test launch of the Falcon 1 rocket.
Cheese Wheel Makes a Suborbital Journey
All eyes were also on SpaceX during their December 8th 2010 maiden flight of the Dragon space capsule. And the hinted mystery cargo? None other than a wheel of cheese, a nod by SpaceX CEO Elon Musk to a classic Monty Python sketch.
The Apollo 12 “Moon Museum”
Did it really go into space? One of the legends surrounding the Apollo program is the existence of what’s been dubbed the “Moon Museum.” This was a postage stamp-sized “gallery” of art which included a sketch by Andy Warhol and other 1960s artists that was supposedly attached to descent stage of Apollo 12 and left on the Moon. It will be up to future lunar visitors to confirm or deny its existence!
…And lastly, I give you the “Space Hubcap”
Was the first man-made object propelled into space actually a 1 ton armor plate? On August 27th, 1957 — just two months prior to Sputnik 1 — the Pascal-B underground nuclear test was conducted in southern Nevada. During the explosion, a steel plate cap was blasted off of a test shaft. The plate could be seen in the initial high-speed video frames, and it was estimated to have reached a speed six times the sufficient escape velocity to depart Earth. To this day, no one knows if this strange artifact of early Space Age folklore still roams the void of space, or simply vaporized due to atmospheric compression at “launch”.
It won’t be long before we start to get the technical details of Inspiration Mars’ daring proposition to send a married couple on a round-trip journey to the Red Planet. The private organization, along with the Mars Society, announced that 38 teams have expressed an intention to participate in a design competition that will see public presentations this spring.
A full list of the university groups is available here, with 56 post-secondary institutions represented from 15 countries (the United States, Canada, Russia, the Netherlands, Germany, Austria, Italy, the United Kingdom, Portugal, Poland, Mauritius, India, Bangladesh, Japan and Colombia.)
“We want to engage the explorers of tomorrow with a real and exciting mission, and demonstrate what a powerful force space exploration can be in inspiring young people to develop their talent. This contest will accomplish both of those objectives,” stated Dennis Tito, who is Inspiration Mars executive director.
Now that the teams are announced, their next job is to submit the actual proposals. Design reports are due March 15. Once the top 10 are selected, those teams will go to the NASA Ames Research Center to make public presentations and compete in April 2014. Six judges will be drawn equally from the Mars Society, Inspiration Mars and NASA.
Black holes are big influencers for the early universe; these singularities that were close to ancient stars heated up gas and affected star formation across the cosmos. A new study, however, says that heating happened later than previously thought.
“It was previously believed that the heating occurred very early, but we discovered that this standard picture delicately depends on the precise energy with which the X-rays come out,” stated Rennan Barkana, a co-author of the paper who is an astronomer at Tel Aviv University.
“Taking into account up-to-date observations of nearby black-hole binaries changes the expectations for the history of cosmic heating. It results in a new prediction of an early time (when the universe was only 400 million years old) at which the sky was uniformly filled with radio waves emitted by the hydrogen gas.”
These so-called “black-hole binaries” are star pairs where the larger star exploded into a supernova and left behind a black hole. The strong gravity then yanked gas away from the stellar companion, emitting X-rays in the process. The radiation, as it flows across the universe, is cited as the factor behind gas heating in other parts of space.
Exactly 40 Years ago today on Feb. 5, 1974, Mariner 10, accomplished a history making and groundbreaking feat when the NASA science probe became the first spacecraft ever to test out and execute the technique known as a planetary gravity assisted flyby used to alter its speed and trajectory – in order to reach another celestial body.
Mariner 10 flew by Venus 40 years ago to enable the probe to gain enough speed and alter its flight path to eventually become humanity’s first spacecraft to reach the planet Mercury, closest to our Sun.
Indeed it was the first spacecraft to visit two planets.
During the flyby precisely four decades ago, Mariner 10 snapped its 1st close up view of Venus – see above.
From that moment forward, gravity assisted slingshot maneuvers became an extremely important technique used numerous times by NASA to carry out planetary exploration missions that would not otherwise have been possible.
For example, NASA’s twin Voyager 1 and 2 probes launched barely three years later in 1977 used the gravity speed boost to conduct their own historic flyby expeditions to our Solar Systems outer planets.
Without the flyby’s, the rocket launchers thrust by themselves did not provide sufficient interplanetary speed to reach their follow on targets.
NASA’s Juno Jupiter orbiter just flew back around Earth this past October 9, 2013 to gain the speed it requires to reach the Jovian system.
The Mariner 10 probe used an ultraviolet filter in its imaging system to bring out details in the Venusian clouds which are otherwise featureless to the human eye – as you’ll notice when viewing it through a telescope.
Venus surface is completely obscured by a thick layer of carbon dioxide clouds.
The hellish planet’s surface temperature is 460 degrees Celsius or 900 degrees Fahrenheit.
Following the completely successful Venus flyby, Mariner 10 eventually went on to conduct a trio of flyby’s of Mercury in 1974 and 1975.
It imaged nearly half of the planets moon-like surface, found surprising evidence of a magnetic field, discovered that a metallic core comprised nearly 80 percent of the planet’s mass, and measured temperatures ranging from 187°C on the dayside to minus 183°C on the nightside.
Mercury was not visited again for over three decades until NASA’s MESSENGER flew by and eventually orbited the planet – and where it remains active today.
Mariner 10 was launched on Nov. 3, 1973 from the Kennedy Space Center atop an Atlas-Centaur rocket.
Shortly after blastoff if also took photos of the Earth and the Moon.
Ultimately it was the last of NASA’s venerable Mariner planetary missions hailing from the dawn of the Space Age.
Mariner 11 and 12 were descoped due to congressional budget cuts and eventually renamed as Voyager 1 and 2.
The Mariner 10 science team was led by Bruce Murray of the Jet Propulsion Laboratory (JPL), Pasadena, Calif.
Murray eventually became the Director of JPL. After he passed away in 2013, key science features on Martian mountain climbing destinations were named in his honor by the Opportunity and Curiosity Mars rover science teams.
Stay tuned here for Ken’s continuing LADEE, Chang’e-3, Orion, Orbital Sciences, SpaceX, commercial space, Mars rover and more planetary and human spaceflight news.
“Red Rover, Red Rover, I’m looking right over… this sand dune on Mars,” said the Curiosity rover on Twitter, as well as quoting photographer Ansel Adams, “There are always two people in every picture: the photographer and the viewer.”
This new interactive image put together by panoramacist Andrew Bodrov using the latest imagery from Curiosity allows you to nearly join the rover on Mars as it looks down across a sand dune and into the “Dingo Gap” area and the valley beyond.
The rover team is considering driving across and through this meter high sand sand dune to reach their desired science destinations instead of going over terrain with sharp rocks which might poke more holes in the rover’s aluminum wheels.
Thanks to Andrew Bodrov for sharing this new interactive image, which were taken with the rover’s 34-millimeter Mast Camera. The mosaic, which stretches about 30,000 pixels width, includes 101 images taken on Sol 530 (Feb 1, 2014 here on Earth.)
If you love talking about space — and as a reader of Universe Today, I really hope you do — there’s an awesome podcast for you to add to your playlist. 365 Days of Astronomy puts out an astronomy-themed episode every single day of the year, covering everything from recent discoveries, to folklore, to community events.
If you’ve got a microphone and a desire to contribute, or have at least some coffee money to contribute to charity, they’d really love to hear from you as they enter a sixth (sixth!) year of operation. More details are below the jump.
Full disclosure here: Universe Today is a big supporter of 365 Days of Astronomy, and I’ve been contributing podcasts myself since last year. It is an awesome experience. Pamela Gay (who oversees the project through her astronomy education organization, Cosmoquest) is inspiring to work for as she is a tireless supporter of bringing the joy of space to the general public.
Nancy Atkinson (a fellow contributor and UT senior editor) joked to me today, “It’s kind of like the Mars rovers — the Energizer Bunny of podcasts.” And it’s through your support that we can keep going, and going, and going. Here’s the official press release with information about contributions:
365 Days of Astronomy will continue its service in 2014! This time we will have more days available for new audio. Have something to share? We’re looking for content from 10 minutes long up to an hour! Since 2009, 365 Days of Astronomy has brought a new podcast every day to astronomy lovers around the world to celebrate the International Year of Astronomy. Fortunately, the project has continued until now and we will keep going for another year in 2014. This means we will continue to serve you for a 6th year.
Through these years, 365 Days Of Astronomy has been delivering daily podcasts discussing various topics in the constantly changing realm of astronomy. These include history of astronomy, the latest news, observing tips and topics on how the fundamental knowledge in astronomy has changed our paradigms of the world. We’ve also asked people to talk about the things that inspired them, and to even share their own stories, both of life doing astronomy and science fiction that got them imagining a more scientific future.
365 Days of Astronomy is a community podcast that relies on a network of dedicated podcasters across the globe who are willing to share their knowledge and experiences in astronomy with the world and it will continue that way. In 2013, 365 Days of Astronomy started a new initiative with CosmoQuest. We now offer great new audio every weekend, while on weekdays we serve up interesting podcasts from CosmoQuest and other dedicated partners. We also have several monthly podcasts from dedicated podcasters and have started two new series: Space Stories and Space Scoop. The former is a series of science fiction tales, and the latter is an astronomy news segment for children.
From the universe to the solar system, we’ve had an interesting journey, especially the ostensibly legendary comet ISON which finally ended its days by breaking apart and vaporizing. We hope we won’t end like ISON did! As for 2014, we will have more available days for new podcasts.
For this upcoming year, the 365 Days of Astronomy podcast is looking for individuals, organizations, schools, companies, and clubs to sign-up for their 5 – 60 minutes of audio for the new daily podcast which will be aired on Tuesday, Thursday, Saturday, and Sunday. As for Monday, Wednesday, and Friday, we will air audio podcasts from CosmoQuest and partners’ Google+ hangouts. We’ll also post the matching video submissions on our YouTube Channel.
We will once again continue our quest in the podcasting arena, but we need your support to be a success. The project is now accepting financial support from individuals as well as organizations to cover our audio engineering and website support costs. The podcast team invites people and organizations to sponsor shows by donating to support one day of the podcast. It costs us about $45 per show. For your donation of $30, a dedication message will be announced in the beginning of the show. For a $15 donation a sponsorship message will be heard at the end of the show. Alternatively, for a $100 donation a sponsor may request a dedication message at the end of a whole week of programs. These donations are essential to cover the price for editing and posting podcasts.
The 365 Days of Astronomy podcast is heard by 5,000 listeners per day and by 2013 we have surpassed 6,8 million downloads. In 2009, the project was awarded a Parsec Award as “The Best Infotainment” podcast and a year later, in 2010-2012, it was nominated for the “Best Fact Behind the Fiction” award.
When stars die, their final gasps can trigger the most powerful blasts of energy in the universe. Their demise can also lead to a bizarre death dance as the voracious corpse of a dead star begins consuming a nearby companion.
Today (Feb. 5) you can watch a live webcast (or watch the replay later) to learn about the recent detection of a dying star igniting the most powerful blast ever seen – something so powerful it radiated energy that was nearly 50 billion times that of visible light. Also learn how scientists have discovered that a familiar sight in the skies is actually our earliest view yet of a star being consumed by the remnant of a nearby exploded star.
The webcast starts at 19:00 UTC (3 pm EDT, Noon PDT). You can watch below. To submit questions ahead of time or during the webcast, send an email to [email protected] or post on Twitter with hashtag #KavliLive. You can find additional information from the Kavli Foundation here.
The great thing about the longevity of the Mars Reconnaissance Orbiter is that we can see changes taking place on the Red Planet, such as this relatively new and rather large impact crater. This image shows a stunning 30-meter-wide crater with a rayed blast zone and far-flung secondary material surrounding. Scientists say the impact and resulting explosion threw debris as far as 15 kilometers in distance.
Before and after pictures of this region show the new impact crater formed between July 2010 and May 2012.
The image has been enhanced in false color and so the fresh crater appears blue because of the lack of reddish dust that covers most of Mars’ surface.
With MRO’s help, scientists have been able to estimate that Mars gets pummeled with about 200 impacts per year, but most are much smaller than this new one.
The usual procedure for finding new craters is that MRO’s Context Camera, or CTX, or cameras on other orbiters identify anomalies or dark spots that appear in new images and then MRO’s High Resolution Imaging Science Experiment (HiRISE) camera is targeted to follow up by imaging those dark spots in greater detail.