Remembering Apollo 1’s Tragic Anniversary: ‘It Was Too Late From The Beginning’

The Apollo 1 crew. Ed White, Gus Grissom, and Roger Chaffee. Credit: NASA

On this day (Jan. 27) in 1967, NASA astronauts Virgil “Gus” Grissom, Ed White and Roger Chaffee died in a pad fire inside of the Apollo 1 spacecraft that was supposed to lift off only a month hence. The tragedy shocked NASA, which was then aiming for manned landings on the moon, and caused an in-depth investigation into the spacecraft’s construction and the cause of the fire.

Above, you can see one of the first news reports after the fire took place, from ABC’s Jules Bergman and a correspondent at “Cape Kennedy” (which is called Cape Canaveral today, referring to an area adjacent to the Kennedy Space Center where the launch was supposed to take place.) “It was too late from the beginning,” Bergman said in the report, referring to the frantic effort to get the astronauts out of their burning spacecraft.

An investigation determined that a spark flew from somewhere inside of the spacecraft and easily ignited in the pure-oxygen atmosphere, fuelled by fire-friendly materials inside the spacecraft. The astronauts were unable to get out quickly because the hatch was complicated to open. The redesigned Apollo spacecraft featured a swift-to-open hatch, fewer flammable materials, covered electrical connections (to mitigate against short-circuits), and a mixed atmosphere of oxygen and nitrogen on the ground.

Safety measures arising from the tragedy did help with saving astronauts on other flights, notably Apollo 13. That mission saw an oxygen tank explode en route to the moon in April 1970.

Every year, NASA has a day of remembrance to commemorate lost crews. The Apollo 1 anniversary marks a solemn week in the agency, as it comes one day before the anniversary of the 1986 Challenger explosion that killed seven astronauts (Jan. 28) and a few days before the 2003 anniversary of the Columbia shuttle breakup, which killed another seven people (Feb. 1).

Four cosmonauts have died during spaceflight, all upon re-entry: Vladimir Komarov (during Soyuz 1 on April 24, 1967) and Georgi Dobrovolskiy, Viktor Patsayev, and Vladislav Volkov (during Soyuz 11 on June 30, 1971).

Training accidents have also claimed a few lives; a list of American ones is maintained at the Astronaut Memorial Foundation.

The Apollo 1 capsule after the fire. Credit: NASA
The Apollo 1 capsule after the fire. Credit: NASA

What Is A Super Earth?

What Is A Super Earth?

The Universe is always surprising us with how little we know about… the Universe. It’s continuously presenting us with stuff we never imagined, or even thought possible. The search for extrasolar planets is a great example.

Since we started, astronomers have turned up over a thousand of them. These planets can be gigantic worlds with many times the mass of Jupiter, all the way down to little tiny planets smaller than Mercury. Astronomers are also finding one type of world that feels both familiar and yet totally alien… the super earth.

In the strictest sense, a super earth is just a planet with more mass than Earth, but less than a larger planet like Uranus or Neptune. So, you could have super earths made of rock and metal, or even ice and gas. These planets could have oceans and atmospheres, or made of nothing but hydrogen and helium. The goal, of course, is to find a rocky super earth located in the habitable zone. This is the region where the planets are the right distance from the star for liquid water to be present.

The first discovery of a potentially habitable super earth was in the star system Gliese 581.
Here, astronomers found 2 planets orbiting within the habitable zone. Gliese 581 c has a mass of 5 times the Earth, and orbits on the overly warm side of the habitable zone and, Gliese 581 d is 7.7 times the mass of the Earth, and is on the cold side of the zone.

We’ve now found dozens of super earths. One recent discovery, Kepler 11-b, has only 4 times the mass of the our planet and just 1.5 times its size.

You’re probably wondering about the gravity. The exact gravity depends on the ratio of the planet’s size to its mass. If you could stand on the surface of a super earth, you’d probably feel a higher gravity. Considering these planets can have 5 or more times the mass of Earth. But less gravity than you’d expect.

An increase in size makes a big difference. For example, if you could stand on the surface of Kepler 11-b, which is about 1.5 times bigger but a whopping 4 times more massive, you’d feel only 1.4 times the pull of Earth’s gravity.

Artist's impression of the trio of super earths.  Image credit: ESO
Artist’s impression of the trio of super earths. Image credit: ESO

Here’s the big question. Could a super earth support life?

Aquatic life would be no problem. Once you’re in the ocean, the effects of gravity are balanced out by the buoyancy of water. How well life could survive on land and in the air depends on the gravity of the world. With higher gravity, plants and animals wouldn’t be able to grow as tall. Animals would need thicker legs to support their weight. If the atmosphere was denser, likely because of the higher gravity, flying creatures could move more slowly with larger wingspans.

If intelligent life does develop on a heavy gravity world, it will have a much harder time getting into space. Reaching orbital velocity is already tremendously difficult from Earth. Just imagine how much more difficult it would be to launch rockets if everything was twice as heavy.

So, a big thank you to the astronomers showing us that there are all kinds of crazy worlds out there.

I just wish they weren’t so far away.

Watch Live As Russian Spacewalkers Try To Install Urthecast Cameras Again

The UrtheCast Corp. Iris camera aboard the International Space Station taking ultra HD video of Earth. Credit: NASA/UrtheCast

Think of this as Camera Install, Take 2. Russian spacewalkers are going to take another crack at installing the high-definition Urthecast cameras after a glitch prevented them from working properly during an attempt in December.

“The expedition crew members performed troubleshooting on several cable connectors and now believes the problem has been solved,” NASA wrote in an update on Friday (Jan. 24).

Russian Expedition 38 cosmonauts Oleg Kotov and Sergey Ryazanskiy are expected to head outside at 9:10 a.m. EST (2:10 p.m. UTC) today (Monday) to make the second attempt. The cameras will be installed on the International Space Station’s Zvezda service module and provide real-time views of the Earth to subscribers. The cosmonauts will also pick up an experiment package on the hull of the module.

Check out NASA TV coverage of the events above starting at 8:30 a.m. EST (1:30 p.m. UTC).

Yutu rover Suffers Significant Setback at Start of 2nd Lunar Night

This composite view shows China’s Yutu rover heading south and away forever from the Chang’e-3 landing site about a week after the Dec. 14, 2013 touchdown at Mare Imbrium. This cropped view was taken from the 360-degree panorama. See complete 360 degree landing site panorama herein. Chang’e-3 landers extreme ultraviolet (EUV) camera is at right, antenna at left. Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo – kenkremer.com. See our complete Yutu timelapse pano at NASA APOD Feb. 3, 2014: http://apod.nasa.gov/apod/ap140203.htm


China’s
maiden moon rover ‘Yutu’ has just suffered a significant mechanical setback right at the start of her 2nd lunar night, according to an official announcement from Chinese space officials made public this weekend.

The six wheeled Yutu rover, which means ‘Jade Rabbit’, has “experienced a mechanical control abnormality” in a new report by China’s official government newspaper, The People’s Daily.

‘Jade Rabbit’ was traversing southwards from the landing site as the incident occurred just days ago – about six weeks into its planned 3 month moon roving expedition.

However very few details have emerged or been released by the Chinese government about Yutu’s condition or fate.

“Scientists are organizing repairs,” wrote the People’s Daily.

The abnormality occurred due to the “complicated lunar surface environment,” said the State Administration of Science, Technology and Industry for National Defence (SASTIND) in a brief statement, without giving further details, according to the paper.

This situation is very serious because the “abnormality” took place just prior to the beginning of the 2nd lunar night and unavoidable ‘dormancy’ for both ‘Jade Rabbit’ and the Chang’e-3 mothership.

So it’s not clear at this time if Chinese space engineers were able to take any concrete actions to rectify the unspecified problem before both spacecraft entered their next two week long night time slumber.

Based on unofficial accounts, it appears that one of the solar panels did not fold back properly over Yutu’s mast after it was lowered to the required horizontal position into a warmed box to shield and protect it from the extremely frigid lunar night time temperatures.

That could potentially spell doom for the mast mounted instruments and electronic systems, including the color and navigation cameras and the high gain antenna, if true.

Portrait photo of Yutu moon rover taken by camera on the Chang'e-3 moon lander on Dec. 15, 2013 shortly after rolling all 6 wheels onto lunar surface.  Credit: Chinese Academy of Sciences
Portrait photo of Yutu moon rover taken by camera on the Chang’e-3 moon lander on Dec. 15, 2013 shortly after rolling all 6 wheels onto lunar surface. Credit: Chinese Academy of Sciences

The now world famous rover entered its second hibernation period at dawn on Saturday, Jan. 25, as the lunar night fell, according to the SASTIND statement.

The mothership “fell asleep” a day earlier on Friday, Jan 24.

Each ship had just completed their 2nd Lunar Day of operations and had apparently been functioning normally and taking planned scientific measurements and imagery.

The research program during Lunar Day 2 included optical telescope observations of the sky, extreme ultraviolent (EUV) observations of the Earth’s plasmasphere, subsurface radar measurements, and spectroscopic measurements with Yutu’s robotic arm.

Both vehicles depend on their life giving solar panels to produce power in order to function and accomplish their scientific tasks during each Lunar day which lasts approximately 14 days.

Likewise, each Lunar night also lasts approximately 14 Earth days.

In order to survive into the next Lunar day, they must each endure the utterly harsh and unforgiving lunar environment when the Moon’s temperatures plunge dramatically to below minus 180 Celsius, or minus 292 degrees Fahrenheit.

So they must enter a sleep mode to conserve energy since there is no sunlight to generate power with the solar arrays during the lunar night.

360-degree time-lapse color panorama from China’s Chang’e-3 lander This 360-degree time-lapse color panorama from China’s Chang’e-3 lander shows the Yutu rover at three different positions during its trek over the Moon’s surface at its landing site from Dec. 15-22, 2013 during the 1st Lunar Day. Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo – kenkremer.com
360-degree time-lapse color panorama from China’s Chang’e-3 lander
This 360-degree time-lapse color panorama from China’s Chang’e-3 lander shows the Yutu rover at three different positions during its trek over the Moon’s surface at its landing site from Dec. 15-22, 2013 during the 1st Lunar Day. Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo – kenkremer.com

During the nocturnal hiatus they are kept alive by a radioisotopic heat source that keeps their delicate computer and electronics subsystems warmed inside a box below the deck. It must be maintained at a temperature of about minus 40 degrees Celsius to prevent debilitating damage.

In a historic first for China, the Chang’e-3 spacecraft safely touched down on the Moon at Mare Imbrium near the Bay of Rainbows some six weeks ago on Dec. 14, 2013.

Seven hours later, the piggybacked 140 kg Yutu robot drove off a pair of ramps, onto the Moon and into the history books.

Is it Farewell Forever Yutu ??

We don’t know yet.

And since there is no communication possible during sleep mode, no one will know until the resumption of daylight some two weeks from now – around Feb. 8 to 9.

Traverse Path of Yutu rover from Dec. 14 landing to Dec. 21. Landscape textured with Chang'e 3 imagery from space and ground.  Credit: CNSA/BACC
Traverse Path of Yutu rover from Dec. 14 landing to Dec. 21. Landscape textured with Chang’e 3 imagery from space and ground. Credit: CNSA/BACC

Whatever happens, China can be proud of their magnificent accomplishment with the Yutu rover and the 1200 kg stationary Change’-3 lander which has reinvigorated lunar surface exploration after a nearly 40 year gap.

And we wish China’s scientists and engineers well !

China is only the 3rd country in the world to successfully soft land a spacecraft on Earth’s nearest neighbor after the United States and the Soviet Union.

Meanwhile as we await the fate of China’s Yutu rover trundling across pitted moonscapes, NASA’s Opportunity rover is in the midst of Martian mountaineering at the start of Decade 2 on the Red Planet and younger sister Curiosity is speeding towards the sedimentary layers of Mount Sharp.

Stay tuned here for Ken’s continuing Chang’e-3, Orion, Orbital Sciences, SpaceX, commercial space, LADEE, Mars and more news.

Ken Kremer

Stunning Astrophoto Captures Awe Inspiring NASA Rocket Launch Amidst Star Trails – Gallery

The rotation of the Earth captured in the trails of the stars over Cape Canaveral Air Force Station on Jan 23, 2014. NASA's latest Tracking & Data Relay Satellite, TDRS-L, is seen here hitching a fiery ride to orbit atop an Atlas-V rocket, as viewed from the Turn Basin on Kennedy Space Center just a few miles away. Credit: Mike Killian/www.MikeKillianPhotography.com/AmericaSpace

The rotation of the Earth captured in the trails of the stars over Cape Canaveral Air Force Station on Jan 23, 2014. NASA’s latest Tracking & Data Relay Satellite, TDRS-L, is seen here hitching a fiery ride to orbit atop an Atlas-V rocket, as viewed from the Turn Basin on Kennedy Space Center just a few miles away. Credit: Mike Killian/www.MikeKillianPhotography.com/AmericaSpace
see Atlas V/TDRS-L Launch Galley below
Story updated[/caption]

Space photographer Mike Killian has captured an absolutely stunning astrophoto of this week’s Atlas V blastoff that innovatively combines astronomy and rocketry – its the streak shot featured above. See additional Atlas launch imagery below – and here.

Mike’s awe inspiring imagery melds Thursday night’s (Jan. 23) spectacular Atlas V liftoff of NASA’s latest Tracking & Data Relay Satellite (TDRS) from Cape Canaveral, Florida, with brilliant star trails, reflecting the Earth’s rotation, moving in the crystal clear dark sky overhead and brilliantly glowing xenons and flaming reflections in the waters beneath.

Update 30 Jan:
This fabulous star trails/streak image has been featured as the APOD on Jan 30, 2014.

TDRS-L awaits launch atop Atlas V rocket. Credit: Mike Killian/mikekillianphotography.com
TDRS-L awaits launch atop Atlas V rocket. Credit: Mike Killian/mikekillianphotography.com

The 3.8 ton TDRS-L communications satellite was successfully delivered by the Atlas V to orbit where it will become an essential member of NASA’s vital network to relay all the crucial science and engineering data from a wide variety of science satellites – including the Hubble Space Telescope and the International Space Station.

The United Launch Alliance Atlas V launched at 9:33 p.m. from Pad 40.

Read my complete Atlas V/TDRS-L launch story – here.

Killian’s very creative image makes it looks as though the fiery rocket plume is slicing and dicing a path though the wandering stars as its thundering off the pad, arcing out over the Atlantic Ocean and soaring on to orbit.

And it’s all perfectly framed – as detailed below in my interview with Mike Killian.

Water reflection shot of NASA TDRS-L satellite launch aboard Atlas V rocket on Jan. 23, 2014. Credit: Walter Scriptunas II - www.scriptunasimages.com
Water reflection shot of NASA TDRS-L satellite launch aboard Atlas V rocket on Jan. 23, 2014. Credit: Walter Scriptunas II – www.scriptunasimages.com

Mike is a space friend of mine and we recently spent launch week together photographing the Jan. 9 Antares rocket launch from NASA’s Wallops Island Flight Facility in Virginia, amidst the bone chilling cold of the Polar Vortex – which by the way has returned! See a photo of us freezing together at NASA Wallops – below!!

See our Antares launch imagery – here and here.

Be sure to enjoy the Atlas V gallery herein including more space photog friends including Jeff Seibert, Alan Walters, Walter Scriptunas II and nasatech.net

NASA TDRS-L relay satellite launch aboard Atlas V rocket on Jan. 23, 2014. Credit: Jeff Seibert/wired4space.com
NASA TDRS-L relay satellite launch aboard Atlas V rocket on Jan. 23, 2014. Credit: Jeff Seibert/wired4space.com

Mike’s magnificent new astrophoto was snapped from the Press Site at the Kennedy Space Center – located right next to the world famous countdown clock and the Vehicle Assembly Building (VAB).

The two launch sites – NASA Wallops and Cape Canaveral/NASA Kennedy Space Center – sit about 800 miles apart on the US East Coast.

His stunning new astrophoto was several years in the making and the result of rather careful planning and of course some good luck too.

Mike is a very experienced and exceptionally talented and accomplished photographer in general.

So for the benefit of Universe Today readers, I asked Mike to describe how he planned, executed and processed the fabulous Jan. 23 star trail/Atlas launch photo.

“I’ve wanted to attempt this shot for 2 years now & finally the conditions for it came together Thursday night – no moonlight, no clouds, barely a breeze, mostly dry air & enough TIME between sunset and liftoff to capture some descent star trails,” Mike Killian told me.

What was the shooting time and equipment involved?

“Approximate total shooting time was about 3 hours, 380 20-second exposures @ ISO 400, shot with a Canon T4i w/ a 11-16mm Tokina 2.8 lens,” said Killian.

“For the launch I adjusted those setting for the rocket’s bright flame, did that exposure, then took the images and stacked using Photoshop. All images are the exact same framing.”

Killian took the photos from right along the edge of the water basin at the Press Site at the Kennedy Space Center, located right next to the VAB where NASA’s Saturn V Moon rockets and Space Shuttles were processed for launch.

NASA TDRS-L relay satellite launch aboard Atlas V rocket on Jan. 23, 2014. Credit: Jeff Seibert/wired4space.com
NASA TDRS-L relay satellite launch aboard Atlas V rocket on Jan. 23, 2014. Credit: Jeff Seibert/wired4space.com

Why shoot from Kennedy Space Center instead of Cape Canaveral?

“I chose to shoot from the water’s edge at Turn Basin mainly because of the water, I always like a nice reflection from the xenon lights and the launch itself.

“Plus I knew nobody would shoot from there, as both the VAB roof & Cape Canaveral were available for media to view from (both have fantastic views).”

“I wanted to do something different.”

“Generally we get an hour or so at whatever area we are shooting any given launch from, before heading back to the press site.”

“But since the Turn Basin is AT the press site, the location was open for several hours due to TDRS-L being a night launch.”

“So I had enough time to attempt this shot from about as close as you can get (4 miles or so)!

Is Mike pleased with the result?

“I’m happy with how this one came out!” Mike ecstatically told me.

For some background on the VAB and the imminent end of public tours inside – read my new VAB story, here.

And here’s my daytime shot showing the Turn Basin and Mike’s approximate shooting location at the KSC Press Site. Mike is shooting in the opposite direction – from waters edge looking to the right.

View of the Vehicle Assembly Building (VAB) and the Turn Basin adjacent to the Kennedy Space Center Press Center and the countdown clock. Credit: Ken Kremer – kenkremer.com
View of the Vehicle Assembly Building (VAB) and the Turn Basin adjacent to the Kennedy Space Center Press Center and the countdown clock. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Orion, Chang’e-3, Orbital Sciences, SpaceX, commercial space, LADEE, Mars and more news.

Ken Kremer

Remote camera shot of NASA TDRS-L relay satellite launch aboard Atlas V rocket on Jan. 23, 2014. Credit: Walter Scriptunas II - www.scriptunasimages.com
Remote camera shot of NASA TDRS-L relay satellite launch aboard Atlas V rocket on Jan. 23, 2014. Credit: Walter Scriptunas II – www.scriptunasimages.com
The TDRS-L mission begins as the Atlas V-401 roars from the pad. Credit: nasatech.net
The TDRS-L mission begins as the Atlas V-401 roars from the pad. Credit: nasatech.net
NASA’s TDRS-L blasts off atop Atlas V rocket on Jan. 23, 2014. Credit: Mike Killian/mikekillianphotography.com
NASA’s TDRS-L blasts off atop Atlas V rocket on Jan. 23, 2014. Credit: Mike Killian/mikekillianphotography.com

Spectacular Go Pro TDRS Launch Video by Matthew Travis

Space journalists Ken Kremer/Universe Today (left) and Mike Killian  and Alan Walters  of AmericaSpace (center, right) setting remote cameras at Antares launch pad amidst bone chilling cold for the photos featured herein.  Credit: Ken Kremer - kenkremer.com
Space journalists Ken Kremer/Universe Today (left) and Mike Killian and Alan Walters of AmericaSpace (center, right) setting remote cameras at Antares launch pad amidst bone chilling cold. Credit: Ken Kremer – kenkremer.com
Photo Credit: Alan Walters / AmericaSpace
Photo Credit: Alan Walters / AmericaSpace

Lovejoy and X1 LINEAR: How to See Comets That Will Warm Up Your Mid-Winter Mornings

Comet Lovejoy still shows both an ion tail (blue) and dust tail in this photo taken Jan. 12 from Stixendorf, Austria. Credit: Michael Jaeger

My hands are still cold from the experience, but there’s no denying the pleasure I felt at seeing C/2013 R1 Lovejoy and C/2012 X1 LINEAR through the telescope this morning.  Some comets fizzle, others fall apart, but these vaporous hunks have hung in there for months like steadfast friends that stick with you through hard times and good.While no longer visible with the naked eye, 50mm binoculars easily show it as a magnitude 7 fuzzy glow with a short, faint tail pointing up and away to the northwest.  I had no difficulty seeing it even with a last quarter moon glaring in the south.

Comets Lovejoy and X1 LINEAR are both moving across northern Ophiuchus. This map shows the sky facing east about 1 hour 45 minutes before sunrise shortly before the start of morning twilight. Detailed map below. Stellarium
Comets Lovejoy and X1 LINEAR are neighbors in northern Ophiuchus this month and next. This map shows the sky facing east about 1 hour 45 minutes before sunrise shortly before the start of morning twilight. Tick marks show the comets’ position every 5 days. Click to enlarge. Detailed map below. Created with Chris Marriott’s SkyMap software.

Rising around 3 a.m., Lovejoy is best placed for viewing just before the start of dawn when it climbs to about 30 degrees altitude in Ophiuchus. Lucky for us, Lovejoy will spend the next few mornings very close to the easy naked eye star 72 Ophiuchi, located 3 fists held at arm’s length to the lower right of brilliant Vega. It’s not often that a fairly bright comet passes this close to a helpful guide star. Don’t miss this easy catch. Soon the moon won’t be any trouble either as it skedaddles eastward and dwindles to a crescent in the coming mornings.

This deeper map shows stars to about magnitude 8. Although both comets appear to be getting lower every morning, the seasonal drift of the star to the west will keep them in good view for the next few months. Stellarium
This deeper map shows stars to about magnitude 8. Although both comets appear to be getting lower every morning, the westward seasonal drift of the stars will keep them in good view for the next few months. Click to enlarge. Created with Chris Marriott’s SkyMap software

Telescopic views of Lovejoy show a much diminished coma and tail compared to its heyday in early December. Still,  the nucleus remains bright and very condensed within the 3′ diameter gauzy coma; a faint and silky tail 2/3 of a degree long flowed across the field of view of my 15-inch (37-cm) reflector like a bride’s train. According to the excellent Weekly Information about Bright Comets site maintained by Seiichi Yoshida, Lovejoy should glow brighter than magnitude 8, what I consider the “bright” comet cutoff, through early February. Given that Lovejoy remains the brightest predicted comet visible till summer, show it some love the next clear night.

Comet C/2012 X1 LINEAR shows a green coma from fluorescing gases and a short tail in this photo made on Jan. 15, 2014. Credit: Rolando Ligustri
Comet C/2012 X1 LINEAR shows a green coma from fluorescing gases and a short tail in this photo made on Jan. 15, 2014. Credit: Rolando Ligustri

If Lovejoy’s a fading celebrity, X1 LINEAR suffered a mid-life crisis and snapped out of it with a whole new attitude.  Like Comet Holmes in 2007, it catapulted in brightness overnight in last October, blossoming from a 14th magnitude blip into a bright, expanding puffball briefly visible in ordinary binoculars. As expected, the comet soon faded. But on its return to obscurity,  X1 surprised again, re-brightening and growing a short tail. Now it’s humming along at 9th magnitude thank you very much. You’ll find it gliding across northern Ophiuchus not far from Lovejoy (more about that in a minute).

Very different appearance of C/2012 X1 LINEAR during outburst on Oct. 21, 2013. Credit: Ernesto Guido, Martino Nicolini & Nick Howes
Very different appearance of C/2012 X1 LINEAR during outburst on Oct. 21, 2013. Credit: Ernesto Guido, Martino Nicolini & Nick Howes

My binoculars won’t show the comet but a 6-inch telescope will do the trick. Overall weaker in appearance than Lovejoy, X1 LINEAR has a slightly larger, more diffuse coma,  brighter core and a short, faint tail pointing to the northwest. The comet will remain a fine target for smaller scopes through early March when it’s predicted to glow between magnitude 8 and 9.

Comets Lovejoy and X1 LINEAR will be closest together on the morning of Feb. 6 CST. Notice that they'll be in the company of numerous deep sky objects. Looks like a morning's worth of observing to me! Created with Chris Marriott's SkyMap software
Comets Lovejoy and X1 LINEAR will be closest together on the morning of Feb. 6 CST. A plethora of deep sky objects near them will make  for a complete morning’s worth of sky watching! Click to enlarge. Created with Chris Marriott’s SkyMap software

Looking at the maps, you’ll see that our two comets’ paths intersect. While they won’t overlap on the same morning, Lovejoy and X1 LINEAR will be in conjunction on Feb. 6 when they’ll be just 2 degrees apart. Get that camera ready! Guided telephoto and wide-field telescopes will be perfect for catching this unusual duet.

Before I sign off, don’t forget all the other good morning stuff: Mars hovers above Spica high in the south-southwestern sky, Saturn invites inspection in the southeast and Venus is back in view in the east-southeast 45 minutes before sunup. A delicate crescent moon shines near Venus on Jan. 28 and 29. Such riches.

Now is Your Last Chance to Visit Inside NASA’s Iconic Vehicle Assembly Building – and maybe see an Orion

NASA’s iconic Vehicle Assembly Building (VAB) and Launch Control Center (LCC) at the Kennedy Space Center, Florida. Public access tours inside the VAB will end on Feb. 11, 2014. NASA's Apollo Saturn V Moon rockets and Space Shuttles were assembled inside. Credit: Ken Kremer - kenkremer.com

NASA’s iconic Vehicle Assembly Building (VAB) and Launch Control Center (LCC) at the Kennedy Space Center, Florida. Public access tours inside the VAB will end on Feb. 11, 2014. NASA’s Apollo Saturn V Moon rockets and Space Shuttles were assembled inside.
Credit: Ken Kremer – kenkremer.com
Story updated- Last chance to visit VAB extended to Feb. 23[/caption]

If you have ever wanted to take a personal trip inside NASA’s world famous Vehicle Assembly Building (VAB) at Kennedy Space Center in Florida, now is the time.

In fact this is your last chance. Because access to the hugely popular public tours will end very soon. And perhaps you’ll see an Orion test capsule too.

Indeed you only have until Feb. 11 [Update: now extended to Feb. 23] to enjoy the KSC “Up-Close Tour” inside the 52 story tall VAB, according to an announcement by the privately run Kennedy Space Center Visitor Complex, which organizes the VAB tours.

The VAB is an iconic world wide symbol of America’s space program.

And it’s home to many of NASA’s finest and most historic exploration achievements – including all the manned Apollo Moon landings and the three decade long Space Shuttle program that launched the Hubble Space Telescope and the International Space Station (ISS) to orbit.

Why are the interior public tours being halted, barely 2 years after they started?

Because after a bit of a lull following the termination of NASA’s Space Shuttle program, space launch activities are ramping up once again and the agency must complete much needed building renovations to prepare for the next step in human exploration of the cosmos – SLS, Orion and commercial ‘space taxis’.

Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) mock up stack inside the transfer aisle of the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC) in Florida. Credit: Ken Kremer/kenkremer.com
Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) mock up stack inside the transfer aisle of the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC) in Florida. Credit: Ken Kremer/kenkremer.com

The agency needs unfettered use of the VAB to prepare for assembly, lifting and stacking of the new Orion crew capsule and it’s new monster booster rocket – the Space Launch System (SLS) – slated for its maiden blastoff in 2017.

You can always see the 525 foot tall VAB from the outside, gleaming proudly from miles away.

And it’s a must see from up close outside glimpses aboard tour buses driving by all day long – resplendent with a mammoth red, white and blue American flag painted on its side.

But nothing compares to being an eyewitness to history and seeing it from the inside with your own eyes, especially if you are a space enthusiast!

The VAB is one of the largest and most voluminous buildings in the world.

Since 1978, the VAB interior had been off limits to public visitors for more than 30 years during the shuttle era. It was too hazardous to visit because of the presence of the giant shuttle solid rocket boosters loaded with fuel.

Orion Ground Test Article (GTA) recently displayed on the floor inside the Vehicle Assembly Building (VAB).    Credit: Ken Kremer - kenkremer.com
Orion Ground Test Article (GTA) recently displayed on the floor inside the Vehicle Assembly Building (VAB). Credit: Ken Kremer – kenkremer.com

Inside access was finally restored to guests at Kennedy Space Center Visitor Complex in November 2011, following the retirement of the space shuttles.

Visitors could again “see firsthand where monstrous vehicles were assembled for launch, from the very first Saturn V rocket in the late 1960s to the very last space shuttle, STS-135 Atlantis, in 2011.”

Although the shuttles are now gone, there is a possibility that maybe you’ll be lucky enough to see an Orion test capsule that’s been used in real ground testing to help NASA prepare for upcoming missions.

Since the layout is constantly changing, there is no guarantee on seeing the Orion.

Possibly either an Orion boilerplate test article or the Ground Test Article (GTA) which was the first flight worthy Orion capsule to be built. The GTA is the path finding prototype for the Orion EFT-1 capsule currently in final assembly and slated to launch this Fall 2014.

Perhaps you’ll be lucky enough to snap a shot like one of mine of the Orion GTA on the floor of the main working area of the VAB – known as the transfer aisle.

You will definitely get the feel for the greatest hits in space history inside the place where the moon rockets and space shuttles were lifted, stacked and assembled for flight and then rolled out to either Launch Pad 39 A or 39 B.

Atlantis approaches the VAB for the final time. Credit: Ken Kremer
Atlantis approaches the VAB for the final time during preparations for the STS-135 flight in 2011. Credit: Ken Kremer – kenkremer.com

“Kennedy Space Center Visitor Complex has been honored to give our guests rare access to the VAB for the past two years, yet we knew that the day would come when preparations for the SLS would take precedent,” said Therrin Protze, chief operating officer for the Visitor Complex, in a statement.

“Kennedy Space Center is an operating space program facility, and preparations for the next chapter in space exploration are the utmost priority, and we are very excited about the future.”

Starting in 2017, America will again launch a mighty rocket – the SLS that will blast Americans to deep space after an unbelievable 50 year gap.

Full belly view of Space Shuttle Discovery coated with thousands of protective heat shield tiles in the transfer aisle of the VAB where it was processed for final launch on STS-133 mission.  Note two rectangular attach points holding left and right side main separation bolts. Credit: Ken Kremer - kenkremer.com
Full belly view of Space Shuttle Discovery coated with thousands of protective heat shield tiles in the transfer aisle of the VAB where it was processed for final launch on STS-133 mission. Note two rectangular attach points holding left and right side main separation bolts. Credit: Ken Kremer – kenkremer.com

So for only about the next two weeks, you can see one of the greatest treasures of America’s space program and appreciate the cavernous interior from where our astronauts once set off for the Moon as part of the “Mega Tour”.

The “Mega Tour”, which also included visits to Launch Pad 39 A and the Launch Control Center (LCC) ends on Feb. 11, the visitor complex announced.

However the visitor complex is still offering a modified “Up-Close” tour to Pad 39A and the Launch Control Center (LCC) – at this time. But that’s subject to change at any moment depending on NASA’s priorities.

View of NASA’s 52 story tall Vehicle Assembly Building (VAB) as seen from the top of Launch Pad 39 A.    Credit: Ken Kremer - kenkremer.com
View of NASA’s 52 story tall Vehicle Assembly Building (VAB) as seen from the very top of Launch Pad 39 A gantry. Credit: Ken Kremer – kenkremer.com

And don’t forget that you can also see NASA’s genuine Space Shuttle Atlantis in its new permanent exhibition hall at the Kennedy Space Center Visitor Complex.

Please check the visitor center website for complete details and admission pricing on “Up-Close” tours and everything else – www.kennedyspacecenter.com

There is one thing I can guarantee – if you don’t go you will see nothing!

Catch it if you can. It’s NOT coming back any time soon!

Stay tuned here for Ken’s continuing Orion, Chang’e-3, Orbital Sciences, SpaceX, commercial space, LADEE, Mars and more news.

Ken Kremer

Space Shuttle Atlantis permanent display at Kennedy Space Center Visitor Complex, Florida. Credit: Ken Kremer - kenkremer.com
Space Shuttle Atlantis permanent display at Kennedy Space Center Visitor Complex, Florida. Credit: Ken Kremer – kenkremer.com
View of the Vehicle Assembly Building (VAB) and the Turn Basin adjacent to the Kennedy Space Center Press Center and the countdown clock. Credit: Ken Kremer – kenkremer.com
View of the Vehicle Assembly Building (VAB) and the Turn Basin adjacent to the Kennedy Space Center Press Center and the countdown clock. Credit: Ken Kremer – kenkremer.com

Black Holes No More? Not Quite.

Where is the Nearest Black Hole
Artist concept of matter swirling around a black hole. (NASA/Dana Berry/SkyWorks Digital)

Nature News has announced that there are no black holes.  This claim is made by none other than Stephen Hawking, so does this mean black holes are no more?  It depends on whether Hawking’s new idea is right, and on what you mean be a black hole.  The claim is based on a new paper by Hawking  that argues the event horizon of a black hole doesn’t exist.

The event horizon of a black hole is basically the point of no return when approaching a black hole.  In Einstein’s theory of general relativity, the event horizon is where space and time are so warped by gravity that you can never escape.  Cross the event horizon and you can only move inward, never outward.  The problem with a one-way event horizon is that it leads to what is known as the information paradox.

Professor Stephen Hawking during a zero-gravity flight. Image credit: Zero G.
Professor Stephen Hawking during a zero-gravity flight. Image credit: Zero G.

The information paradox has its origin in thermodynamics, specifically the second law of thermodynamics.  In its simplest form it can be summarized as “heat flows from hot objects to cold objects”.  But the law is more useful when it is expressed in terms of entropy.  In this way it is stated as “the entropy of a system can never decrease.”  Many people interpret entropy as the level of disorder in a system, or the unusable part of a system.  That would mean things must always become less useful over time.  But entropy is really about the level of information you need to describe a system.  An ordered system (say, marbles evenly spaced in a grid) is easy to describe because the objects have simple relations to each other.  On the other hand, a disordered system (marbles randomly scattered) take more information to describe, because there isn’t a simple pattern to them.  So when the second law says that entropy can never decrease, it is say that the physical information of a system cannot decrease.  In other words, information cannot be destroyed.

The problem with event horizons is that you could toss an object (with a great deal of entropy) into a black hole, and the entropy would simply go away.  In other words, the entropy of the universe would get smaller, which would violate the second law of thermodynamics.  Of course this doesn’t take into account quantum effects, specifically what is known as Hawking radiation, which Stephen Hawking first proposed in 1974.

The original idea of Hawking radiation stems from the uncertainty principle in quantum theory.  In quantum theory there are limits to what can be known about an object.  For example, you cannot know an object’s exact energy.  Because of this uncertainty, the energy of a system can fluctuate spontaneously, so long as its average remains constant.  What Hawking demonstrated is that near the event horizon of a black hole pairs of particles can appear, where one particle becomes trapped within the event horizon (reducing the black holes mass slightly) while the other can escape as radiation (carrying away a bit of the black hole’s energy).

Hawking radiation near an event horizon. Credit: NAU.
Hawking radiation near an event horizon. Credit: NAU.

Because these quantum particles appear in pairs, they are “entangled” (connected in a quantum way).  This doesn’t matter much, unless you want Hawking radiation to radiate the information contained within the black hole.  In Hawking’s original formulation, the particles appeared randomly, so the radiation emanating from the black hole was purely random.  Thus Hawking radiation would not allow you to recover any trapped information.

To allow Hawking radiation to carry information out of the black hole, the entangled connection between particle pairs must be broken at the event horizon, so that the escaping particle can instead be entangled with the information-carrying matter within the black hole.  This breaking of the original entanglement would make the escaping particles appear as an intense “firewall” at the surface of the event horizon.  This would mean that anything falling toward the black hole wouldn’t make it into the black hole.  Instead it would be vaporized by Hawking radiation when it reached the event horizon.  It would seem then that either the physical information of an object is lost when it falls into a black hole (information paradox) or objects are vaporized before entering a black hole (firewall paradox).

In this new paper, Hawking proposes a different approach.  He argues that rather than instead of gravity warping space and time into an event horizon, the quantum fluctuations of Hawking radiation create a layer turbulence in that region.  So instead of a sharp event horizon, a black hole would have an apparent horizon that looks like an event horizon, but allows information to leak out.  Hawking argues that the turbulence would be so great that the information leaving a black hole would be so scrambled that it is effectively irrecoverable.

If Stephen Hawking is right, then it could solve the information/firewall paradox that has plagued theoretical physics.  Black holes would still exist in the astrophysics sense (the one in the center of our galaxy isn’t going anywhere) but they would lack event horizons.  It should be stressed that Hawking’s paper hasn’t been peer reviewed, and it is a bit lacking on details.  It is more of a presentation of an idea rather than a detailed solution to the paradox.  Further research will be needed to determine if this idea is the solution we’ve been looking for.

More Great Images of Supernova 2014J Plus View it During Live Webcasts

M82 and Supernova 2014J imaged on January 23, 2014. Credit and copyright: Mick Hyde.

Images keep pouring in of the biggest excitement in astronomy this week, a new Type Ia supernova in the Cigar Galaxy, 82, about 12 million light years away. As has been said, the Cigar got lit!

This is the closest supernova of this type since the 1800’s. Astrophotographers have been out in full force trying to nab this event, we’ve got more great images to share today, and we’ll keep adding them as they come in.

If you haven’t been able to take a look for yourself, you can join a live webcast from the folks at the Virtual Telescope Project on Saturday, January 25, 2014 at 20:30 UTC (3 pm EST, 1 pm PST), which you can watch here.

Plus, Fraser and the Virtual Star Party will surely try to nab M82 during their hangout on Sunday January 26 at 9 pm EST. Click the VSP link to find out when it starts in your time zone.

SN2014J on January 23, 2014, as seen from Rhode Island. Credit and copyright: Lloyd Merrill
SN2014J on January 23, 2014, as seen from Rhode Island. Credit and copyright: Lloyd Merrill
M82 with Supernova 2014J imaged on January 23, 2014. Credit and copyright: Anna Morris.
M82 with Supernova 2014J imaged on January 23, 2014. Credit and copyright: Anna Morris.
M82 and SN2014J as seen through a 6 inch telescope on January 23, 2014. Credit and copyright: Bill Magee.
M82 and SN2014J as seen through a 6 inch telescope on January 23, 2014. Credit and copyright: Bill Magee.
Before and after the supernova in M82. Credit and copyright: Astrokid96 on Flickr.
M82 and M81 imaged on January 23, 2014. Credit and copyright: Gregory Hogan.
M82 and M81 imaged on January 23, 2014. Credit and copyright: Gregory Hogan.
Comparison images of M82 nine months apart: on April 4, 2013 and January 23, 2014. Credit and copyright: Paul Campbell.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.