Say Goodbye to Comet ISON (for now): Timelapse and Image Gallery

A last look at Comet ISON before dawn on November 23, 2013 from the Canada France Hawaii Telescope on the summit of Mauna Kea, Hawaii. Credit: CFHT/CometISON Twitter feed.

Comet ISON is heading towards its inexorable close pass of the Sun, which will occur on November 28, 2013. And while we’ve been enjoying great views from astrophotographers, that luxury is probably over as of today, as the comet is just getting to close to the Sun — and its blinding glare — for us to see it. But while we won’t be able to see it from Earth, we’re lucky to have a fleet of spacecraft that will be able to keep an eye on the comet for us! The STEREO spacecraft has already taken images of ISON hurtling towards the Sun; the Solar and Heliospheric Observatory (SOHO) will start observations on November 27. Then, the Solar Dynamics Observatory (SDO) will view the comet for a few hours during its closest approach to the Sun, and the X-Ray telescope on the Hinode spacecraft will view Comet ISON for about 55 minutes during perihelion.

Will Comet ISON survive its close pass and emerge brighter than ever? Only time will tell. You can keep track of what is going on with ISON here on Universe Today, as well as at NASA’s Comet ISON website, the Comet ISON Observing Campaign website, and there will be a special Hangout on Google+ during perihelion on Nov. 28.

Above is a gorgeous timelapse of ISON from the Teide observatory in the Canary Islands on Nov. 22nd, 2013. See more images and videos below.

Above is a screenshot from the live camera views from the Canada France Hawaii Telescope webcam. You can see a live view from their webcam any time at this link.

A montage of images of Comet ISON, taken from January-May and then September to late November. Credit and copyright: Efrain Morales/
A montage of images of Comet ISON, taken from January-May and then September to late November. Credit and copyright: Efrain Morales/
Comet ISON seen on November 22, 2013 from Corvalis, Oregon, USA. Manual alignment of 20 frames of 4 seconds each in Deep Sky Stacker. Credit and copyright: A Nartist on Flickr.
Comet ISON seen on November 22, 2013 from Corvalis, Oregon, USA. Manual alignment of 20 frames of 4 seconds each in Deep Sky Stacker. Credit and copyright: A Nartist on Flickr.
Comet ISON (C/2012 S1) in the morning twilight, above centre, with Mercury above the trees at left of frame. Taken from home in southern Alberta, November 21, 2013, using the 135mm lens at f/2.8 and Canon 5D MkII at ISO 1600 for stack of 5 x 4 second exposures, tracked with the iOptron SkyTracker, with the ground from one exposure to avoid blurring from the tracking motion. Credit and copyright: Alan Dyer/Amazing Sky Photography.
Comet ISON (C/2012 S1) in the morning twilight, above centre, with Mercury above the trees at left of frame. Taken from home in southern Alberta, November 21, 2013, using the 135mm lens at f/2.8 and Canon 5D MkII at ISO 1600 for stack of 5 x 4 second exposures, tracked with the iOptron SkyTracker, with the ground from one exposure to avoid blurring from the tracking motion. Credit and copyright: Alan Dyer/Amazing Sky Photography.
Comet C/2012 S1 (ISON) plus possible fragmentation or disconnect event on  Nov 21, 2013, taken from New Mexico. Credit and copyright: Joseph Brimacombe.
Comet C/2012 S1 (ISON) plus possible fragmentation or disconnect event on Nov 21, 2013, taken from New Mexico. Credit and copyright: Joseph Brimacombe.

A glimpse of ISON from the Netherlands on November 21, 2013. Credit and copyright: Fred Kamphues.
A glimpse of ISON from the Netherlands on November 21, 2013. Credit and copyright: Fred Kamphues.
Comet ISON and Spica together during Full Moon on November 18, 2013, seen from Payson, Arizona. Credit and copyright: Chris Schur.
Comet ISON and Spica together during Full Moon on November 18, 2013, seen from Payson, Arizona. Credit and copyright: Chris Schur.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

NASA’s STEREO Spacecraft Spots Comets ISON and Encke

Comet ISON entered the STEREO scene with Encke on Nov. 21 (Credit: Karl Battams/NASA/STEREO/CIOC)

As comets ISON and Encke continue toward their respective rendezvous with the Sun, they have now both been captured on camera by NASA’s solar-observing STEREO spacecraft. The image above, taken on Nov. 21 (UT) with STEREO-A’s high-resolution HI-1 camera, shows ISON as it enters the field of view from the left. Encke is at center, while the planets Mercury and Earth (labeled) are bright enough to cause vertical disruptions in the imaging sensors. (The Sun is off frame to the right.)

As cool as this image is, it gets even better: there’s a video version. Check it out below:

Animation of STEREO-A images acquired on Nov. 20-21 (Karl Battams/NASA/STEREO/CIOC)
Animation of STEREO-A images acquired on Nov. 20-21 (Karl Battams/NASA/STEREO/CIOC)

The dark “clouds” coming from the right are density enhancements in the solar wind, causing all the ripples in comet Encke’s tail. (Source)

The position of NASA's STEREO spacecraft relative to Earth and the Sun on Nov. 22
The position of NASA’s STEREO spacecraft relative to Earth and the Sun on Nov. 22

It’s fascinating to watch how the solar wind shapes and affects the tail of comet Encke… as ISON moves further into view, I’m sure we’ll see similar disruptions in its tail as well. (And look what STEREO-A saw happen to Encke’s tail back in 2007!)

Encke reached the perihelion of its 3.3-year-long orbit on Nov. 21; newcomer ISON will arrive at its on Nov. 28. While it seems to be holding together quite well in these STEREO images, what happens when it comes within 730,000 miles of the Sun next week is still anybody’s guess.

Read more: Whoa, Take a Look at Comet ISON Now!

Original Drawing of MAVEN Launch is a Throwback to the Early Days of Space Exploration

An original drawing of the launch of the MAVEN spacecraft on November 18, 2013. Credit and copyright: Wendy Clark.

We’ve seen some great images from the launch of the MAVEN spacecraft earlier this week, but this original drawing of the moment of liftoff of the Atlas V carrying MAVEN is remarkable. This pencil illustration is reminiscent of the early days of spaceflight – or perhaps even the pre-spaceflight days, before we had actual images of launches, only our dreams of spaceflight.

“Everyone takes great photos of the launches and I thought a drawing would be something different,” said artist and photographer Wendy Clark from the UK. “True inspiration comes from the things you love most and I think this is why I especially enjoy drawing space related things.”

Like most of us, Wendy watched the launch online and she started her sketches after NASA started receiving telemetry from MAVEN, and said she worked on the drawing for about 24 hours total since Monday. This final version was done with graphite on A3 paper.

“Don’t let anyone tell you drawing a rocket is easy,” she told Universe Today. “This is only the 2nd drawing I have fully completed of a rocket launch. The special missions always interest me and I’m a fan of Atlas V rocket shapes, although they are not easy subjects to draw!”

Wendy said she’s an avid launch fan, although she’s never witnessed a mission launch in person. “One day would be nice to stand and watch this in person,” she said.

The other launch drawing she completed was of the final launch of the space shuttle program, STS-135, and she said she felt like she got to know the shuttle Atlantis like an old friend.

“When you spend 72 hours drawing a momentous event like this you get kind of attached to the subject in a way you can’t immediately understand,” she said. “I got to know every curve by putting what I saw on paper with graphite.”

An original graphite drawing of the final launch of the space shuttle program, STS-135. Credit and copyright: Wendy Clark.
An original graphite drawing of the final launch of the space shuttle program, STS-135. Credit and copyright: Wendy Clark.

See more of Wendy’s drawings and photographs on her Flickr page.

Neutrino Detection Could Help Paint an Entirely New Picture of the Universe

The IceCube Neutrino Observatory at the South Pole. It detected neutrinos and helped astronomers trace them to blazars. Credit: Emanuel Jacobi/NSF.
The IceCube Neutrino Observatory at the South Pole. It detected neutrinos and helped astronomers trace them to blazars. Credit: Emanuel Jacobi/NSF.

The IceCube neutrino observatory buried at the South Pole is one cool telescope. It has detected extremely high-energy neutrinos, which are elementary particles that likely originate outside our solar system. The discovery of 28 record-breaking neutrinos was announced earlier – with two of the particles — nicknamed Bert and Ernie – drawing particular attention because of the their off-the-chart energy of over 1,000,000,000,000,000 electron volts or 1 peta-electron volt (PeV).

Now, a new analysis of more recent data discovered 26 additional events beyond 30 teraelectronvolts — which exceeds the energy expected for neutrinos produced in the Earth’s atmosphere, and one of those events was almost double the energy of Bert and Ernie. This one has been dubbed “Big Bird,” and in combination, these events provide the first solid evidence for astrophysical neutrinos from distant cosmic accelerators, which might help us understand the origin of origin of cosmic rays. The detection has suggested a new age of astronomy is beginning, offering a new way to look at the Universe using high-energy neutrinos.

“While it is premature to speculate about the precise origin of these neutrinos, their energies are too high to be produced by cosmic rays interacting in the Earth’s atmosphere, strongly suggesting that they are produced by distant accelerators of subatomic particles elsewhere in our galaxy, or even farther away,” said Penn State Associate Professor of Physics Tyce DeYoung, the deputy spokesperson of the IceCube Collaboration.

This event display shows “Bert,” one of two neutrino events discovered at IceCube whose energies exceeded one petaelectronvolt (PeV). The colors show when the light arrived, with reds being the earliest, succeeded by yellows, greens and blues. The size of the circle indicates the number of photons observed. Credit: Berkeley Labs.
This event display shows “Bert,” one of two neutrino events discovered at IceCube whose energies exceeded one petaelectronvolt (PeV). The colors show when the light arrived, with reds being the earliest, succeeded by yellows, greens and blues. The size of the circle indicates the number of photons observed. Credit: Berkeley Labs.

High-energy neutrinos can pass through normal matter, and billions of neutrinos pass through the Earth every second. The vast majority of these are lower-energy particles that originate either in the Sun or in the Earth’s atmosphere. Far rarer are the high-energy neutrinos that more likely would have been created much farther from Earth in the most powerful cosmic events — gamma ray bursts, black holes, or the birth of stars. These neutrinos have been highly sought because they can carry information about the workings of the highest-energy and most-distant phenomena in the Universe.

“Scientists have been searching high and low for these super-energetic neutrinos using detectors buried under mountains, submerged in deep lakes and ocean trenches, lofted into the stratosphere by special balloons, and in the deep clear Antarctic ice at the South Pole,” said Doug Cowen, also from Penn State, who has worked on IceCube for over a decade. “To have finally seen them after all these years is immensely gratifying.”

IceCube is located inside a cubic kilometer of ice beneath the South Pole and is comprised of more than 5,000 digital optical modules melted into in a cubic kilometer of ice at the South Pole. The observatory detects neutrinos through the fleeting flashes of blue light produced when a neutrino interacts with a water molecule in the ice.

The IceCube collaboration said they are continuing to refine and expand the search with new data and new analysis techniques, which may reveal additional high-energy events and possibly point to their astrophysical source or sources.

For more information, see the teams paper in Science, a free version is available on arXiv, press releases from Berkeley Labs, Penn State, and DESY. More information about the IceCube collaboration is here.

Astronomers Catch a Galactic Threesome in the Act

A combined image from the Spitzer, Hubble, and Subaru telescopes show this structure to be three galaxies merging into one (NASA/JPL-Caltech/STScI/NAOJ/Subaru)

An enormous and incredibly luminous distant galaxy has turned out to actually be three galaxies in the process of merging together, based on the latest observations from ALMA as well as the Hubble and Spitzer space telescopes. Located 13 billion light-years away, this galactic threesome is being seen near the very beginning of what astronomers call the “Cosmic Dawn,” a time when the Universe first became illuminated by stars.

“This exceedingly rare triple system, seen when the Universe was only 800 million years old, provides important insights into the earliest stages of galaxy formation during a period known as ‘Cosmic Dawn’ when the Universe was first bathed in starlight,” said Richard Ellis, professor of astronomy at Caltech and member of the research team. “Even more interesting, these galaxies appear poised to merge into a single massive galaxy, which could eventually evolve into something akin to the Milky Way.”

In the image above, infrared data from NASA’s Spitzer Space Telescope are shown in red, visible data from NASA’s Hubble Space Telescope are green, and ultraviolet data from Japan’s Subaru telescope are blue. First discovered in 2009, the object is named “Himiko” after a legendary queen of Japan.

The merging galaxies within Himiko are surrounded by a vast cloud of hydrogen and helium, glowing brightly from the galaxies’ powerful outpouring of energy.

What’s particularly intriguing to astronomers is the noted lack of heavier elements like carbon in the cloud.

“This suggests that the gas cloud around the galaxy is actually quite primitive in its composition,” Ellis states in an NRAO video, “and has not yet been enriched by the products of nuclear fusion in the stars in the triple galaxy system. And what this implies is that the system is much younger and potentially what we call primeval… a first-generation object that is being seen. If true that’s very very exciting.”

Further research of distant objects like Himiko with the new high-resolution capabilities of ALMA will help astronomers determine how the Universe’s first galaxies “turned on”… was it a relatively sudden event, or did it occur gradually over many millions of years?

Watch the full video from the National Radio Astronomy Observatory below:

The research team’s results have been accepted for publication in the Astrophysical Journal.

Source: NASA/JPL press release and the NRAO.

Astrophoto: Plane Pwns the Moon

An airplane at about 2,400 meters above the ground passes in front of the Moon on its way to landing at the Charles de Gaulle Airport in Paris, France. Taken from about 70 km from Paris. Credit and copyright: Sebastien Lebrigand.

Astrophotgrapher Sebastien Lebrigand lives along the flight path to the Charles de Gaulle Airport in Paris and regularly captures planes flying in front of the Moon (see another of his shots here). But this might be the image to end all ‘plane crosses in front of the Moon’ pictures. This plane is seriously taking over the Moon! Plus, its a great detailed shot of the lunar surface.

Sebastien took this image using a Canon EOS 60D, with a 102 mm refractor and 1320 mm of focal length.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Watch PBS NOVA’s “Asteroid—Doomsday or Payday?”

An asteroid, docile in space but deadly to Earth. Image credit: NASA/JPL

Last night, the US PBS television stations aired a new show from the series NOVA, “Asteroid — Doomsday or Payday.” It portrayed the two sides of asteroids: if a large asteroid collides with Earth, it could set off deadly blast waves, raging fires and colossal tidal waves. But on the other hand, some asteroids are loaded with billions of dollars’ worth of elements like iron, nickel, and platinum, and companies like Planetary Resources are trying to figure out how to take advantage of those elusive resources in space.

You can watch the entire episode below. As with previous shows, viewers in other countries might have difficulty watching the show.

For additional reading, here’s a great article by PBS’s NOVANext about why more isn’t being done about asteroid detection and deflection.

Here’s more info about the B612 Foundation that is featured in the show.

Planetary Resources has some info about why mining asteroids will fuel human expansion into the cosmos,(read here) — watch their video, below:

Volcanic Blast Forms New Island Near Japan

An erupting undersea volcano forms a new island off the coast of Nishinoshima, a small unihabited island in the southern Ogasawara chain of islands. The image was taken on November 21, 2013 by the Japanese Coast Guard.

A volcanic eruption is creating a tiny new island off the coast of Japan. The Japanese Coast Guard snapped images and video of the eruption taking place, showing the new island being formed. Footage showed heavy smoke, ash and rocks spewing from the volcanic crater. As of this writing, experts say the small island is about 200 meters (660 feet) in diameter. It is located just off the coast of Nishinoshima, a small, uninhabited island in the Ogasawara chain, also known as the Bonin Islands, about about 620 miles (1,000 km) south of Tokyo.

See a video and additional images below.

Only time will tell if the island will remain or if the ocean waters will reclaim it. According to Yahoo News, Japan’s chief government spokesman said they would welcome any new territory.

“This has happened before and in some cases the islands disappeared,” Yoshihide Suga said when asked if the government was planning on naming the new island. “If it becomes a full-fledged island, we would be happy to have more territory.”

An erupting undersea volcano forms a new island, shown by its nearest neighbor, Nishinoshima, a small unihabited island in the southern Ogasawara chain of islands. The image was taken on November 21, 2013 by the Japanese Coast Guard.
An erupting undersea volcano forms a new island, shown by its nearest neighbor, Nishinoshima, a small unihabited island in the southern Ogasawara chain of islands. The image was taken on November 21, 2013 by the Japanese Coast Guard.
This screenshot of Google Maps shows all the volcanoes in the The Japan, Taiwan, Marianas Region. Via Google Maps and the Smithsonian volcano website.
This screenshot of Google Maps shows all the volcanoes in the The Japan, Taiwan, Marianas Region. Via Google Maps and the Smithsonian volcano website.

According to the Smithsonian Global Volcanism Program website, the Japan, Taiwan, Marianas Region is a very active region in the Pacific Ring of Fire and most volcanoes in this region “result from subduction of westward-moving oceanic crust under the Asian Plate. In the Izu-Mariana chain, however, the crust to the west is also oceanic, forming more basaltic island arcs (but with volcanoes that are far more explosive than oceanic hotspot volcanoes).”

You can read more about this volcanic region here.

See an extensive gallery of images at Yahoo News.

NASA Halts Work on its New Nuclear Generator for Deep Space Exploration

MSL's MMRTG in the laboratory. (Credit: NASA).

Another blow was dealt to deep space exploration this past weekend. The announcement comes from Jim Green, NASA’s Planetary Science Division Director. The statement outlines some key changes in NASA’s radioisotope program, and will have implications for the future exploration of the outer solar system.

An Advanced Stirling Converter prototype in the laboratory. (Credit: NASA).
An Advanced Stirling Converter prototype in the laboratory. (Credit: NASA).

We’ve written about the impending plutonium shortage and what it means for the future of spaceflight, as well as the recent restart of plutonium production. NASA is the only space agency that has conducted missions to the outer planets — even the European Space Agency’s Huygens lander had to hitch a ride with Cassini to get to Titan — and plutonium made this exploration possible. Continue reading “NASA Halts Work on its New Nuclear Generator for Deep Space Exploration”