Phone booths. You know, those things that Superman used to change into his cape and tights. According to news reports, the last phone booths in use in the US will be decommissioned and hauled away sometime this year. If you’ve ever had the chance to actually use one of these communication relics, you know how cramped they are inside. But they provide a good size comparison to the tiny crew quarters on board the International Space Station.
In this new video, Japanese astronaut and Expedition 38 Flight Engineer Koichi Wakata provides a tour of the crew quarters inside the International Space Station’s Harmony node where there are four individual living spaces. They include a sleeping bag, laptop computers and gear for communicating with family members.
What’s the oldest thing you’ve ever held in your hand? A piece of petrified wood? A fossilized trilobite? A chunk of glacier-carved granite? Those are some pretty old things, sure, but there are even older objects to be found across the world… that came from out of this world. And thanks to “Meteorite Men” co-host, author, and educator Geoff Notkin and his company Aerolite Meteorites, you can own a truly ancient piece of the Solar System that can date back over 4.5 billion years.
Founded in 2005, Aerolite (which is an archaic term for meteorite) offers many different varieties of meteorites for sale, from gorgeous specimens worthy of a world-class museum to smaller fragments that you could proudly — and economically — display on your desk. Recently I had the opportunity to talk in depth with Geoff about Aerolite and his life’s work as a meteorite collector and dealer. Here are some of the fascinating things he had to say…
So Geoff, what initially got you interested in meteorites and finding them for yourself?
“It’s been a lifelong passion for me, but I’m lucky in that I can really put my finger on a specific event when I was a kid and that was my mother taking me to the Geological Museum in London when I was six or seven… I was already a rock hound, I loved collecting fossils, and my dad was a very keen amateur astronomer. And so I had this love of astronomy and this fascination with other worlds for as long as I can remember. I’m a very tactile person; I’m very hands-on. I like to know how things work… I want to know all the bits and pieces. I was frustrated a bit, because I wanted to know more about astronomy. I could see all these planets and places through the ‘scope, but I couldn’t touch them. But I could touch rocks and fossils.
“So I’m six or seven years old, and I’m on the second floor of the Museum in the Hall of Rocks and Minerals. And at the back was this small display area that’s very dark. And you walked through an arch, it’s almost like walking into a cave. And it was very low light back there, and that was the meteorite collection.
“There were a couple of large meteorites on stands, and in those days — it was the late 60s — security wasn’t the issue that it is today. So you could touch the big specimens, and so I put my hands on these giant meteorites and I was absolutely enthralled. And I had this sort of epiphany: meteorites were the locus between my two interests, astronomy and rock-hounding. Because they’re rocks… they’re rock samples from outer space. I promised myself as a kid that one day I would have an actual meteorite.
“By finding or owning meteorites, you are forging a solid and tangible connection with astronomy.”
“Of course at the time there was no meteorite business, no meteorite magazines, there was no network of collectors like there is today. Back in the late 60s when I gave myself this challenge it was like saying I was going to start my own space program! But not only did it come true, it’s become my career.”
What makes Aerolite such a great place to buy meteorites?
“I think the caring for the subject matter really shows on the website. We have the best photography in the entire meteorite industry. I think we have the largest selection… we certainly spend a great deal of time discussing the history and importance of pieces… every single meteorite on our website has a detailed description and in most cases multiple photographs. My view is if you’re going to do something, you should really do it to the best of your ability. We don’t cut any corners, we don’t sell anything unless we’re one hundred percent sure of what it is and where it came from.
“I want buyers and visitors to look at the website and share my sense of wonder about meteorites. I think meteorites are the most wonderful things in existence, they’re actual visitors from outer space — they’re inanimate aliens that have landed on our planet.”
“We do this because we want to share our passion. We stand by every piece that we sell.”
How can people be sure they are getting actual meteorites (and not just funny-looking rocks?)
“This is something that’s more important to pay attention to now than ever. Are there fakes, are there shady people? Yes and yes. If you go on eBay at any given time you will find numerous pieces that are being offered for sale that are either not meteorites at all or are one thing being passed off as another thing. Sometimes this is malicious, sometimes people just don’t know any better. So the best way to buy a meteorite and know that it’s real is to buy from a respected dealer who has a solid history in the field.
“I’m by no means the only person who does this. There are a number of very well-established dealers around the world, and a good place to start is the International Meteorite Collectors Association(of which Geoff is a member) which is an international group with hundreds of members — collectors and dealers… it’s sort of a watchdog group that tries to maintain high standards of integrity in the field.
“My company has a very strict policy of never offering anything that’s questionable.”
“I see fakes all the time,” Geoff added. “On eBay, on websites, in newspaper ads… you do have to be careful. My company has a very strict policy of never offering anything that’s questionable. And we do get offered questionable things. There are some countries that have strict policies about exporting meteorites — Australia and Canada being two of them — and we work very closely with academia in both countries, and we have legally exported meteorites from those countries. Not only do we abide by international regulations, we actively support them.”
So you not only offer meteorites for sale to the general public, but you also donate to schools and museums.
“We work very closely with most of the world’s major meteorite institutions. I have provided specimens to the American Museum of Natural History in New York, the British Museum of Natural History in London, the Vienna Museum of Natural History, the Center for Meteorite Studies… we work with almost everyone. When we find something that is new or different or exciting, we always donate a piece or pieces to our colleagues in academia. It’s just the right thing, it’s the right thing to do if you discover something important to make it available to science.
“Most universities and museums don’t have acquisitions budgets and can’t afford to buy things that they might like to have. In return they classify the meteorites that we found, and they go into the permanent literature and become more valuable as a result. A meteorite with a history and a name and classification is worth more than a random meteorite that somebody just found in a desert. So everybody benefits, it’s a really good match.”
In other words, you really are making a contribution to science as opposed to just “looting.”
“Exactly. And I have, a very few times, gotten emails from disgruntled viewers who didn’t understand what we were doing, saying ‘what makes you think it’s okay to come to Australia and take our meteorites,’ for example. So I wrote a very courteous email back saying that we were in Australia with the express permission and cooperation of the Australian park services and one of the senior park rangers was there with us. And not only did we follow the proper procedure in having those specimens exported from Australia, I donated rare meteorites to collections just as a ‘thank you’ for working with us. It wasn’t a trade, it was a thank you. So everywhere we go, whatever we do, we try and leave a good impression.”
Geoff added, “I do this out of love… this isn’t the best way to make a living! Being a meteorite hunter is probably not the best capital return on your time but it’s a very exciting and rewarding life in every other way.”
And thus, by buying meteorites from Aerolite, customers aren’t just helping pay for your expeditions and your work but also supporting research and education too.
“People who purchase from us are really participating in the growth of this science. Also, something very near and dear to my heart is science education for kids. You know that I am the host of an educational series called STEM Journals, which is a very — I think — amusing, entertaining, funny, fast-paced look at science, technology, engineering, and math topics. But you can’t make a living doing television shows like that. This is a labor of love… we do it because we think it’s important. If I didn’t have a commercial meteorite company to help underwrite the costs of educational programming and educational books, we just couldn’t do it. It’s as simple as that.
“So we always try to give back. That’s why I speak at schools and universities and give away meteorites to deserving kids at gem shows… because it was done to me when I was seven years old. The look of wonder you see on a kid’s face when you connect with them and they start to grasp the wonder of science… that’s something they’ll never forget.”
That’s great. And it sounds like you haven’t forgotten it yet either!
“I must say after all these years, I’ve been doing this close to full time for nearly twenty years and you never lose the amazement and the wonder of when a meteorite’s found or uncovered. I never go ‘oh, jeez, it’s just another billion-year-old space rock that fell to Earth!’ So it is a privilege to be in a work field where almost daily something wondrous happens.”
As we here at Universe Today know, when it concerns space that’s a common occurrence!
“Exactly!”
One last thing Geoff… do you think we’ll ever run out of meteorites?
“The meteorite collecting field has grown tremendously in the past ten years, and Meteorite Men is part of that. There is a finite supply of meteorites. Of course there are more landing all the time, but not enough to replenish the demand. Periodically there is a new very large discovery made, such as the Gebil Kamil iron in Egypt a couple of years ago. But what is happening is a significant increase in price and a decrease in selection, so some of the real staples we used to see… you can’t get them anymore.
“Still, people who want a meteorite collection, now is a great time for them to be buying because there are more meteorites available than in the past — but it’s not going to stay that way for very long. It’s like any other collectible that has a finite supply.”
Makes sense… I’ll take that as ‘inside advice’ to place an order soon!
______________
My thanks to Geoff for the chance to talk with him a little bit about his fascinating past, his passion, and his company. And as an added bonus to Universe Today readers, Geoff is extending a special 15% off on orders from Aerolite Meteorites — simply mention the code UNIVERSETODAY when you place an order!* (Trust me — once you browse through the site you’ll find something you want.) Also, if you’re in the Tucson area, Geoff Notkin and Aerolite Meteorites will have a table at the Tucson Gem and Mineral Show starting Jan. 31.
Be sure to check out Geoff’s television show STEM Journals on COX7 — the full first two seasons can be found online here and here, and shooting for the third season will be underway soon.
Want to know how to find “inanimate aliens” for yourself? You can find Geoff’s books on meteorite hunting here, as well as some of the right equipment for the job.
Birds take flight as Antares lifts off for Space Station from Virginia Blastoff of Antares commercial rocket built by Orbital Sciences on Jan. 9, 2014 from Launch Pad 0A at NASA Wallops Flight Facility, VA on a mission for NASA bound for the International Space Station and loaded with science experiments. Credit: Ken Kremer – kenkremer Story updated[/caption]
WALLOPS ISLAND, VA – A private Antares rocket thundered off a Virginia launch pad today (Jan. 9) bound for the International Space Station on a breakthrough mission that marks the second successful commercial rocket launch by an American aerospace company this week – a feat that’s sure to send shock waves reverberating around the globe as well as providing an absolutely crucial life line to the station.
The majestic blastoff of Orbital Science’s Antares rocket took place from a beach side pad at NASA’s Wallop’s Flight Facility along the eastern shore of Virginia, Thursday, at 1:07 p.m. EST.
A flock of birds flew by just as Antares soared off the pad – see my lucky shot above.
The milestone flight was conducted under Orbital’s $1.9 Billion contract to NASA as the firm’s first operational cargo delivery flight to the ISS using their own developed Cygnus resupply vehicle.
“Today’s launch gives the cargo capability to keep the station going,” said Frank Culbertson, executive vice president and general manager of Orbital’s advanced spaceflight programs group, and former Space Shuttle commander.
“Everything was right on the money.”
And with the ISS lifetime in Earth orbit now newly extended by the Obama Administration to 2024, the resupply freighters pioneered by Orbital Sciences and SpaceX – in partnership with NASA – are even more important than ever before to keep the station well stocked and humming with an ever increasing array of research projects.
The goal was to restore America’s cargo and crew capabilities to low Earth orbit and the ISS that was totally lost following the forced retirement of NASA’s Space Shuttles.
Cygnus is packed chock full with a myriad of science experiments for dozens of new NASA science investigations as well as two dozen student science experiments from school across the country.
Both the terrestrial and space weather forecasts improved dramatically in the final hours of the countdown and cooperated to allow today’s magnificent Antares launch.
Furthermore, it marks a grand success for the innovative US strategy of forging low cost, reliable and effective access to space by handing the task of building the rockets and cargo vehicles to US commercial companies for routine jobs in Earth orbit while NASA focuses on investing in deep space exploration.
“Today’s launch demonstrates how our strategic investments in the American commercial spaceflight industry are helping create new jobs here at home and keep the United States the world leader in space exploration,” NASA Administrator Charles Bolden said in a NASA statement.
“American astronauts have been living and working continuously in space for the past 13 years on board the International Space Station, and we’re once again sending them supplies launched from U.S. soil.”
“In addition to the supplies, the passion and hard work of many researchers and students are being carried by Cygnus today. I congratulate Orbital and the NASA teams that made this resupply mission possible.”
The fourth launch attempt was finally the charm after a trio of postponements since mid- December 2013 to fix the malfunctioning cooling system on the station, unprecedented frigid weather and then an unexpected blast of solar radiation from the Sun on Tuesday (Jan. 7) that could have fried the delicate electronics controlling the rockets ascent with disastrous consequences.
Both the Antares and Cygnus are private vehicles built by Orbital Sciences under a $1.9 Billion supply contract with NASA to deliver 20,000 kilograms of research experiments, crew provisions, spare parts and hardware to the ISS.
Orbital Sciences commercial competitor, SpaceX, is likewise under contract with NASA to deliver 20,000 kg of supplies to the ISS with the SpaceX Falcon 9/Dragon architecture.
Both the Orbital Sciences Antares/Cygnus and SpaceX Falcon 9/Dragon vehicles were developed from the start with seed money from NASA in a public-private partnership.
The flight is designated the Orbital-1, or Orb-1 mission.
A total of eight Antares/Cygnus missions to the space station are scheduled over the next two to three years by Orbital under its Commercial Resupply Services (CRS) contract with NASA.
Two additional Antares/Cygnus flight are slated for this year.
They are slated to lift off around May 1 and early October, said Culbertson.
This launch follows a pair of successful launches in 2013, including the initial test launch in April and the 1st demonstration launch to the ISS in September.
Cygnus is loaded with approximately 2,780 pounds / 1,261 kilograms of cargo for the ISS crew for NASA including science experiments, computer supplies, spacewalk tools, food, water, clothing and experimental hardware.
33 cubesats are also on board that will be deployed over time by the 6 person crew living aboard the ISS.
Among the research items packed aboard the Antares/Cygnus flight are an experiment to study the effectiveness of antibiotics in space and a batch of 23 student experiments involving life sciences topics ranging from amoeba reproduction to calcium in the bones to salamanders.
The student experiments selected are from middle school and high school teams from Michigan, Texas, Colorado, and Washington, DC.
There is also an ant farm aboard with ant colonies from Colorado, North Carolina and of course host state Virginia too. The goal is to study ant behavior in space in zero gravity and compare that to ants on Earth living under normal gravity.
Cygnus will rendezvous with the station on Sunday, Jan 12.
Expedition 38 crew members aboard the station will grapple Cygnus with the stations robotic arm Sunday at 6:02 a.m. EDT.
NASA TV will provide live coverage of Sunday’s docking.
Amazing, the things a birds-eye view allows you to see. Here’s a color image from the HiRISE camera on board the Mars Reconnaissance Orbiter showing the tracks of the Curiosity rover. In this most recent HiRISE image of the MSL rover, the tracks are visible from Yellowknife Bay to its location on 11 December 2013, several kilometers to the southwest. Even though some of these tracks are more than a year old, they are still visible.
As HiRISE team member Christian Schaller said via Twitter, “Take only pictures; leave only footprints.” In this case, HiRISE took the pictures while MSL left the footprints!
HiRISE principal investigator Alfred McEwen explained the image: “Curiosity is progressing from the bright dust-covered area to a region with a darker surface, where saltating sand keeps the surface relatively free of dust. The scenery seen by the rover will be getting more interesting as it progresses toward Mount Sharp.”
See a black and white image below, where you can actually see Curiosity, too:
See more details on these images, as well as get access to higher resolution versions at the HiRISE website. You can see a collection of images of Curiosity taken by HiRISE here.
On January 20, 2014 it will be time for the snoozing Rosetta spacecraft to awaken from 31 months of hibernation. Through an online contest, ESA has been looking for a little help in sending a wake-up call to the spacecraft, which will be 673 million kilometers from Earth. The “Wake Up Rosetta!” video contest has yielded some heartwarming, funny, and creative videos from families, school children and more. Here are a few of our favorites, and you can go to the contest’s Facebook page to find out how to submit your own video, as well as see more videos and vote for your favorite.
The top ten vote-getting videos will be transmitted out to Rosetta via one of ESA’s deep-space tracking stations, and there are additional prizes as well, including the top two video creators will be invited to the control center in Darmstadt, Germany for when the Philae lander attempts landing on comet 67P/Churyumov–Gerasimenko in November 2014 after latching on with a harpoon.
ESA themselves have come up with a video story of the Rosetta mission and how it will be awakened:
Find out more about Rosetta’s mission here, and the contest here.
If you’re looking for something truly unique, then check out the cosmic menage aux trois ferreted out by a team of international astronomers using the Green Bank Telescope (GBT). This unusual group located in the constellation of Taurus includes a pulsar which is orbited by a pair of white dwarf stars. It’s the first time researchers have identified a triple star system containing a pulsar and the team has already employed the clock-like precision of the pulsar’s beat to observe the effects of gravitational interactions.
“This is a truly remarkable system with three degenerate objects. It has survived three phases of mass transfer and a supernova explosion, and yet it remained dynamically stable”, says Thomas Tauris, first author of the present study. “Pulsars have previously been found with planets and in recent years a number of peculiar binary pulsars were discovered which seem to require a triple system origin. But this new millisecond pulsar is the first to be detected with two white dwarfs.”
This wasn’t just a chance discovery. The observations of 4,200 light year distant J0337+1715 came from an intensive study program involving several of the world’s largest radio telescopes including the GBT, the Arecibo radio telescope in Puerto Rico, and ASTRON’s Westerbork Synthesis Radio Telescope in the Netherlands. West Virginia University graduate student Jason Boyles was the first to detect the millisecond pulsar, spinning nearly 366 times per second, and captured in a system which isn’t any larger than Earth’s orbit around the Sun. This close knit association, coupled with the fact the trio of stars is far denser than the Sun create the perfect conditions to examine the true nature of gravity. Generations of scientists have waited for such an opportunity to study the ‘Strong Equivalence Principle’ postulated in Einstein’s theory of General Relativity. “This triple star system gives us the best-ever cosmic laboratory for learning how such three-body systems work, and potentially for detecting problems with General Relativity, which some physicists expect to see under such extreme conditions,” says first author Scott Ransom of the National Radio Astronomy Observatory (NRAO).
“It was a monumental observing campaign,” comments Jason Hessels, of ASTRON (the Netherlands Institute for Radio Astronomy) and the University of Amsterdam. “For a time we were observing this pulsar every single day, just so we could make sense of the complicated way in which it was moving around its two companion stars.” Hessels led the frequent monitoring of the system with the Westerbork Synthesis Radio Telescope.
Not only did the research team tackle a formidable amount of data, but they also took on the challenge of modeling the system. “Our observations of this system have made some of the most accurate measurements of masses in astrophysics,” says Anne Archibald, also from ASTRON. “Some of our measurements of the relative positions of the stars in the system are accurate to hundreds of meters, even though these stars are about 10,000 trillion kilometers from Earth” she adds.
Leading the study, Archibald created the system simulation which predicts its motions. Using the solid science methods once employed by Isaac Newton to study the Earth-Moon-Sun system, she then combined the data with the ‘new’ gravity of Albert Einstein, which was necessary to make sense of the information. “Moving forward, the system gives the scientists the best opportunity yet to discover a violation of a concept called the Strong Equivalence Principle. This principle is an important aspect of the theory of General Relativity, and states that the effect of gravity on a body does not depend on the nature or internal structure of that body.”
Need a refresher on the equivalence principle? Then if you don’t remember Galileo’s dropping two different weighted balls from the Leaning Tower of Pisa, then perhaps you’ll recall Apollo 15 Commander Dave Scott’s dropping of a hammer and a falcon feather while standing on the airless surface of the Moon in 1971. Thanks to mirrors left on the lunar surface, laser ranging measurements have been studied for years and provide the strongest constraints on the validity of the equivalence principle. Here the experimental masses are the stars themselves, and their different masses and gravitational binding energies will serve to check whether they all fall towards each other according to the Strong Equivalence Principle, or not. “Using the pulsar’s clock-like signal we’ve started testing this,” Archibald explains. “We believe that our tests will be much more sensitive than any previous attempts to find a deviation from the Strong Equivalence Principle.” “We’re extremely happy to have such a powerful laboratory for studying gravity,” Hessels adds. “Similar star systems must be extremely rare in our galaxy, and we’ve luckily found one of the few!”
You might find yourself humming Paul Simon’s “Under African Skies” after seeing these stunning images! The World At Night photographer Babak Tafreshi has just returned from a trip to Kenya and has amassed a gorgeous collection of astrophotography showing Mt. Kilimanjaro by night (and some in the day, as well). Below you can see a panoramic view of Kilimanjaro in the moonlight, flanked by giraffes (can you spot the zebra, too?) and starry skies.
“His path was marked by the stars in the southern hemisphere
and he walked his days under African skies…”
Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.
This week, astronomers announced the detection of a rare event, a star being torn to shreds by a massive black hole in the heart of a distant dwarf galaxy. The evidence was presented Wednesday January 8th at the ongoing 223rd meeting of the American Astronomical Society being held this week in Washington D.C.
Although other instances of the death of stars at the hands of black holes have been witnessed before, Chandra may have been the first to document an intermediate black hole at the heart of a dwarf galaxy “in the act”.
The results span observations carried out by the space-based Chandra X-ray observatory over a period spanning 1999 to 2005. The search is part of an archival study of observations, and revealed no further outbursts after 2005.
“We can’t see the star being torn apart by the black hole, but we can track what happens to the star’s remains,” said University of Alabama’s Peter Maksym in a recent press release. A comparison of with similar events seen in larger galaxies backs up the ruling of “death by black hole.” A competing team led by Davide Donato also looked at archival data from Chandra and the Extreme Ultraviolet Explorer (EUVE), along with supplementary observations from the Canada-France-Hawaii Telescope to determine the brightness of the host galaxy, and gained similar results.
The dwarf galaxy in the Abell 1795 cluster that was observed has the name WINGS J134849.88+263557.5, or WINGS J1348 for short. The Abell 1795 cluster is about 800 million light years distant.
WINGS denotes the galaxy’s membership in the WIde-field Nearby Galaxy-cluster Survey, and the phone number-like designation is the galaxy’s position in the sky in right ascension and declination.
Like most galaxies associated with galaxy clusters, WINGS J1348 a dwarf galaxy probably smaller than our own satellite galaxy known as the Large Magellanic Cloud. The Abell 1795 cluster is located in the constellation Boötes, and WINGS J1348 has an extremely faint visual magnitude of +22.46.
“Scientists have been searching for these intermediate mass black holes for decades,” NASA’s Davide Donato said in a recent press release “We have lots of evidence for small black holes and very big ones, but these medium-sized ones have been tough to pin down.”
Maksym notes in an interview with Universe Today that this isn’t the first detection of an intermediate-mass black hole, which are a class of black holes often dubbed the “mostly” missing link between stellar mass and super massive black holes.
The mass range for intermediate black holes is generally pegged at 100 to one million solar masses.
What makes the event witnessed by Chandra in WINGS J1348 special is that astronomers managed to capture a rare tidal flare, as opposed to a supermassive black hole in the core of an active galaxy.
“Most of the time, black holes eat very little, so they can hide very well,” Maksym said in the AAS meeting on Wednesday.
This discovery pushes the limits on what we know of intermediate black holes. By documenting an observed number of tidal flare events, it can be inferred that a number of inactive black holes must be lurking in galaxies as well. The predicted number of tidal events that occur also have implications for the eventual detection of gravity waves from said mergers.
And more examples of these types of X-ray flare events could be waiting to be uncovered in the Chandra data as well.
“Chandra has taken quite a few pictures over the past 13+ years, and collaborators and I have an ongoing program to look for more tidal flares,” Maksym told Universe Today. “We’ve found one other this way, from a larger galaxy, and hope to find more. Abell 1795 was a particularly good place to look because as a calibration source, there were tons of pictures.”
Use of Chandra data was also ideal for the study because its spatial resolution allowed researchers to pinpoint an individual galaxy in the cluster. Maksym also notes that while it’s hard to get follow-up observations of events based on archival data, future missions dedicated to X-ray astronomy with wider fields of view may be able to scour the skies looking for such tidal flaring events.
The NuSTAR satellite was the latest X-Ray observatory to launch in 2012. NASA’s Extreme Ultraviolet Explorer picked up a strong ultraviolet source in 1998 right around the time of the tidal flare event, and ESA’s XMM-Newton satellite may have detected the event in 2000 as well.
This was also one of the smallest galaxies ever observed to contain a black hole. Maksym noted in Wednesday’s press conference that an alternative explanation could be a super-massive black hole in a tiny galaxy that just “nibbled” on a passing star, but said that new data from the Gemini observatory does not support this.
“It would be like looking into a dog house and finding a large ogre crammed in there,” Maksym said at Wednesday’s press conference.
This discovery provides valuable insight into the nature of intermediate mass black holes and their formation and behavior. What other elusive cosmological beasties are lying in wait to be discovered in the archives?
Congrats to Maksym and teams on this exciting new discovery, and the witnessing of a rare celestial event!
The result of sunlight reflected off fine particles of dust aligned along the plane of the Solar System, zodiacal light appears as a diffuse, hazy band of light stretching upwards from the horizon after sunset or before sunrise. Most people have never seen zodiacal light because it’s very dim, and thus an extremely dark sky is required. But thanks to recent dark sky regulations that were passed in the coastal Rhode Island town of Charlestown, this elusive astronomical phenomenon has become visible — to the particular delight of one local observatory.
Frosty Drew Observatory is a small, privately-run observatory featuring a Meade Schmidt Cassegrain LX200 16″ telescope mounted on an alt-azimuth pier inside a dome that stands among the sports fields, parking areas, and nature trails of Ninigret Park and Wildlife Refuge in southern Rhode Island. Being a good distance from urban centers and developed areas, the skies there are some of the darkest in the state. But situated along the eastern seaboard of the United States, even Charlestown’s coast lies beneath a perpetual haze of light pollution.
A new town ordinance, passed in 2012, helped to darken the skies a notch. And while watching comet ISON one evening, astronomer Scott MacNeill became aware of the results.
The following is an excerpt from a Jan. 7 article by Cynthia Drummond of The Westerly Sun, reprinted with permission:
Scott MacNeill was in Ninigret Park, his telescope trained on the comet “Ison,” when he saw something he had never seen before: a celestial phenomenon called “zodiacal light.” After several decades of being obscured by light pollution, the feature was visible again, thanks to the town’s “dark sky” ordinance.
At first, MacNeill, an astronomer and the assistant director of the Frosty Drew observatory, didn’t believe what he was seeing. The cone of light, which he initially thought was light pollution, turned out to be a faint, white glow that astronomers at the observatory hadn’t glimpsed in recent memory.
“To see it in New England, period, is amazing, Zodiacal light is a common marker for the quality of a dark sky location.”
– Scott MacNeill, Astronomer, Frosty Drew Observatory
“I was sitting back for a minute, just looking at the sky, and I said ‘wait a minute. This is the southeast, and to the southeast is the ocean. What is coming up in the southeast?’ And then I noticed the cone. And I’m like ‘no way. That can’t be zodiacal light.’ I’ve heard so many stories about the days of old at Frosty Drew when you used to see zodiacal light here,” he said.
MacNeill credits Charlestown’s dark sky ordinance with reducing light pollution to the point where zodiacal light can be seen again. The ordinance, adopted in October 2012, regulates commercial outdoor lighting in order to improve the town’s dark sky for star-gazers, and to protect residents, wildlife and light-sensitive plants from the effects of light pollution.
One of the provisions of the ordinance requires that new lighting fixtures be designed to focus downward so light does not radiate up into the sky. Lighting installed before the ordinance was passed is exempt from the new regulations.
Building and Zoning Official Joe Warner explained that after the ordinance passed, two major sources of light pollution near the observatory were modified so they would be less polluting.
“At Ninigret Wildlife Refuge, some of the pole lights were changed to dark sky compliant lighting. The Charlestown Ambulance barn also replaced their lights with dark sky compliant lights,” he said.
Charlestown has been recognized as one of the only dark spots on the New England coast — a rare treat for people who enjoy looking at the night sky.
It’s fantastic to see results like this both occurring and being publicized, as dark skies have become quite rare in many populated areas of the world. People who live in or near major metropolitan areas — even in the surrounding sprawling suburbs — often never truly get a dark sky, not such that the dimmer stars, the Milky Way, meteor showers — and yes, the zodiacal light — can be readily seen on an otherwise clear night. The view of a star-filled night sky that has been a part of the human existence for millennia has steadily been doused by the murky glow of artificial lighting. Luckily groups like the International Dark Sky Association are actively trying to change that, but change isn’t always welcome — or quick.
At least, in one Rhode Island town anyway, a small victory has been won for the night.
(HT to Brown University’s Ladd Observatory in Providence for the heads-up on this story.)
NASA announced today that the Obama administration has approved NASA’s request for an extension of operations for the International Space Station for an additional four years to 2024. This means work on board the orbiting laboratory will continue at least for another decade.
“I think this is a tremendous announcement for us here in the space station world,” said Bill Gerstenmaier, associate administrator for NASA’s Human Exploration and Operations Mission Directorate, speaking during a press briefing today, “ and also for all of human spaceflight and for our international partnership.”
“This is a tremendous gift the administration has given us,” he added later.
Gerstenmaier said the extension allows NASA to expand their planning horizons, and it will change the way scientists and commercial companies look at their “investment” in the future of the ISS.
“We’re starting to see a lot of science benefits on ISS that have a lot of applications here on Earth, such as pharmaceuticals, materials processing, and climate change equipment, and operating until least 2024 opens up a large avenue of research on the ISS,” he said. “This also changes the perspective for commercial providers … as the commercial sector now has a larger market to carry cargo to space for NASA, as well as crew.”
Commercial Spaceflight Federation president and former astronaut Michael Lopez-Alegria agreed. “The International Space Station is the crown jewel of NASA’s human spaceflight program,” he said in a statement. “This extension comes at a critical time and paves the way for the ISS to fulfill its extensive and multifaceted potential – as a research lab that will provide countless benefits here on Earth, as an anchor destination for America’s commercial space race and as a jumping off point for deep space technology development and exploration.”
Gerstenmaier also sees the ISS as a proving ground for future human spaceflight plans to head out to deep space. “NASA doesn’t think of ISS and deep space human plans as separate, but as a combined strategy,” he said.
A recent review of ISS modules and equipment ensured that the station could likely last until 2028, and Gerstenmaier said this new extension allows operations to be at least considered until nearly 2030.
“Ten years from today is a far-reaching vision,” he said. “Our international partners are well aware of this extension and they were involved in hardware studies to see if station operations could extend. They will continue to evaluate their hardware and they all see this as a positive step in moving forward. … This is truly an international endeavor and we all work together.”
Gerstenmeier added that it’s not immediately clear whether all of the 15 nations involved in the ISS along with the US will continue to participate for the duration of the life of the ISS, but that NASA is prepared to work with whatever plans the international partnership evolves into over time.
He said that no additional funding for the ISS was currently required for the extension, as the basic budget now covers the ISS to at least 2020, and the funds set aside for eventually deorbiting the ISS will be shifted towards operations.
Additional funding will likely be required at some point, however, but well past when the current Administration and Congress will be obligated to decide.