Lit by eerie, reflected light from Saturn’s F ring (and a casting a faint shadow through a haze of icy “mist”) Saturn’s moon Prometheus can be seen in the raw image above, captured by Cassini’s narrow-angle camera on Feb. 5 from a distance of 667,596 miles (1,074,392 km). It’s also receiving some light reflected off Saturn, which is off frame at the top (where the outermost edge of the A ring and the Keeler gap can be seen.)
As the potato-shaped Prometheus approaches the ring it yanks fine, icy material in towards itself, temporarily stretching the bright particles into long streamers and gaps and even kicking up bright clumps in the ring. It’s a visual demonstration of gravity at work! Watch an animation of this below, made from images acquired just before and after the one above:
At its longest Prometheus is about 92 miles (148 km) across, but only 42 miles (68 km) in width. It circles Saturn in a wave-shaped, scalloping orbit once every 14.7 hours.
Remember comets Lovejoy and C/2012 X1 LINEAR? Wedropped in on them in late January. On Feb. 6 the two cruised within 2 degrees of each other as they tracked through Ophiuchus before dawn. Were it not for bad weather, astrophotographer Damian Peach would have been out to record the cometary conjunction, but this unique photo, taken two mornings later, shows the two comets chasing each other across the sky. Of course they’re not really following one another, nor are they related, but the illusion is wonderful.
Rarely do two relatively bright comets align so closely. Even more amazing was how much they looked alike. By good fortune I was able to see them both through a 15-inch (37-cm) under a very dark sky this morning. Although Lovejoy’s faint, approximately 20′ long tail was fanned out more than X1’s, both tails were faint, short and pointed to the west-northwest. Lovejoy’s coma was slightly larger and brighter, but both comets’ comas diplayed similarly compact, bright centers.
Lovejoy currently hovers around magnitude 8.1, X1 LINEAR at 8.8 – less than a magnitude apart. If you haven’t seen them yet, they’re still the brightest comets we’ll have around for another few months unless an unexpected visitor enters the scene.
After converging for weeks, the comets’ paths are now slowly diverging and separating. Look while you can; the waxing moon will soon rob these fuzzies of their fading glory when it enters the morning sky this coming Tuesday or Wednesday.
See this earlier article for more information on both comets.
Curiosity scans Moonlight Valley beyond Dingo Gap Dune.
Curiosity’s view to “Moonlight Valley” beyond after crossing over ‘Dingo Gap’ sand dune. This photomosaic was taken after Curiosity drove over the 1 meter tall Dingo Gap sand dune and shows dramatic scenery in the valley beyond, back dropped by eroded rim of Gale Crater. Assembled from navigation camera (navcam) raw images from Sol 535 (Feb. 6, 2104) Credit: NASA/JPL-Caltech/Ken Kremer- kenkremer.com/Marco Di Lorenzo
See below more before/after Dingo Gap imagery
Story updated[/caption]
NASA’s Curiosity mega rover has successfully crossed over the ‘Dingo Gap’ sand dune- opening the gateway to the science rich targets in the “Moonlight Valley” and Martian mountain beyond.
“I’m over the moon that I’m over the dune! I successfully crossed the “Dingo Gap” sand dune on Mars,” Curiosity tweeted overnight Thursday.
“Moonlight Valley” is the name of the breathtaking new locale beyond Dingo, Curiosity Principal Investigator John Grotzinger, of Caltech, told Universe Today.
Curiosity drove westward over the 1 meter ( 3 foot) tall Dingo Gap dune in stellar style on Thursday, Feb. 6, on Sol 535.
Dramatic before and after photos reveal that the rover passed over the Red Planet dune without difficulty. They also show some interesting veins and mineral fractures are visible in the vicinity just ahead.
“Moonlight Valley has got lots of veins cutting through it,” Grotzinger told me.
“We’re seeing recessive bedrock.”
The Martian dune lies between two low scarps sitting at the north and south ends.
“The rover successfully traversed the dune in Dingo Gap,” wrote science team member Ken Herkenhoff in an update.
“The data look good.”
Since arriving at the picturesque “Dingo Gap” sand dune about a week ago, Curiosity’s handlers had pondered whether to breach the dune as an alternate pathway into the smoother terrain of the valley beyond as a work around to avoid fields of rough rocks that have been ripping holes into the robots six aluminum wheels in recent months.
“We’re guessing it will be softer on the wheels,” Grotzinger informed me.
Before giving the go ahead to move forward, engineers took a few days to carefully assess the dune’s integrity and physical characteristics with the rovers science instruments and cameras to insure there wasn’t the potential to get irretrievably stuck in a deep sand trap.
The team even commanded Curiosity to carry out a toe dip by gently rolling the 20 inch (50 cm) diameter wheels back and forth over the crest on Tuesday, Feb. 4 to insure it was safe to mount.
They won’t take any chances with safety, recalling that rover Spirit’s demise occurred when she because mired in a hidden sand trap in 2010 from which there was ultimately no escape. She froze to death during the bitter Martin winter – more than 6 years into her 90 day mission.
Opportunity also got wedged at the seemingly endless dune field at “Purgatory Dune”, that nearly doomed her early in the now decade long trek. Engineers spent weeks on the extrication effort.
Since last summer, Curiosity has been traveling on a southwestward route to the breathtaking foothills of Mount Sharp, her ultimate science destination.
The westward route though Dingo will soon lead Curiosity to a spot dubbed “KMS-9” where the team hopes to conduct the first rock drilling operations since departing the Yellowknife Bay quadrant in July 2013, into areas of intriguing bedrock.
“At KMS-9, we see three terrain types exposed and a relatively dust-free surface,” said science team collaborator Katie Stack of the California Institute of Technology, Pasadena.
The missions science focus has shifted to “search for that subset of habitable environments which also preserves organic carbon,” says Curiosity Principal Investigator John Grotzinger, of the California Institute of Technology in Pasadena.
But first, with the dune now safely in the rear view mirror, the team plans a busy weekend of research activities.
A big science program using the X-Ray spectrometer and high resolution MAHLI camera on the robotic arm is already planned for this weekend.
“The arm will be deployed to investigate some interesting veins or minerals filling fractures in front of the rover,” says Herkenhoff.
“ChemCam will search for frost early on the morning of Sol 538 (Saturday), then analyze targets Collett and Mussell along the vein/fracture fill later in the day.”
Thereafter Curiosity will continue on its journey across the floor of Gale Crater, taking images and atmospheric measurements along the way to the sedimentary layers at the base of Mount Sharp.
Curiosity has already accomplished her primary goal of discovering a habitable zone on Mars that could support Martian microbes if they ever existed.
And be sure to check out Curiosity’s first ever image of Earth from Mars in my new story – here.
To date Curiosity’s odometer stands at nearly 5 kilometers and she has taken over 118,000 images.
The robot has about another 5 km to go to reach Mount Sharp.
Stay tuned here for Ken’s continuing Curiosity, Opportunity, Chang’e-3, SpaceX, Orbital Sciences, LADEE, MAVEN, MOM, Mars and more planetary and human spaceflight news.
Around this time last year a space rock crashed into the Earth above Chelyabinsk, Russia. It brightened the skies for hundreds of kilometers, broke windows and injured many people. Let’s look back at the event. What happened, and what did we learn? Continue reading “Astronomy Cast Ep. 334: Chelyabinsk”
Just take a look at the surface of the Moon and you can see it experienced a savage beating in the past. Turns out, the whole Solar System is a cosmic shooting gallery, with stuff crashing into other stuff. It sure sounds violent, but then, we wouldn’t be here without it. Continue reading “Astronomy Cast Ep. 333: When Worlds Collide”
There are not many places where you can be indoors and have a spectacular view of the Aurora Borealis, but the Churchill Northern Studies Centre in Canada is one. This incredible shot of the the aurora was taken from inside a plexiglass dome created specifically for being able to watch the sky from indoors. Astrophotographer Alan Dyer described it as “a warm way to watch the aurora.”
This view is a 30-second exposure looking up through the dome. Below you can see how the aurora looked from outsdoors, which is stunning as well.
The Churchill Northern Studies Centre non-profit research and education facility located 23 km east of the town of Churchill, Manitoba that supports sub-arctic scientific researchers working on “a diverse range of topics of interest to northern science,” in addition to being an educational resource center for schools.
Thanks to Alan for sharing his images from his aurora experience at the Centre, and you can see more on Alan’s Flickr page or his website.
Host: Fraser Cain Astrojournalists: Scott Lewis, Nicole Gugliucci, Morgan Rehnberg, Brian Koberlein, Elizabeth Howell, Amy Shira Teitel, David Dickinson
We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Google+, Universe Today, or the Universe Today YouTube page.
This image, right here, shows us the value of long-term observations. It’s a composite of pictures taken between 1999 and 2012 from NASA’s Chandra X-ray Telescope. Put 9.5 days’ worth of observations together, and you can see a lot of action in Centaurus A — namely, a huge jet emanating from a ginormous black hole embedded in the galaxy.
“As in all of Chandra’s images of Cen A, this one shows the spectacular jet of outflowing material – seen pointing from the middle to the upper left – that is generated by the giant black hole at the galaxy’s center. This new high-energy snapshot of Cen A also highlights a dust lane that wraps around the waist of the galaxy. Astronomers think this feature is a remnant of a collision that Cen A experienced with a smaller galaxy millions of years ago,” NASA stated.
A past survey of X-ray sources in Cen A revealed that most of them are black holes or neutron stars (the latter created from the wake of a huge star’s collapse). It seems that most of these sources are either less than twice the mass of the sun, or more than five times as massive. Here’s the more interesting bit: the smaller ones appear to be neutron stars, and the bigger ones black holes.
“This mass gap may tell us about the way massive stars explode. Scientists expect an upper limit on the most massive neutron stars, up to twice the mass of the Sun,” NASA added.
“What is puzzling is that the smallest black holes appear to weigh in at about five times the mass of the Sun. Stars are observed to have a continual range of masses, and so in terms of their progeny’s weight we would expect black holes to carry on where neutron stars left off.”
We at Universe Today often hear theories purporting that Einstein is wrong, and perhaps one of the most common things cited is the speed limit for light used in his relativity theories. In a vacuum, light goes close to 300,000 km/s (roughly 186,000 miles a second). Using a bit of geometry, however, isn’t there a way to make it go faster? This video below shows why you’d think it would work that way, but it actually wouldn’t.
“There is a classic method where you shine a laser at the moon. If you can flick that beam across the moon’s surface in less than a hundredth of a second, which is not hard to do, then that laser spot will actually move across the surface of the moon faster than the speed of light,” says the host on this Veritasium video.
“In truth, nothing here is really travelling faster than the speed of light. The individual particles coming out of my laser, the photons, are still travelling to the moon at the speed of light. It’s just that they’re landing side by side in such quick succession that they form a spot that moves faster than the speed of light, but really, it’s just an illusion.”
There are way more ways that light can appear to move faster than the cosmic video, and you can check out more of those in the video.
About six years ago, the Canadarm — Canada’s iconic robotic arm used in space — was almost sold to a company in the United States, along with other space technology from MacDonald, Dettwiler and Associates. The Canadian government blocked the sale and swiftly came out with a promise: a space policy to better support Canada’s industry.
That promise was made in September 2008. “Time is of the essence,” then-Industry Minister Jim Prentice told reporters upon announcing a space policy would be created. Today, 65 months later, the government released the high-level framework of that policy. Astronauts, telescopes and yes, the Canadarm are all prominently mentioned in there.
A lot has happened in six years. Policy-makers used to cite successor Canadarm2’s role in space station construction. Now the arm also does things that were barely imaginable in 2008 — namely, berthing commercial spacecraft such as SpaceX’s Dragon at the International Space Station. It shows how quickly space technology can change in half a decade.
At 13 pages, there isn’t a lot of information in Canada’s framework yet to talk about, but there are some statements about government priorities. Keep the astronaut program going (which is great news after the success of Chris Hadfield). A heavy emphasis on private sector collaboration. And a promise to keep funding Canada’s contribution to the James Webb Space Telescope, NASA’s next large observatory in space.
These are the Top 5 priorities listed in the plan:
Canada First: Serving Canada’s interests of “sovereignty, security and prosperity.” As an example: The country has a huge land-mass that is sparsely populated, so satellites are regularly used to see what ship and other activity is going on in the territories. This is a big reason why the Radarsat Constellation of satellites is launching in 2018.
Working together globally: Canada has a tiny space budget ($488.7 million in 2013-14, $435.2 million in 2014-15 and $382.9 million in 2015-16), so it relies on other countries to get its payloads, astronauts and satellites into space. This section also refers to Canada’s commitment to the International Space Station, which (as with other nations) extends to at least 2024. That’s good news for astronauts Jeremy Hansen and David Saint-Jacques, who are waiting for their first trip there.
Promoting Canadian innovation: The James Webb Telescope (to which Canada is contributing optics and a guidance system) is specifically cited here along with the Canadarm. Priority areas are Canada’s historic strengths of robotics, optics, satellite communications, and space-based radar, as well as “areas of emerging expertise.”
Inspiring Canadians: Basically a statement saying that the government will “recruit, and retain highly qualified personnel,” which in more real terms means that it will need to keep supporting Canadian space companies financially through contracts, for example, to make this happen.
That last point in particular seemed to resonate with at least one industry group.
“A long-term strategic plan for Canada’s space program is critical for our industry. In order to effectively invest in innovation, technology and product development, we rely heavily on knowing what the government’s priorities for the space program are,” stated Jim Quick, president of the Aerospace Industries Association of Canada (a major group that represents the interests of private space companies.)
While we wait for more details to come out, here’s some valuable background reading. The space-based volume of the Emerson Report (the findings of a government-appointed aerospace review board listed in 2012) called for more money for and more stable funding of the Canadian Space Agency, among other recommendations.
And here’s the government’s point-by-point response in late 2013. In response to funding: “The CSA’s total funding will remain unchanged and at current levels. The government will also leverage existing programs to better support the space industry.” Additionally, the CSA’s space technologies development program will be doubled to $20 million annually by 2015-16, which is still below the Emerson report’s recommendation of adding $10 million for each of the next three years.
What are your thoughts on the policy? Let us know in the comments.