Alien planets that are slightly bigger than Earth could be more life-friendly than exoplanets closer to our own size, a new study implies. These so-called “super-Earths” that are about two to three times that of our own planet could be “superhabitable” — implying that our own planet is a rare bird indeed when it comes to being good for life.
Bigger rocky planets would have a host of advantages, argue McMaster University’s Rene Heller and Weber State University’s John Armstrong in a paper recently published in Astrobiology. Among them: These worlds would have tectonic activity that takes longer to happen, meaning that the conditions would be more stable for life. Also, a bigger mass implies it’s easier to hang on to a thick atmosphere and to have “enhanced magnetic shielding” to hold a planet’s own against solar flares.
“Our argumentation can be understood as a refutation of the Rare Earth hypothesis. Ward and Brownlee (2000) claimed that the emergence of life required an extremely unlikely interplay of conditions on Earth, and they concluded that complex life would be a very unlikely phenomenon in the Universe,” stated the authors in their paper “Superhabitable Worlds.”
“While we agree that the occurrence of another truly Earth-like planet is trivially impossible, we hold that this argument does not constrain the emergence of other inhabited planets. We argue here in the opposite direction and claim that Earth could turn out to be a marginally habitable world. In our view, a variety of processes exists that can make environmental conditions on a planet or moon more benign to life than is the case on Earth.”
As a start, the scientists suggest looking at the Alpha Centauri system, where researchers in 2012 discovered a planet close to Earth’s size that is likely not habitable because it orbits so close to its sun.
The star system, however, is about the right age and has low enough radiation to allow life to occur on a planet or moon that “evolved similarly as it did on Earth”, providing the planet or moon “had the chance to collect water from comets and planetesimals beyond the snowline.” Further, it’s just four light-years from Earth, making it a good target for telescopic observations.
Facing a fire in space? It’s among the most catastrophic situations possible, according to NASA, so the agency spends a lot of time thinking of what to do. Here’s what you do with NASA training: Don a mask, grab an emergency book, and head quickly but calmly to the nearest control post to plot an attack.
This is presumably what is happening in the recent picture above, where Alexander Gerst (from the European Space Agency, on the left) and NASA’s Reid Wiseman are doing a fire drill on the ground.
Astronauts practice emergency procedures so often that their first instinct is to go to the procedures, Gerst said in a previous Universe Today interview. “They sink in and become a memorized response or a natural reaction,” he said in August. And in his case, Gerst has training from a previous career that would come in handy if a fire broke out on the International Space Station.
Gerst was a volunteer firefighter when he was attending school, and although Expedition 40/41 this year will be his first spaceflight, he’s well-used to extreme environments: he also has done science in Antarctica, where researchers are essentially responsible for themselves for months at a time.
NASA strives to make the fire training as real as possible to keep astronauts on their toes, including creative combinations of smoke machines. Gerst said the agency won’t go to extremes, however: “We don’t light our modules on fire,” he said.
Check out more about emergency training in this past Universe Today article, which also explains the difference between fighting a fire on the space station and dealing with one in a Soyuz spacecraft. Gerst and Reid (both rookie astronauts) and Russian astronaut Maxim Suraev (who was on Expeditions 21 and 22) are supposed to head into space in May.
Watch out! One day it may just go away. Jupiter’s most celebrated atmospheric beauty mark, the Great Red Spot (GRS), has been shrinking for years. When I was a kid in the ’60s peering through my Edmund 6-inch reflector, not only was the Spot decidedly red, but it was extremely easy to see. Back then it really did span three Earths. Not anymore.
In the 1880s the GRS resembled a huge blimp gliding high above white crystalline clouds of ammonia and spanned 40,000 km (25, 000 miles) across. You couldn’t miss it even in those small brass refractors that were the standard amateur observing gear back in the day. Nearly one hundred years later in 1979, the Spot’s north-south extent has remained virtually unchanged, but it’s girth had shrunk to 25,000 km (15,535 miles) or just shy of two Earth diameters. Recent work done by expert astrophotographer Damian Peach using the WINJUPOS program to precisely measure the GRS in high resolution photos over the past 10 years indicates a continued steady shrinkage:
2003 Feb – 18,420km (11,445 miles)
2005 Apr – 18,000km (11,184)
2010 Sep – 17,624km (10,951)
2013 Jan – 16,954km (10,534)
2013 Sep – 15,894km (9,876)
2013 Dec – 15,302km (9,508) = 1.2 Earth diameters
Voyager 1 Jupiter time lapse animation, a reprocessed high-resolution view. Enlarge to full screen to see the GRS rotation best. Credit: NASA / JPL / Bjorn Jonsson / Ian Regan
If these figures stand up to professional scrutiny, it make one wonder how long the spot will continue to be a planetary highlight. It also helps explain why it’s become rather difficult to see in smaller telescopes in recent years. Yes, it’s been paler than normal and that’s played a big part, but combine pallor with a hundred-plus years of downsizing and it’s no wonder beginning amateur astronomers often struggle to locate the Spot in smaller telescopes . This observing season the Spot has developed a more pronounced red color, but unless you know what to look for, you may miss it entirely unless the local atmospheric seeing is excellent.
Not only has the Spot been shrinking, its rotation period has been speeding up. Older references give the period of one rotation at 6 days. John Rogers (British Astronomical Assn.) published a 2012 paper on the evolution of the GRS and discovered that between 2006 to 2012 – the same time as the Spot has been steadily shrinking – its rotation period has spun up to 4 days. As it shrinks, the storm appears to be conserving angular momentum by spinning faster the same way an ice skater spins up when she pulls in her arms.
Rogers also estimated a max wind speed of 300 mph, up from about 250 mph in 2006. Despite its smaller girth, this Jovian hurricane’s winds pack more punch than ever. Even more fascinating, the Great Red Spot may have even disappeared altogether from 1713 to 1830 before reappearing in 1831 as a long, pale “hollow”. According to Rogers, no observations or sketches of that era mention it. Surely something so prominent wouldn’t be missed. This begs the question of what happened in 1831. Was the “hollow” the genesis of a brand new Red Spot unrelated to the one first seen by astronomer Giovanni Cassini in 1665? Or was it the resurgence of Cassini’s Spot?
Clearly, the GRS waxes and wanes but exactly what makes it persist? By all accounts, it should have dissipated after just a few decades in Jupiter’s turbulent environment, but a new model developed by Pedram Hassanzadeh, a postdoctoral fellow at Harvard University, and Philip Marcus, a professor of fluid dynamics at the University of California-Berkeley, may help to explain its longevity. At least three factors appear to be at play:
* Jupiter has no land masses. Once a large storm forms, it can sustain itself for much longer than a hurricane on Earth, which plays itself out soon after making landfall.
* Eat or be eaten: A large vortex or whirlpool like the GRS can merge with and absorb energy from numerous smaller vortices carried along by the jet streams.
* In the Hassanzadeh and Marcus model, as the storm loses energy, it’s rejuvenated by vertical winds that transport hot and cold gases in and out of the Spot, restoring its energy. Their model also predicts radial or converging winds within the Spot that suck air from neighboring jet streams toward its center. The energy gained sustains the GRS.
If the shrinkage continues, “Great” may soon have to be dropped from the Red Spot’s title. In the meantime, Oval BA (nicknamed Red Spot Jr.) and about half the size of the GRS, waits in the wings. Located along the edge of the South Temperate Belt on the opposite side of the planet from the GRS, Oval BA formed from the merger of three smaller white ovals between 1998 and 2ooo. Will it give the hallowed storm a run for its money? We’ll be watching.
Time-lapse of Jupiter’s atmospheric motions centered on the Great Red Spot photographed by Paolo Porcellana. Each cylindrical/spherical map of the planet is a mosaic of 4-6 pictures made with 11 and 14-inch telescopes.
Radio light, radio bright: when you look at M82 in this frequency range, a whole lot of activity pops out. The “Cigar Galaxy” is just 12 million light-years away from Earth and these days, is best known for hosting a supernova or star explosion so bright that amateurs can spot it in a small telescope.
Take a big radio telescope and peer at the galaxy’s center, and a violent picture emerges. Bright star nurseries and supernova leftovers are visible in this image from the Karl G. Jansky Very Large Array (the scientists can tell those apart using other data from the telescope.)
“The radio emission seen here is produced by ionized gas and by fast-moving electrons interacting with the interstellar magnetic field,” the National Radio Astronomy Observatory stated.
Most intriguing to scientists in this picture are the streamers of material in this area of M82, which is about 5,200 light-years across in the pictured central region. These previously undetected “wispy features” could be related to “superwind” coming from all this stellar activity, but scientists are still examining the link.
By the way, Supernova SN 2014J is not visible in this image because it is not active in radio waves. You can check out optical pictures of it, however, at this past Universe Today story.
Out here in the Milky Way’s suburbs, stellar collisions are unheard of. But there are places in the galaxy where stars whiz past each other, and collisions can happen. When stars collide, it’s a catastrophic event, and the stellar wreckage is visible half a galaxy away. Continue reading “Astronomy Cast Ep. 332: Stellar Collisions”
Are you a chronic early riser? Observational astronomy often means late nights and early mornings as daylight lengths get longer for northern hemisphere residents in February through March. But this year offers another delight for the early morning crowd, as the Venus is hanging out in the dawn skies for most of 2014.
You may have already caught sight of the brilliant world: it’s hard to miss, currently shinning at a dazzling -4.5 magnitude in the dawn. Venus is the brightest planet as seen from Earth and the third brightest natural object in the night sky after the Sun and the Moon.
Venus just passed between the Earth and the Sun last month on January 11th at inferior conjunction. Passing over five degrees north of the Sun, this was a far cry from the historic 2012 transit of the solar disk, a feat that won’t be replicated again until 2117 AD.
But February and March offer some notable events worth watching out for as Venus wanders in the dawn.
This week sees Venus thicken as a 48” 16% illuminated waxing crescent as it continues to present more of its daytime side to the Earth. We’ve always thought that it was a bit of cosmic irony that the closest planet too us presents no surface detail to observers: Venus is a cosmic tease. This assured that astronomers knew almost nothing about Venus until the dawn of the Space Age — guesses at its rotational speed and surface conditions were all widely speculative. Ideas of a vast extraterrestrial jungle or surface-spanning seas of seltzer water oceans gave way to the reality of a shrouded hellish inferno with noontime temps approaching 460 degrees Celsius. Venus is also bizarre in the fact that it rotates once every 243 Earth days, which is longer than its 224.7 day year — you could easily out walk a Venusian sunrise, that is if you could somehow survive to see it from its perpetually clouded surface!
Venus also passes 4.3 degrees from faint Pluto this week on February 5th. And while Pluto is a tough catch at over a million times fainter than Venus, it’s interesting to consider that NASA’s New Horizons and ESA’s Rosetta spacecraft are also currently off in the same general direction:
Venus also reaches greatest brilliancy at magnitude -4.6 next week on February 11th. Venus is bright enough to cast a shadow onto a high contrast background, such as freshly fallen snow. Can you see your “Venusian shadow” with the naked eye? How about photographically?
Venus then goes on to show its greatest illuminated extent to us on February 15th. This combination occurs because although the crescent of Venus is fattening, the apparent size of the disk is shrinking as the planet pulls away from us in its speedy interior orbit. Can you spy the elusive “ashen light of Venus” through a telescope? Long a controversy, this has been reported by observers as a dim “glow” on the nighttime hemisphere of Venus. Proposed explanations for the ashen light of Venus over the years have been airglow, aurorae, lightning, Venusian land clearing activity (!) or, more likely, an optical illusion.
And speaking of which, the crescent Venus gets occulted by the waning crescent Moon on February 26th. Observers in western Africa will see this occur in the predawn skies, and the rest of us will see a close pass of the pair worldwide. Can you spot Venus near the crescent Moon in the daytime sky on the 26th?
In March, Venus begins the slide southward towards the point occupied by the Sun months earlier and heads towards its greatest westward elongation for 2014 on March 22nd at 46.6 degrees west of the Sun. Interestingly, Venus is tracing out roughly the same track it took 8 years ago in 2006 and will trace again in 2022, when it will also spend a majority of the year in the dawn once again. The 8-year repeating cycle of Venus is a result of the planet completing very nearly 13 orbits of the Sun to our 8. Ancient cultures, including the Maya, Egyptians, and Babylonian astronomers all knew of this period.
Through the telescope, Venus appears at a tiny “half-moon” phase 50% illuminated at greatest elongation, a point known as dichotomy. It’s interesting to note that theoretical and observed dichotomy can actually vary by several days surrounding greatest elongation. An optical phenomenon, or a true observational occurrence? When do you judge that dichotomy occurs in 2014?
In April, one of the closest planetary conjunctions occurs of 2014 on the 12th involving Neptune and Venus at just 40’ apart, a little over the span of a Full Moon. Can you squeeze both into an eyepiece field of view? At +7.7th magnitude, Neptune shines at over 25,000 times fainter than Venus. Neith, the spurious “moon” of Venus described by 18th century astronomers lives!
But two even more dramatic conjunctions occur late in the summer, when Jupiter passes just 15’ from Venus on August 18th and Regulus stands just 42’ from Venus on September 5th. Fun fact: Venus actually occulted Regulus last century on July 7th, 1959!
From there on out, Venus heads toward superior conjunction on the far side of the Sun on October 25th, to once again emerge into the dusk sky through late 2014 and 2015.
Be sure to check out these dawn exploits of Venus through this Spring season and beyond!
This interview with Frank Drake — sometimes called the Father of the Search for Extraterrestrial Intelligence – was recorded in 2012 but not released until now to celebrate the beginning of the 30th year of the SETI Institute. As interviewer Andrew Fraknoi says, “I don’t think anyone had a conversation like this that was recorded with Galileo or William Herschel or Edwin Hubble, but I get to do it with Frank Drake!”
This is a great conversation that alternates between Drake’s current work with SETI and the history of his work that led to the famous Drake Equation. Fraknoi and Drake have an interesting exchange about the value of N, which is the number of civilizations in The Milky Way Galaxy whose electromagnetic emissions would be detectable.
It was recorded in June 2012 at an event called SETICon, which featured a series of talks, panels, and events featuring scientists, authors, futurists, and film-makers.
And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.
Our civilization will need more power in the future. Count on it. The ways we use power today: for lighting, transportation, food distribution and even entertainment would have sounded hilarious and far fetched to our ancestors.
As our technology improves, our demand for power will increase. I have no idea what we’ll use it for, but I guarantee we’ll want it. Perhaps we’ll clean up the oceans, reverse global warming, turn iron into gold, or any number of activities that take massive amounts of energy. Fossil fuels won’t deliver, and they come with some undesirable side effects. Nuclear fuels will only provide so much power until they run out.
We need the ultimate in energy resources. We’ll want to harness the entire power of our star. The Soviet astronomer Nikolai Kardashev predicted that a future civilization might eventually harness the power of an entire planet. He called this a Type I civilization. A Type II would harness the entire energy output of a star. And a Type III civilization would utilize the power of their entire galaxy. So let’s consider a Type II civilization.
What would it actually take to harness 100% of the energy from a star? We’d need to construct a Dyson Sphere or Cloud and collect all the solar energy that emanates from it. But could we do better? Could we extract material directly from a star?
You bet, it’s the future!
This is an idea known as “stellar lifting”. Stealing hydrogen fuel from the Sun and using it for our futuristic energy needs. In fact, the Sun’s already doing it… poorly. Stars generate powerful magnetic fields. They twist and turn across the surface of the star, and eject hydrogen into space. But it’s just a trickle of material. To truly harness the power of the Sun, we need to get at that store of hydrogen, and speed up the extraction process.
There are a few techniques that might work. You can use lasers to heat up portions of the surface, and increase the volume of the solar wind. You could use powerful magnetic fields to carry plasma away from the Sun’s poles into space.Which ever way it happens, once we’ve got all that hydrogen. How do we use it to get energy? We could combine it with oxygen and release energy via combustion, or we could use it in our space reactors and generate power from fusion.
But the most efficient way is to feed it to a black hole and extract its angular momentum. A highly advanced civilization could siphon material directly from a star and send it onto the ergosphere of a rapidly spinning pet black hole.
Here’s Dr. Mark Morris, a Professor of Astronomy at UCLA. He’ll explain:
“There is this region, called the ergosphere between the event horizon and another boundary, outside. The ergosphere is a very interesting region outside the event horizon in which a variety of interesting effects can occur. For example, if we had a black hole at our disposal, we could extract energy from spinning black holes by throwing things into the ergosphere and grabbing whatever comes out at even higher speeds.”
This is known as the Penrose process, first identified by Roger Penrose in 1969. It’s theoretically possible to retrieve 29% of the energy in a rotating black hole. Unfortunately, you also slow it down. Eventually the black hole stops spinning, and you can’t get any more energy out of it. But then it might also be possible to extract energy from Hawking radiation; the slow evaporation of black holes over eons. Of course, it’s tricky business.
Dr. Morris continues, “There’s no inherent limitation except for the various problems working in the vicinity of a massive black hole. One can’t be anywhere near a black hole that’s actively accreting matter because the high flux of energetic particles and gamma rays. So it’s a hostile environment near most realistic black holes, so let me just say that it won’t be any time soon as far as our civilization is concerned. But maybe Type III civilizations so far beyond us that it exceeds our imagination won’t have any problem.”
A Type 3 civilization would be so advanced, with such a demand for energy, they could be extracting the material from all the stars in the galaxy and feeding it directly to black holes to harvest energy. Feeding black holes to other black holes to spin them back up again.
It’s an incomprehensible feat of galactic engineering. And yet, it’s one potential outcome of our voracious demand for energy.
At first glance, you’d think that white stuff on the floor of Kertesz crater is ice, especially since that substance has been confirmed on its home planet — Mercury. This new shot of the 19-mile (31-kilometer) crater in the Caloris basin shows off irregular depressions, or hollows, that jump out in this color-enhanced picture taken by NASA’s MESSENGER spacecraft. More close-up pictures from previous passes are below the jump.
“The bright material on the floor of Kertész crater is not the water ice recently confirmed to be in craters near Mercury’s poles, but it might well be behaving as ice would on another planet,” NASA wrote in 2012.
“Mercury’s daytime temperatures are so hot at most latitudes that rocks that would be stable at other places in the Solar System may essentially evaporate on Mercury. That is one theory for the formation of these bright, irregular features known as hollows seen here and in many other craters on Mercury.”
There’s still much to learn, so scientists are probably grateful that MESSENGER is still working beyond its design lifetime. It was originally supposed to conclude in 2011, but its mission was extended further to see the effects of the solar maximum on the solar system’s closest planet to the sun.