John Dobson, Inventor of the Popular Dobsonian Telescope, Dead at 98

John Dobson, amateur astronomer and astronomy popularizer, died Jan. 14 at 98 in Burbank, Calif. Credit: Wikipedia

The cosmos lost a good soul Wednesday. John Dobson, famous as the creator of the simple, low-cost Dobsonian telescope, passed away on Jan. 15, 2014. His obituary appeared on the website of the Sidewalk Astronomers:

“It is with heavy hearts that we must report the passing of John Dobson. He died peacefully this morning, Wednesday, January 15th, in Burbank, California. He was 98 years old. He leaves behind a son, numerous close friends, and fans and admirers worldwide.

On March 8th, in honor of John, this year’s ISAN (International Sidewalk Astronomy Night) will be dedicated to his memory. Amateur astronomers around the globe can join in and celebrate John’s life and continue to carry the torch that he lit back in 1968 when he co-founded the San Francisco Sidewalk Astronomers.”

John Dobson tugs on his ear during a lecture as guest speaker during Northwoods Starfest near Eau Claire, Wis. U.S. in August 2000. Credit: Bob King
John Dobson tugs on his ear to make a point during a lecture as guest speaker during Northwoods Starfest near Eau Claire, Wis. U.S. in August 2000. Credit: Bob King

Dobson was born in Beijing, China but moved with his parents to San Francisco in 1927. After spending 23 years in a monastery, some of which time was spent sneaking out to build telescopes and observe the night sky, he left to co-found the San Francisco Sidewalk Astronomers in 1968, a group dedicated to showing people on the street the wonders of the night sky using large (for the time) telescopes.

Dobson’s interest in astronomy started in the early 1950s when he built a small telescope using spare parts found in a junk store. He wanted to see for himself what the universe looked like. By 1956, John got a hold of a 12-inch slab of porthole glass and ground it into a mirror following instructions from Allyn J. Thompson’s classic book Making Your Own Telescope. His first look at the last quarter turned him into an astro-evangelist:

“It looks like you’re coming in for a landing,” he wrote in his own telescope making book many years later. From that moment on Dobson felt “that everybody who lives in this world has to see that.”

The writer with his 10-inch Dobsonian reflecting telescope. The scope comes in two pieces like John Dobson's original design - a cardboard tube with the optics that sits in a cradle. See photo below to see how a "Dob" works. Credit: Bob King
The writer with his 10-inch Dobsonian reflecting telescope. The scope breaks down into two pieces like John Dobson’s original design – a cardboard tube with the optics and a cradle. See photo below to see how a “Dob” works. Credit: Bob King

Toting beat-up, monster telescopes everywhere from downtown San Francisco and to national parks across the country, Dobson made good on his promise. He lectured widely on astronomy and cosmology, rejecting the Big Bang Theory for his own Recycling Steady State Theory.

Agree or not with his cosmology, Dobson shook up the amateur telescope making universe with an innovative telescope design based on simplicity. Most telescopes of his day were small refracting telescopes or small to modest-sized reflectors with metal tubes and heavy equatorial mounts. Neither was exactly user-friendly nor offered much light gathering ability.

The mount is a simple altitude-azimuth or "alt-az" design. The scope moves up and down (altitude) against teflon pegs (right) and turns through in a circle (azimuth) on teflon pads against a laminate surface on the base. Credit: Bob King
The mount is a simple altitude-azimuth or “alt-az” design. The scope moves up and down (altitude) against teflon pegs (right) and turns through in a circle (azimuth) on teflon pads against a laminate surface on the base. Credit: Bob King

John used simple materials like porthole glass, cardboard tubes and wooden altitude-azimuth (alt-az) mounts to build incredibly easy to use large telescopes. However primitive, his instruments delivered bright and satisfying images of all the cool, faint stuff in the sky to the average Joe and Jane. Each telescopes had its own name: Little Bertha, Delphinium, Stellatrope, Little One (an 18-incher).While alt-az mounts were nothing new, Dobson combined cheap materials, large mirrors and a simpler approach to mountings that made his telescope style unique. Too unique for some.


Get to know John Dobson a little better in this video titled “Have Telescopes, Will Travel”

In the summer of 1969 Dobson pitched his simple ideas to Sky and Telescope magazine. Then-editor Charles Federer wrote back a polite rejection, stating that Dobson’s techniques weren’t up to standards and “could hardly lead to satisfactory instruments in the kind most amateurs want in these large sizes.”

How wrong this early assessment would turn out to be! His ideas became widely adopted starting in the early 1980s, when Coulter Optical began manufacturing 13.1-inch and 17.5-inch large reflecting telescopes with inexpensive mirrors and simple alt-azimuth mounts that soon were called “Dobsonian” because they were based on John’s original designs.

John Dobson's book on how to build your own telescope featured a unique cover made of plywood, a favorite material for building Dobsonian mounts. Credit: Bob King
John Dobson’s book on how to build your own telescope featured a unique cover made of plywood, a favorite material for building Dobsonian mounts. Credit: Bob King

These days, Dobsonian reflecting telescopes have gone viral. There are how-to books on how to build everything from simple to sophisticated Dobsonsians , including Dobson’s own unique plywood-bound How and Why to Make a User-Friendly Sidewalk Telescope. Don’t want to build one yourself? Most telescope outlets sell several lines of Dobsonians. Heck, my 10-inch and 15-inch reflectors, the most used of my instruments, originate from John’s genius.

When someone asks me to recommend a telescope, I always say “Get a Dobsonian!” They’re extremely portable, very stable, quick to set up and take down and the least expensive per inch of aperture of any scope out there.

John Dobson's signature in his book on telescope making. Credit: Bob King
John Dobson’s signature in his book on telescope making. Click image for more on Dobson’s life and writings. Credit: Bob King

Dobson wanted everyone to share in the universe’s bounty, the better to appreciate our lives and our world. The next clear night tilt your head back, gaze up at the stars and imagine John up there smiling. What an incredible view he must have.

China considers Manned Moon Landing following breakthrough Chang’e-3 mission success

Comparison of China’s Chang’e-3 unmanned lunar lander of 2013 vs. NASA’s Apollo manned lunar landing spacecraft of the 1960?s and 1970?s

Comparison of China’s Chang’e-3 unmanned lunar lander of 2013 vs. NASA’s Apollo manned lunar landing spacecraft of the 1960’s and 1970’s
Story updated[/caption]

Is China’s Chang’e-3 unmanned lunar lander the opening salvo in an ambitious plan by China to land people on the Moon a decade or so hence?

Will China land humans on the Moon before America returns?

It would seem so based on a new report in the People’s Daily- the official paper of the Communist Party of China – as well as the express science goals following on the heels of the enormous breakthrough for Chinese technology demonstrated by the history making Chang’e-3 Mission.

The People’s Daily reports that “Chinese aerospace researchers are working on setting up a lunar base,” based on a recent speech by Zhang Yuhua, deputy general director and deputy general designer of the Chang’e-3 probe system.

No humans have set foot on the moon’s surface since the last US lunar landing mission when Apollo 17 astronauts Gene Cernan and Harrison ‘Jack’ Schmitt departed 41 years ago on Dec. 14, 1972.

For context, the landing gear span of Chang’e-3 is approximately 4.7 meters vs. 9.07 meters for NASA’s Apollo Lunar Module (LM).

Photo of Chang'e-3 moon lander emblazoned with Chinese national flag taken by the panoramic camera on the Yutu moon rover on Dec. 22, 2013. Credit: CNSA
Photo of Chang’e-3 moon lander emblazoned with Chinese national flag taken by the panoramic camera on the Yutu moon rover on Dec. 22, 2013. Credit: CNSA
When will the US flag return?

Right now China is actively at work on the critical technology required to conduct a manned landing on the Moon, perhaps by the mid-2020’s or later, and scoping out what it would accomplish.

“In addition to manned lunar landing technology, we are also working on the construction of a lunar base, which will be used for new energy development and living space expansion,” said Zhang at a speech at the Shanghai Science Communication Forum. Her speech dealt with what’s next in China’s lunar exploration program.

China’s Yutu lunar rover, deployed by the Chang’e-3 lander, is equipped with a suite of science instruments and a ground penetrating radar aimed at surveying the moon’s geological structure and composition to locate the moon’s natural resources for use by potential future Chinese astronauts.

Portrait photo of Yutu moon rover taken by camera on the Chang'e-3 moon lander on Dec. 15, 2013 shortly after rolling all 6 wheels onto lunar surface.  Credit: Chinese Academy of Sciences
Portrait photo of Yutu moon rover taken by camera on the Chang’e-3 moon lander on Dec. 15, 2013 shortly after rolling all 6 wheels onto lunar surface. Credit: Chinese Academy of Sciences

But the Chinese government hasn’t yet made a firm final decision on sending people to the Moon’s surface.

“The manned lunar landing has not yet secured approval from the national level authorities, but the research and development work is going on,” said Zhang.

Meanwhile the US has absolutely no active plans for a manned lunar landing any time soon.

President Obama cancelled NASA’s manned Constellation “Return to the Moon” program shortly after he assumed office.

And during the 2012 US Presidential campaign, the Republican presidential candidate Mitt Romney famously declared “You’re fired” to anyone who would propose a US manned lunar base.

Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) mock up stack inside the transfer aisle of the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC) in Florida. Credit: Ken Kremer/kenkremer.com
Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) mock up stack inside the transfer aisle of the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC) in Florida. Credit: Ken Kremer/kenkremer.com

All that remains of Constellation is the Orion crew module – which was expressly designed to send US astronauts to the Moon and other deep space destinations such as Asteroids and Mars.

NASA hopes to launch a manned Orion capsule atop the new SLS booster on a flight to circle the moon as part of its first crewed mission around 2021 – depending on the budget.

The first Orion capsule will launch on an unmanned Earth orbiting test flight dubbed EFT-1 in mid-September 2014.

However, given the near total lack of reaction from the US political establishment to China’s extremely impressive Chang’e-3 feat and the continuing slashes to NASA’s budget, the outlook for a change in official US Moon policy is certainly not promising.

China and its political leadership – in stark contrast – are clearly thinking long term and has some very practical goals for the proposed lunar base.

“After the future establishment of the lunar base, mankind will conduct energy reconnaissance on the moon, set up industrial and agricultural production bases, make use of the vacuum environment to produce medicines,” Zhang explained according to the People’s Daily.

“I believe that in 100 years, humans will actually be able to live on another planet,” said Zhang.

China also seems interested in international cooperation based on another recent story in the People Daily.

“We are willing to cooperate with all the countries in the world, including the United States and developing countries,” said Xu Dazhe, the new chief of China’s space industry and newly promoted to head the China National Space Administration.

Xu made his remarks at the International Space Exploration Forum held at the US State Department.

However, since 2011, NASA has been banned by official US law from cooperating with China on space projects.

China is wisely taking a step by step approach in its Lunar Exploration programs leading up to the potential manned lunar landing.

With China’s lunar landing architecture now proven by the outstanding success of Chang’e-3, a production line can and has already been set up that will include upgrades potentially leading to the manned mission.

The already approved Chang’e-5 lunar sample return mission is due to liftoff in 2017 and retrieve up to 2 kilograms of pristine rocks and soil from the Moon.

After the completion of the Chang’e-5 mission, the lunar exploration program and the manned space program will be combined to realize a manned lunar landing, Zhang explained according to the People’s Daily.

Meanwhile China is forging ahead with their manned space program. And no one should doubt their resolve.

In 2013 they launched a three person crew to China’s Tiangong-1 space station, reaping valuable technological experience pertinent to manned spaceflight including lunar missions.

By contrast, the US has been forced to rely 100% on the Russian’s to launch American astronauts to the ISS since the forced shutdown of NASA’s space shuttle orbiters in 2011.

China is only the 3rd country in the world to successfully soft land a spacecraft on Earth’s nearest neighbor after the United States and the Soviet Union.

Stay tuned here for Ken’s continuing Chang’e-3, Orbital Sciences, SpaceX, commercial space, LADEE, Mars and more news.

Ken Kremer

Hitch a Ride on the Next Mission to an Asteroid

This is an artist's concept of NASA's OSIRIS-REx spacecraft preparing to take a sample from asteroid Bennu. Credit: NASA/Goddard/Chris Meaney

NASA and the Planetary Society are teaming up to give everyone the opportunity tag along on the next mission to an asteroid … well, your name can go along on the trip, anyway! You can submit your name to be added on to a microchip that will be aboard the Origins-Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) spacecraft, which will launch to the asteroid Bennu in 2016 and arrive in 2018.

“We’re thrilled to be able to share the OSIRIS-REx adventure with people across the Earth, to Bennu and back,” said Dante Lauretta, principal investigator of the OSIRIS-REx mission from the University of Arizona in Tucson. “It’s a great opportunity for people to get engaged with the mission early and join us as we prepare for launch.”

The spacecraft will spend more than two years at the 1,760-foot (500-meter)-wide asteroid. The spacecraft will collect a sample of Bennu’s surface and return it to Earth in 2023 in a sample return capsule.

The “Messages to Bennu!” microchip will travel to the asteroid on the spacecraft, and once the sample return capsule deploys, the spacecraft will be placed into a long-term solar orbit around the Sun, along with the microchip and every name on it.

You can submit your name at this website. The deadline is September 30, 2014.

After you submit your name, you can download and print a certificate.

“You’ll be part of humankind’s exploration of the solar system — How cool is that?” said Bill Nye, chief executive officer of The Planetary Society.

Participants who “follow” or “like” the mission on Facebook will receive updates on the location of their name in space from launch time until the asteroid samples return to Earth. Facebook fans also will be kept apprised of mission progress and late-breaking news through regular status updates.

The OSIRIS-REx mission goal is to address basic questions about the composition of the very early solar system, the source of organic materials and water that made life possible on Earth, and to better predict the orbits of asteroids that represent collision threats to the Earth. It will collect a minimum of 2 ounces (60 grams) of surface material.

Find out more about the mission here and here.

Three New Exoplanets Found In a Star Cluster

This artist's impression shows one of the three newly discovered planets in the star cluster Messier 67. In this cluster the stars are all about the same age and composition as the Sun. ESO/L. Calcada.

So far, just a handful of planets have been found orbiting stars in star clusters – and actually, astronomers weren’t too surprised about that. Star clusters can be pretty harsh places with hordes of stars huddling close together, with strong radiation and harsh stellar winds stripping planet-forming materials from the region.

But it turns out that perhaps astronomers are beginning to think differently about star clusters as being a homey place for exoplanets.

Scientists using several different telescopes, including the HARPS planet hunter in Chile have now discovered three planets orbiting stars in the cluster Messier 67.

“These new results show that planets in open star clusters are about as common as they are around isolated stars — but they are not easy to detect,” said Luca Pasquini from ESO, who is a co-author of a new paper about these planets. “The new results are in contrast to earlier work that failed to find cluster planets, but agrees with some other more recent observations. We are continuing to observe this cluster to find how stars with and without planets differ in mass and chemical makeup.”

This wide-field image of the sky around the old open star cluster Messier 67 was created from images forming part of the Digitized Sky Survey 2. The cluster appears as a rich grouping of stars at the centre of the picture. Messier 67 contains stars that are all about the same age, and have the same chemical composition, as the Sun. Credit: ESO/Digitized Sky Survey 2. Acknowledgement: Davide De Martin.
This wide-field image of the sky around the old open star cluster Messier 67 was created from images forming part of the Digitized Sky Survey 2. The cluster appears as a rich grouping of stars at the centre of the picture. Messier 67 contains stars that are all about the same age, and have the same chemical composition, as the Sun. Credit: ESO/Digitized Sky Survey 2. Acknowledgement: Davide De Martin.

The astronomers are pretty excited about one of these planets in particular, as it orbits a star that is a rare solar twin — a star that is almost identical to our Sun in all respects. This is the first “solar twin” in a cluster that has been found to have a planet.

“In the Messier 67 star cluster the stars are all about the same age and composition as the Sun,” said Anna Brucalassi from the Max Planck Institute for Extraterrestrial Physics in Garching, Germany and lead author of the new paper on these planets. “This makes it a perfect laboratory to study how many planets form in such a crowded environment, and whether they form mostly around more massive or less massive stars.”

This cluster lies about 2,500 light-years away in the constellation of Cancer and contains about 500 stars. Many of the cluster stars are fainter than those normally targeted for exoplanet searches and trying to detect the weak signal from possible planets pushed HARPS to the limit, the team said.

They carefully monitored 88 selected stars in Messier 67 over a period of six years to look for the tiny telltale “wobbling” motions of the stars that reveal the presence of orbiting planets.

Three planets were discovered, two orbiting stars similar to the Sun and one orbiting a more massive and evolved red giant star. Two of the three planets are “hot Jupiters” — planets comparable to Jupiter in size, but much closer to their parent stars and therefore not in the habitable zone where liquid water could exist.

The first two planets both have about one third the mass of Jupiter and orbit their host stars in seven and five days respectively. The third planet takes 122 days to orbit its host and is more massive than Jupiter.

Star clusters come in two main types: open and globular. Open clusters are groups of stars that have formed together from a single cloud of gas and dust in the recent past, and are mainly found in the spiral arms of a galaxy like the Milky Way. Globular clusters are much bigger spherical collections of much older stars that orbit around the center of a galaxy. Despite careful searches, no planets have been found in a globular cluster and less than six in open clusters.

Another study last year from a team using the Kepler telescope found two planets in a dense open star cluster and the team stated that how planets can form in the hostile environments of dense star clusters is “not well understood, either observationally or theoretically.”

Exoplanets have been found in some amazing environments, and astronomers will continue to hunt for planets in these clusters of stars to try and learn more about how and why — and how many — exoplanets exist in star clusters.

ESOcast 62: Three planets found in star cluster from ESO Observatory on Vimeo.

Read the team’s paper.

Source: ESO

Watch Live Webcast of the Active Sun

A closeup look at sunspot AR1944 on January 6, 2013, comparing its size to Earth. Credit and copyright: Ron Cottrell.

The team from Slooh will broadcast a live Solar special focusing on the sudden emergence of hyperactivity on the Sun — lately attributed sunspot AR 1944. Right now, the Sun is in what is supposed to be the active phase of its 11-year solar cycle, Solar Cycle 24. While this has been an unusually quiet solar maximum, lately the Sun has been more active.

The broadcast will feature live feeds of the Sun from the Prescott Observatory run by Matt Francis and Slooh astronomer Bob Berman. They will provide live expert commentary during the 30 minute broadcast. The Solar Special will start at 10:00 AM PST/ 1:00 PM EST/ 18:00 UTC on Wednesday, January 15th.

You can watch live, below, or the replay if you missed it live:

An Amazing Capture of Jupiter and its Moons

Astrophotographer Michael Phillips with the gear used to capture the Jupiter rotation animation. Credit-Michael Phillips

It’s always a thrill to watch the action at Jupiter, as its moons pass in front of and behind the gas giant planet. We wrote recently about this month’s opposition of Jove on January 5th, marking the start of the Jupiter evening viewing season for 2014. 

Astrophotographer Michael A. Philips also recently undertook a challenging series of sequences of Jupiter and its moons Io and Ganymede, with stunning results. You can see the motion of Jupiter’s rotation, the Great Red Spot and even a bit of cloud swirl as Io disappears behind Jupiter and Ganymede begins to transit in front and cast a shadow back onto the Jovian cloud tops.

Concerning the capture, Michael wrote on his blog:

“This night was a lucky night. I had not looked at the weather forecast enough to know if it would be good or not. Cold temps aside, I decided earlier in the day to set up and go out with the 14” f/4.5 scope named Akule. As an added bonus, Mitchell Duke tipped me off to a transit of the Jovian moon, Ganymede.”

Note that Jupiter and its moons are currently casting their shadows nearly straight back from our perspective. Expect that to change, however, in the coming months,as Jupiter heads towards eastern dusk quadrature on April 1st and we see the action from a sideways angle. Watch the video in full screen mode and you’ll note that Mike captured some detail on the surface of Ganymede as well! Generally, at the eyepiece, the moons of Jupiter disappear entirely due to low contrast against the bulk of the planet, with only the black dot of the shadow seen… this video capture gives the ingress of Ganymede at the start of the transit a great 3-D appearance.

Webcam imaging of planets has really taken off in the past decade, with backyard astronomers now routinely capturing images that far surpass professional and textbook images from just a decade prior. Great images can be taken using nothing more than a telescope, a laptop, free image stacking software such as Registax, and a webcam converted to fit into an eyepiece holder… you may find that you’ve got the gear sitting around to image Jupiter, tonight.

Mr. Phillips rig, however, is a little more advanced. He notes in the description of the video that he’s using a Flea3 camera from PointGrey Research with a 5x Barlow lens yielding a 9200mm focal length. He’s also shooting at 120 frames per second, and taking successive red, green and blue images for 30 seconds. Finally, a derotation of Jupiter – yes, it really rotates that quickly, even in a short sequence – is accomplished using a sophisticated program named WINJupos.

Video stacking gives processors the ability to “freeze” and nab the best moments of seeing from thousands of frames. Some imagers hand select frames one by one, though many programs, such as Registax, use algorithms to nab the best frames from a preselected percentage of the total shot.

Local seeing conditions also play a key role in image capturing.

“I moved far away from the house as possible, and I think that helped some,” Michael noted. “I also started cooling the spit out of the mirror, aggressively. Even when cooled for a few hours in the winter, the heat in the Pyrex mirror comes back. I think there’s a small heat engine inside the beast!”

For best results, imagers tend to go after planets when they’re at their highest in the sky, and viewed through the least amount of turbulent atmosphere. This is when a planet is transiting the local north to south meridian, and when it’s at opposition, which Jupiter is this month. At opposition, a planet transits at local midnight. The same goes for the best opportunities for visual observing as well.

Shadow transits of Jupiter’s moons are also just plain fun to watch. In an often unchanging universe, they offer a chance to see something unfolding in real time. Jupiter has the fastest rotation of any planet at 9.9 hours, and the large Galilean moons of Io, Europa, Ganymede and Callisto are tidally locked in their rotation, keeping one hemisphere permanently turned towards Jupiter like the Moon does orbiting the Earth. The inner three moons also keep a 1:2:4 orbital resonance, assuring you’ll never see more than three of the four Galilean moons transiting from your line of sight at once. You can see two of the inner three moons, plus Callisto in transit, but never all four at the same time! A triple transit last occurred on October 12th, 2013, and will next occur for observers in eastern Europe and Africa this year on June 3rd.

We’re also currently in the midst of a series of shadow transits for the outermost Galilean moon Callisto, which end in July 2016. Can you identify the different moons by the size and hue of shadows they cast? Sky & Telescope publishes a great table for the ingress and egress of Jupiter’s moons. You can also check them out using the freeware program Stellarium.

The double shadow transit of February 6th as seen at 11:22 UT. Created by the author using Starry Night Education software.
The double shadow transit of February 6th as seen at 11:22 UT. Created by the author using Starry Night Education software.

Can’t wait that long? A double shadow transit involving Europa and Callisto occurs in just a few weeks for western North America from 10:20 UT-12:44UT on the morning of February 6th, a chance for another stunning animation sequence…

Congrats to Michael Phillips on a great capture!

Astrophoto: Jupiter Meets Moon Halo

Gorgeous shot of the Moon-Jupiter conjunction on January 14, 2014 and a beautiful lunar halo, as seen from Ankara, Turkey. Credit and copyright: M. Ra?id Tu?ral

Last night, the Moon and Jupiter snuggled up together in the evening sky, passing within 4°51′ of each other. Folks in Ankara, Turkey got an added benefit to the conjunction, a gorgeous lunar halo. This shot by M. Rasid Tugral is just lovely. The duo stayed together through the night, and you MUST see below for another awesome view of the conjunction at dawn as seen from Pennsylvania in the US:

The morning's setting Moon and Jupiter, on January 15th, 2014. Photo taken near White Haven, Pennsylvania.  Credit and copyright: Tom Wildoner.
The morning’s setting Moon and Jupiter, on January 15th, 2014. Photo taken near White Haven, Pennsylvania. Credit and copyright: Tom Wildoner.

So many things make this such a great photo: the conjunction, of course, but the colors, the shadow of the photographer, and the landscape all combine for a simply stunning image.

Thanks to both of our photographers for sharing, and you can always see more great astrophotos at our Flickr page.

If you’re looking for more conjunctions with the Moon, there are a couple coming up: On Wednesday, Jan 22, 2014 mars will be near the Moon, and on Saturday January 25, 2014 the Moon will meet up with Saturn. Find out more at In-The-Sky.org.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Up Close Launch Pad Cameras capture Spectacular Sound and Fury of Antares/Cygnus Jan. 9 Blast off to Space Station – Video Gallery

Antares rocket blastoff on Jan. 9 from Launch Pad 0A at NASA Wallops Flight Facility, VA lofting the Cygnus resupply vehicle on a mission for NASA bound for the International Space Station. Docking at ISS planned for Jan. 9. Both vehicles built by Orbital Sciences. Photo taken by remote camera at launch pad. Credit: Alan Walters/AmericaSpace/awaltersphoto.com


Video caption: Antares ORB-1 Launch Pad Camera on south side of pad 0A being hammered from Orbital Sciences Antares rocket launch at 1:07 p.m. EST on January 9th 2014, from NASA’s Wallops Flight Facility, VA, carrying the Cygnus resupply spacecraft to the ISS. Credit: Mike Killian/Jeff Seibert/Mike Barrett/AmericaSpace.com/MikeKillianPhotography.com/Wired4Space.com

What’s it like to be standing at a rocket launch pad? Especially when it’s a private spaceship embarking on a history making flight to the space station that’s blasting the opening salvos of the new ‘commercial space era’ heard round the world?

Thrilling beyond belief!

And what’s it like to be standing at the launch pad when the engines ignite and the bird begins soaring by guzzling hundreds of thousands of pounds of burning fuel, generating intense heat and deadly earsplitting noise?

Well for a first-hand, up-close adventure to hear the deafening sound and feel the overwhelming fury, I’ve collected a gallery of videos from the Jan. 9 blastoff of the privately built Antares rocket from NASA’s Wallops Flight Facility, VA on a historic mission to the International Space Station (ISS).

The videos were created by a team of space journalists from a variety of space websites working together to create the best possible products for everyone’s enjoyment- including Alan Walters, Mike Killian, Matt Travis, Jeff Seibert, Mike Barrett and Ken Kremer representing AmericaSpace, Zero-G News, Wired4Space and Universe Today.


Video caption: Close up camera captures Antares liftoff carrying the Cygnus Orb-1 ISS resupply spacecraft. This was composed of 59 images taken by a Canon Rebel xti and 18 mm lens of the Antares Orbital 1 launch to the ISS on Jan. 9, 2013 at NASA Wallops Island, VA. Credit: Ken Kremer/Alan Walters/Matthew Travis/kenkremer.com

Wallops is located along the eastern shore of Virginia at America’s newest space port.

Because the launch pad is near the most heavily populated ares of the US, millions have a chance to view the launch along the US eastern seaboard.

And the pad sits almost directly on the Atlantic Ocean, so you can hear the waves constantly crashing on shore.

Well we always want to be as close as possible. But as you’ll see, it’s really not a very good idea to be right there.


North Side Launch Pad Camera Captures Antares Rocket Launch With Orbital Sciences Cygnus Orb-1 To ISS on Jan. 9, 2013 from NASA Wallops. A GoPro Hero 2 camera captures the launch of Orbital Sciences Antares rocket carrying the Cygnus spacecraft on the Orb-1 mission to resupply the International Space Station. Credit: Matt Travis/Mike Killian/MikeKillianPhotography.com/ZeroGnews.com/AmericaSpace.com

Virtually every camera on the south side got creamed and was blown over by the approaching fiery exhaust fury seen in the videos.

Amazingly they continued taking pictures of the exhaust as they were violently hit and flung backwards.

Luckily, as they were knocked over and fell to the ground, the lenses were still facing skyward and snapping away showing the sky and exhaust plume swirling around and eventually dissipating.

Our cameras capture the experience realistically.

We’ve set them up around the north and side sides at NASA’s Wallops Launch Pad 0A on the Mid-Atlantic Regional Spaceport (MARS).

Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS.  Photo taken by remote camera at launch pad. Credit: Ken Kremer - kenkremer.com
Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS. Photo taken by remote camera at launch pad. Credit: Ken Kremer – kenkremer.com

How do the cameras, called remotes, collect the imagery?

They are activated either by sound triggers or timers.

It takes a lot of hard work and equipment and doesn’t always work out as planned.

But the payoff when it does is absolutely extraordinary.

The Jan. 9 blast off of Orbital Sciences’ private Antares booster delivered the firm’s Cygnus Orbital-1 cargo freighter to orbit.

Orbital Sciences' Cygnus cargo spacecraft, with the moon seen in the background, is moved into installation position by astronauts using a robotic arm aboard the International Space Station Jan. 12. Credit: NASA
Orbital Sciences’ Cygnus cargo spacecraft, with the moon seen in the background, is moved into installation position by astronauts using a robotic arm aboard the International Space Station Jan. 12. Credit: NASA

Following a two day orbital chase and an intricate series of orbit raising maneuvers, the Cygnus vessel reached the station on Sunday, Jan. 12, and was berthed by astronauts maneuvering the robot arm at an Earth-facing port on the massive orbiting lab complex.

The Orbital -1 spaceship is conducting the first of 8 operational cargo logistics flights scheduled under Orbital Sciences’ multi-year $1.9 Billion Commercial Resupply Services contract (CRS) with NASA that runs through 2016.

SpaceX likewise has a contract with NASA to deliver cargo to the ISS via their Dragon spaceship. The next SpaceX launch is slated for Feb. 22.

Stay tuned here for Ken’s continuing Orbital Sciences, SpaceX, commercial space, Chang’e-3, LADEE, Mars and more news.

Ken Kremer

This Cygnus launched atop Antares on Jan. 9 and docked on Jan. 12   Cygnus pressurized cargo module – side view – during exclusive visit by  Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo.  Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com
This Cygnus launched atop Antares on Jan. 9 and docked on Jan. 12 Cygnus pressurized cargo module – side view – during exclusive visit by Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo. Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com
Space journalists Ken Kremer/Universe Today (left) and Mike Killian  and Alan Walters  of AmericaSpace (center, right) setting remote cameras at Antares launch pad amidst bone chilling cold for the photos featured herein.  Credit: Ken Kremer - kenkremer.com
Space journalists Ken Kremer/Universe Today (left) and Mike Killian and Alan Walters of AmericaSpace (center, right) setting remote cameras at Antares launch pad amidst bone chilling cold for the imagery featured herein. Credit: Ken Kremer – kenkremer.com

Stunning Footage from SpaceShipTwo’s Third Rocket-Powered Flight

Image from the "tail cam" on SpaceShipTwo of engine ignition. Credit: Virgin Galactic.

Virgin Galactic released video from SpaceShipTwo’s flight test last Friday, January 10, 2014. This was the third supersonic, rocket-powered test of the Virgin Galactic system after dozens of successful subsonic test flights. The pilots Dave Mackay and Mark Stucky tested the spaceship’s Reaction Control System, the newly installed thermal protection coating on the vehicle’s tail booms, and the “feather” re-entry system, all with great success.

See some images from the flight below.

You can read our coverage from Friday’s test flight here.

Image from SpaceShipTwo's third powered flight on January 10, 2014. Credit: Virgin Galactic.
Image from SpaceShipTwo’s third powered flight on January 10, 2014. Credit: Virgin Galactic.
Feathered Flight during Virgin Galactic's SpaceShipTwo's third powered flight on January 10,  2014 over the Mojave desert. This image was taken by MARS Scientific as part of the Mobile Aerospace Reconnaissance System optical tracking system.
Feathered Flight during Virgin Galactic’s SpaceShipTwo’s third powered flight on January 10, 2014 over the Mojave desert. This image was taken by MARS Scientific as part of the Mobile Aerospace Reconnaissance System optical tracking system.

Fly Over the Floodplains of Mars

A mosaic of 67 images from the Mars Express spacecraft of Kasei Valles on Mars. Credit: ESA/DLR/FU (G. Neukum)

Over 3 billion years ago, dramatic flood events likely carved this gigantic channel system on Mars. It extends some 3,000 km and covers over 1.55 million square kilometers. ESA released this flyover video today, on the 10th anniversary of the Mars Express spacecraft’s launch to the Red Planet on January 14, 2004.

ESA describes the scene in the video:

The scene spans 987 km in the north–south direction, 19–36°N, and 1550 km in the east–west direction (280–310°E). It covers 1.55 million square kilometers, an area equivalent to the size of Mongolia.

Kasei Valles splits into two main branches that hug a broad island of fractured terrain — Sacra Mensa — rising 2 km above the channels that swerve around it. While weaker materials succumbed to the erosive power of the fast-flowing water, this hardier outcrop has stood the test of time.

Slightly further downstream, the flood waters did their best to erase the 100 km-wide Sharonov crater, crumpling its walls to the south. Around Sharonov many small streamlined islands form teardrop shapes rising from the riverbed as water swept around these natural obstacles.

Source: ESA