LEDs: Light Pollution Solution or Night Sky Nemesis?

New LED lighting along Michigan Street in downtown Duluth, Minn. has brightened and whitened up the area considerably compared to the days of high-pressure sodium lighting. Credit: Bob King

You may have noticed a change underway in your city lighting. High pressure sodium lights, with their familiar orange glow, are quickly being replaced by new, energy efficient  blue-white LED (light emitting diode) lighting. Is this the beginning of a new assault on the night or an opportunity to use light more wisely? Many of us first became aware of LEDs in amplifiers, computers and the flashlights we use for seeing our star charts at night. More recently, LEDs became a big hit with Christmas lighting. And why not? Although they cost considerably more, the bulbs last much longer, use a fraction of the energy compared to incandescent and sodium lighting and don’t contain materials like mercury – common in fluorescent lighting – that can harm the environment. A typical incandescent bulb lasts about 750 hours while an LED bulb can glow for up to 50,000 hours. What’s not to like?

Small individually colored LED lights. LEDs are an electronic light based on semiconductors instead of
Small individually colored LED lights. LEDs light up when an electric current excites electrons inside a semidconductor to produce photons of light. Click to learn more. Credit: Piccolo Namek

The changeover to LED street lighting is already underway in my own city of Duluth, Minn. U.S. I noticed this one night this fall while driving home from work. Buildings and intersections that had been orange the night before were bathed in a far more intense blue-white light. Don’t get me wrong. Our city engineers deserve high marks for adhering to good lighting standards by packaging the new lights in shielded housings with minimal light spill upwards and to the sides. Light in those directions not only creates unwanted glare but seriously brightens the night sky, robbing many of the joys of stargazing.

Comparison of  lighting colors and intensity of the new LED streetlights (left) and the older high-pressure sodium vapor lamps.
Comparison of lighting colors and intensity of the new LED streetlights (left) and the older high-pressure sodium vapor lamps.

Still, everything was not OK. The LED street lights were INTENSELY bright, much more so than the “old-fashioned” sodiums. Looking up was like staring into the sun. If you have the opportunity, step under an orange sodium street light and then under an LED. You’ll be amazed at the difference in light intensity. To gauge the approximate difference in brightness between the two, I pulled out my camera and took a light meter reading on the pavement beneath an LED lamp and then under a high-pressure sodium lamp. The LED was brighter by more than more than one camera “stop” or more than twice as bright.

You can’t complain about the color rendition – the whiter LED light is far better – but the increased intensity doesn’t bode well for stargazers.

Direct comparison of two consecutive light standards - LED in the foreground, high pressure sodium behind it. Credit: Bob King
Direct comparison of two consecutive light standards – LED in the foreground, high pressure sodium behind it. Notice that both lights are well-shielded, ie. no part of the bulb extends beyond its housing. Credit: Bob King

As long as LEDs are shielded, light spill and glare are relatively well-controlled, but light reflected from the ground also goes up into space to light the sky. Here in the northern U.S. where snow typically covers the ground from November through March, winter night skies are the most light polluted; LED street lighting will only exacerbate the situation.

Inexpensive LED wall pack lighting lights a sidewalk and produces large amounts of glare and wasted light. Credit: Bob King
Inexpensive LED wall pack lighting lights a sidewalk and produces large amounts of glare and wasted light. Credit: Bob King

In the big picture however, that’s only a minor headache. LEDs are a wonderful technology, but the benefits they provide in cost savings and long life ultimately guarantee their proliferation in ornamental, building and parking lot illumination. Much of that lighting is unshielded and heavy on glare, making driving at night more difficult, wasting energy and preserving what dark sky remains more challenging. Indeed, the transition is already underway.

Unshielded LED ornamental lighting at a new housing development. Credit: Bob King
Brilliant, unshielded LED ornamental lighting at a new housing development. The full moon is seen at top. Credit: Bob King

Like an outbreak of mushrooms, LED “wall pack” lights – the ones that shine directly outward without any shielding – have started to appear on the outside walls of buildings as a cheap solution for lighting up walkways and parking lots. They’re replacing the equally bad but half as bright sodium lamps. Ornamental LED lamps in a new housing development in town recently turned night into day. Residents complained and wrote letters to the editor. To their credit, the owners dimmed the lights, but the fixtures were poorly designed to start and still too bright for many.

Closeup of LED ornamental light fixtures. Credit: Bob King
Closeup of LED ornamental light fixtures with little shielding. Credit: Bob King

One additional issue with LED ornamental and street lighting has to do with color. Although natural color LED lighting is available, high-efficiency LED lights emit a much bluer light than sodium vapor. Blue-rich light not only increases the amount of glare sensed by the human eye but also the amount of visible light pollution. Other effects of light trespass and glare include sleeping problems and even an increased risk for certain cancers. We humans need the night more than we know.

LEDs are only part of the problem of course. The real issue is the ever-increasing amount of light pollution worldwide and the potential for new LEDs to make it worse. True, we can take advantage of the  ability to adjust and dim current lighting to more suitable levels. LEDs are also highly directional, making it easy to point them just where they’re needed. Finally, new high-efficiency more natural (less blue) LEDs are now available that can help reduce light pollution.

 

First electric lighting: New York City around 1880.
First electric lighting: New York City around 1880.

I encourage everyone to learn all you can about the new lighting and work with you local city councils and town boards to use the light wisely, particularly in new developments, parking lots and for building illumination. There’s no question that LED lighting can be used wisely to make everyone happy – stargazers, drivers, shoppers and walkers. For help and more information, the International Dark-Sky Association (IDA) is a great place to start. Here are some additional resources:

* IDA Simple Guidelines for Lighting Regulations for Small Communities, Urban Neighborhoods and Subdivisions – Great background information on what you’ll need to know before you approach your town board
* Sample Light Ordinances
* Great examples of dark sky compliant ornamental LED light fixtures

What is on the Other Side of a Black Hole?

What is on the Other Side of a Black Hole?

Picture an entire star collapsed down into a gravitational singularity. An object with so much mass, compressed so tightly, that nothing, not even light itself can escape its grasp. It’s no surprise these objects have captured our imagination… and yet, I have a complaint.

The name “black hole” seems to have created something of a misunderstanding. And the images that show the gravitational well of a black hole don’t seem to help either.

From all the correspondence I get, I know many imagine these objects as magnificent portals to some other world or dimension. That they might be gateways which will take you off to adventures with beautiful glistening people in oddly tailored chainmail codpieces and bikinis.

So, if you were to jump into a black hole, where would you come out? What’s on the other side? Where do they take you to? Black holes don’t actually “go” anywhere. There isn’t an actual “hole” involved at all.

They’re massive black orbs in space with an incomprehensible gravitational field. We’re familiar with things that are black in color, like asphalt, or your favorite Cure shirt from the Wish tour that you’ve only ever hand-washed.

Black holes aren’t that sort of black. They’re black because even light, the fastest thing in the Universe, has given up trying to escape their immense gravity.

Let’s aim for a little context. Consider this. Imagine carrying an elephant around on your shoulders. Better yet, imagine wearing an entire elephant, like a suit. Now, let’s get off the couch and go for a walk. This what it would feel like if the gravity on Earth increased by a factor of 50. If we were to increase the force of gravity around your couch up to a level near the weakest possible black hole, it would be billions of times stronger than you would experience stuck under your elephant suit.

And so, if you jumped into a black hole, riding your space dragon, wearing maximus power gauntlets of punchiness and wielding some sort of ridiculous light-based melee weapon, you would then be instantly transformed … by those terrible tidal forces unravelling your body into streams of atoms… and then your mass would be added to the black hole.

Just so we’re clear on this, you don’t go anywhere. You just get added to the black hole.
It’s like wondering about the magical place you go if you jump into a trash compactor.
If you did jump into a black hole, your experience would be one great angular discomfort and then atomic disassembly. Here’s the truly nightmarish part. ..

As time distorts near the event horizon of a black hole, the outside Universe would watch you descend towards it more and more slowly. In theory, from their perspective it would take an infinite amount of time for you to become a part of the black hole. Even photons reflecting off your newly shaped body would be stretched out to the point that you would become redder and redder, and eventually, just fade away.

Artist concept of a view inside a black hole. Credit:  April Hobart, NASA, Chandra X-Ray Observatory
Artist concept of a view inside a black hole. Credit: April Hobart, NASA, Chandra X-Ray Observatory

Now that that is over with. Let’s clear up the matter of that diagram. Consider that image of a black hole’s gravity well. Anything with mass distorts space-time. The more mass you have, the more of a distortion you make….And black holes make bigger distortions than anything else in the Universe.

Light follows a straight line through space-time, even when space-time has been distorted into the maw of a black hole. When you get inside the black hole’s event horizon, all paths lead directly to the singularity, even if you’re a photon of light, moving directly away from it. It sounds just awful. The best news is that, from your perspective, it’s a quick and painful death for you and your space dragon.

So, if you had any plans to travel into a black hole, I urge you to reconsider. This isn’t a way to quickly travel to another spot in the Universe, or transcend to a higher form of consciousness. There’s nothing on the other side. Just disassembly and death.
If you’re looking for an escape to another dimension, might I suggest a good book instead?

Here’s an article I did about how to maximize your time while falling into a black hole.

Astrophotos: Venus at Inferior Conjunction

Venus, 0.4% illuminated and 5.1 degrees from the Sun, as seen about 12:30 pm local noon time from Sri Damansara, Malaysia (0430 UTC) on January 11, 2014, about about 8 hours before inferior conjunction. Credit and copyright: Shahrin Ahmad.

Venus has now gone from being that bright “star” you’ve been seeing around sunset to later this month being the bright object you’ll see in the early morning pre-dawn hours. On January 11, Venus passed between Earth and the Sun in what is known as inferior conjunction. We challenged our readers to try and capture it, and Shahrin Ahmad in Malaysia nabbed the tiny crescent Venus about 8 hours before inferior conjunction, in what he said was a personal record!

“Around 12.30 p.m. local noon time, there was a brief of good seeing, and probably the best one so far,” Shah said via email. “Suits nicely as a parting shot. After that the sky seeing began to deteriorate really fast!”

Venus was about 0.4% illuminated and 5.1 deg from the Sun.

“Even without stretching the original photo, we can easily see how the crescent has reach beyond 180 degrees around Venus,” he said. “This is the closest Venus I’ve ever imaged.”

You can see Shah (and his telescope) on the Virtual Star Party this week, talking about his Venus observations.

But take a look at this: here’s a great series of images from Paul Stewart from Timaru, New Zealand:

Venus inferior conjunction timeline from January 7 to 13th, missing January 12 due to clouds. Credit and copyright: Paul Stewart.
Venus inferior conjunction timeline from January 7 to 13th, missing January 12 due to clouds. Credit and copyright: Paul Stewart.

Wow! That’s exceptional work! You can see more of Paul’s astro-work at his website, Upside Down Astronomer.

Thanks to both Shah and Paul for sharing their photos!

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

A Distant View of Janus, One of Saturn’s ‘Dancing Moons’

Cassini narrow-angle camera image of Janus from Sept. 10, 2013 (NASA/JPL-Caltech/SSI)

One of 62 moons discovered thus far orbiting giant Saturn, Janus is a 111-mile (179-km) -wide pockmarked potato composed of rock and ice rubble. The image above shows Janus as seen with Cassini’s narrow-angle camera on September 10, 2013, from a distance of 621,000 miles (1 million km), floating against the blackness of space.

Despite its apparent isolation in the image above, though, Janus isn’t alone. It shares its orbit around Saturn with its slightly smaller sister moon Epimetheus, and they regularly catch up to each other — and even switch places.

Janus and Epimetheus: Saturn's "dancing moons" (NASA/JPL/SSI)
Janus and Epimetheus: Saturn’s “dancing moons” (NASA/JPL/SSI)

Janus and Epimetheus travel in nearly the same track, about 94,100 miles (151,500 km) out from Saturn. They occasionally pass each other, their gravity causing them to switch speeds and positions as they do; Janus goes faster and higher one time, slower and lower the next – but the two never come within more than about 6,200 miles of each other.

The two moons switch positions roughly every four years.

This scenario is referred to in astrophysics as a 1:1 resonance. Astronomers were initially confused when the moons were discovered in 1966 as it wasn’t known at the time that there were actually two separate moons in a single orbit. (This wasn’t confirmed until Voyager 1’s visit to Saturn in 1980.) It’s been suggested that Janus and Epimetheus will eventually come to orbit a single Lagrangian point around Saturn instead of trading places… in about another 20 million years.

The view above looks toward the Saturn-facing side of Janus. Covered in both dark and light colored material, Janus’ surface is thought to be coated with a layer of fine dust that slides down its steeper slopes, revealing the brighter ice beneath.

Cassini image of Janus from April 2010 (NASA/JPL-Caltech/SSI)
Cassini image of Janus from April 2010 (NASA/JPL-Caltech/SSI)

Want to see more images of Janus? Click here.

Source: Cassini Solstice Mission release

 

Private Cygnus Freighter Berths at Space Station with Huge Science Cargo and Ant Colony

Orbital Sciences' Cygnus cargo spacecraft, with the moon seen in the background, is moved into installation position by astronauts using a robotic arm aboard the International Space Station Jan. 12. Credit: NASA

With the Moon as a spectacular backdrop, an Orbital Sciences’ Cygnus cargo spacecraft speeding at 17500 MPH on a landmark flight and loaded with a huge treasure trove of science, belated Christmas presents and colonies of ants rendezvoued at the space station early this Sunday morning (Jan. 12), captured and then deftly parked by astronauts guiding it with the Canadian robotic arm.

Cygnus is a commercially developed resupply freighter stocked with 1.5 tons of vital research experiments, crew provisions and student science projects that serves as an indispensible “lifeline” to keep the massive orbiting outpost alive and humming with the science for which it was designed.

Following a two day orbital chase that started with the spectacular blastoff on Jan. 9 atop Orbital’s private Antares booster from NASA Wallops Flight Facility, Va., Cygnus fired its on board thrusters multiple times to approach in close proximity to the million pound International Space Station (ISS) by 3 a.m. Sunday.

ISS Astronauts grapple Orbital Sciences Cygnus spacecraft with robotic arm and guide it to docking port. Credit: NASA TV
ISS Astronauts grapple Orbital Sciences Cygnus spacecraft with robotic arm and guide it to docking port. Credit: NASA TV

When Cygnus had moved further to within 30 feet (10 meters) NASA Astronaut and station crew member Mike Hopkins – working inside the Cupola – then successfully grappled the ship with the stations 57 foot long Canadarm2 at 6:08 a.m. EST to complete the first phase of today’s operations.

“Capture confirmed,” radioed Hopkins as the complex was flying 258 miles over the Indian Ocean and Madagascar.

“Congratulations to Orbital and the Orbital-1 team and the family of C. Gordon Fullerton,” he added. The ship is named in honor of NASA shuttle astronaut G. Gordon Fullerton who passed away in 2013.

“Capturing a free flyer is one of the most critical operations on the ISS,” explained NASA astronaut and ISS alum Cady Coleman during live NASA TV coverage.

ISS Astronauts grapple Orbital Sciences Cygnus spacecraft with robotic arm and guide it to docking port. Credit: NASA TV
ISS Astronauts grapple Orbital Sciences Cygnus spacecraft with robotic arm and guide it to docking port. Credit: NASA TV

Koichi Wakata of the Japan Aerospace Exploration Agency then took command of the robotic arm and maneuvered Cygnus to berth it at the Earth-facing (nadir) port on the station’s Harmony Node at 8:05 a.m while soaring over Australia.

16 bolts will be driven home and 4 latches tightly hooked to firmly join the two spacecraft together and insure no leaks.

The Orbital -1 spaceship is conducting the first of 8 operational cargo logistics flights scheduled under Orbital Sciences’ multi-year $1.9 Billion Commercial Resupply Services contract (CRS) with NASA that runs through 2016.

Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS.  Photo taken by remote camera at launch pad. Credit: Ken Kremer - kenkremer.com
Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS. Photo taken by remote camera at launch pad. Credit: Ken Kremer – kenkremer.com

The purpose of the unmanned, private Cygnus spaceship – and the SpaceX Dragon – is to restore America’s cargo to orbit capability that was terminated following the shutdown of NASA’s space shuttles.

Cygnus and Dragon will each deliver 20,000 kg (44,000 pounds) of cargo to the station according to the NASA CRS contracts.

“This cargo operation is the lifeline of the station,” said Coleman.

This Cygnus launched atop Antares on Jan. 9 and docked on Jan. 12   Cygnus pressurized cargo module – side view – during exclusive visit by  Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo.  Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com
This Cygnus launched atop Antares on Jan. 9 and docked on Jan. 12
Cygnus pressurized cargo module – side view – during exclusive visit by Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo. Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com

The six person crew of Expedition 38 serving aboard the ISS is due to open the hatch to Cygnus tomorrow, Monday, and begin unloading the 2,780 pounds (1,261 kilograms) of supplies packed inside.

“Our first mission under the CRS contract with NASA was flawlessly executed by our Antares and Cygnus operations team, from the picture-perfect launch from NASA’s Wallops Flight Facility to the rendezvous, capture and berthing at the space station this morning,” said Mr. David W. Thompson, Orbital’s President and Chief Executive Officer, in a statement from Orbital.

“From the men and women involved in the design, integration and test, to those who launched the Antares and operated the Cygnus, our whole team has performed at a very high level for our NASA customer and I am very proud of their extraordinary efforts.”

Up-close view of Orbital Sciences Cygnus service module outfitted with propulsion, power generating solar arrays and guidance during exclusive visit by  Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. Service module gets attached to pressurized cargo module and flies Cygnus vehicle to ISS. Credit: Ken Kremer – kenkremer.com
Up-close view of Orbital Sciences Cygnus service module outfitted with propulsion, power generating solar arrays and guidance during exclusive visit by Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. Service module gets attached to pressurized cargo module and flies Cygnus vehicle to ISS. Credit: Ken Kremer – kenkremer.com

Science experiments weighing 1000 pounds account for nearly 1/3 of the cargo load.

Among those are 23 student designed experiments representing over 8700 K-12 students involving life sciences topics ranging from amoeba reproduction to calcium in the bones to salamanders.

The students are part of the Student SpaceFlight Experiments Program (SSEP) sponsored by the National Center for Earth and Space Science Education (NCESSE).

Student Space Flight team  at NASA Wallops from Washington, DC discusses their microencapsulation science experiment selected to fly aboard the Cygnus spacecraft with Ken Kremer/Universe Today.  23 student experiments launched to the ISS from NASA Wallops, VA, on Jan . 9, 2014, as part of the Student Spaceflight Experiments Program (SSEP) and have arrived at the station.  Credit: Ken Kremer - kenkremer.com
Student Space Flight team at NASA Wallops from Washington, DC discusses their microencapsulation science experiment selected to fly aboard the Cygnus spacecraft with Ken Kremer/Universe Today. 23 student experiments launched to the ISS from NASA Wallops, VA, on Jan . 9, 2014, as part of the Student Spaceflight Experiments Program (SSEP) and have arrived at the station. Credit: Ken Kremer – kenkremer.com

Ant colonies from three US states are also aboard, living inside 8 habitats. The “ants in space” experiment will be among the first to be unloaded from Cygnus to insure the critters are well fed for their expedition on how they fare and adapt in zero gravity.

33 cubesats are also aboard that will be deployed from the Japanese Experiment Module airlock.

“One newly arrived investigation will study the decreased effectiveness of antibiotics during spaceflight. Another will examine how different fuel samples burn in microgravity, which could inform future design for spacecraft materials,” said NASA in a statement.

Cygnus is currently scheduled to remain berthed at the ISS for 37 days until February 18.

The crew will reload it with all manner of no longer need trash and then send it off to a fiery and destructive atmospheric reentry so it will burn up high over the Pacific Ocean on Feb. 19.

Cygnus departure is required to make way for the next cargo freighter – the SpaceX Dragon, slated to blast off from Cape Canaveral, Florida on Feb. 22 atop the company’s upgraded Falcon 9.

Watch for my ongoing Antares/Cygnus reports.

Stay tuned here for Ken’s continuing Orbital Sciences, SpaceX, commercial space, Chang’e-3, LADEE, Mars and more news.

Ken Kremer

Cygnus berthed at Harmony node on ISS. Credit: NASA TV
Cygnus berthed at Harmony node on ISS. Credit: NASA TV

China’s Yutu Moon Rover and Chang’e-3 Lander – Gallery of New Images & 1st Earth Portrait

The Earth from the Moon – by Chang’e-3 on Christmas Day Lander camera snapped this image on Christmas Day 2013. Credit: Chinese Academy of Sciences

The Earth from the Moon – by Chang’e-3 on Christmas Day
Lander camera snapped this image on Christmas Day 2013. Credit: Chinese Academy of Sciences[/caption]

Nearly a month after the stunningly successful soft landing on the Moon by China’s first lunar mission on Dec. 14, 2013, the Chinese Academy of Sciences has at last released far higher quality digital imagery snapped by the Chang’e-3 lander and Yutu moon rover.

This release of improved images is long overdue.

And perhaps the best news of all involves a belated Christmas present to humanity – the publication of never before seen and absolutely stunning images of the Earth from the Moon captured by the lander on Christmas Day 2013.

We haven’t seen the Earth from the Moon’s surface in 4 decades – not since the 1970’s.

Photo taken by the extreme ultraviolet camera on Dec. 16, 2013 shows the observation of the Earth's plasmasphere by the Chang’e-3 lander. Credit: Chinese Academy of Sciences
Photo taken by the extreme ultraviolet camera on Dec. 16, 2013 shows the observation of the Earth’s plasmasphere by the Chang’e-3 lander. Credit: Chinese Academy of Sciences

Until now, most of the Chang’e-3 mission images we’ve seen have essentially been rather low resolution pictures of pictures – that is screenshots or photos taken of the imagery that has been flashed onto large projection screens at the Beijing Aerospace Control Center, and then distributed by Chinese government media outlets.

So they have been degraded several times over.

Portrait photo of Yutu moon rover taken by camera on the Chang'e-3 moon lander on Dec. 15, 2013 shortly after rolling all 6 wheels onto lunar surface.  Credit: Chinese Academy of Sciences
Portrait photo of Yutu moon rover taken by camera on the Chang’e-3 moon lander on Dec. 15, 2013 shortly after rolling all 6 wheels onto lunar surface. Credit: Chinese Academy of Sciences

I’ve collected a gallery of the new Chang’e-3 lunar photos here for all to enjoy – see above and below.

The gallery includes photos taken during the final moments of the descent and landing on Dec. 14, 2013, as well as portraits and 360 degree moonscape panoramas taken by both spacecraft after Yutu rolled its wheels onto the loose lunar soil 7 hours later on Dec. 15, and the fabulous new images of Earth in visible and UV light.

Yutu moon rover imaged by camera on the Chang'e-3 moon lander on Dec. 16, 2013. Credit: Chinese Academy of Sciences
Yutu moon rover imaged by camera on the Chang’e-3 moon lander on Dec. 16, 2013. Credit: Chinese Academy of Sciences

Yutu and the lander are about to awaken from their self induced slumber which began at Christmas time to coincide with the dawn of the the utterly frigid two week long lunar night.

Temperatures plunged to below minus 180 degrees Celsius.

They went to sleep to conserve energy since there is no sunlight to generate power with the solar arrays.

Yutu portrait taken by the Chang’e-3 lander on Dec. 22, 2013.  China’s 1st Moon rover ‘Yutu’ embarks on thrilling adventure marking humanity’s first lunar surface visit in nearly four decades.  Credit: Chinese Academy of Sciences
Yutu portrait taken by the Chang’e-3 lander on Dec. 22, 2013. China’s 1st Moon rover ‘Yutu’ embarks on thrilling adventure marking humanity’s first lunar surface visit in nearly four decades. Credit: Chinese Academy of Sciences

After driving off the lander, Yutu – which means ‘Jade Rabbit’ – drove in a semicircle around the lander and headed south.

Jade Rabbit stopped at 5 designated places.

The pair of Chinese spacecraft then snapped images of one another at each location. Some of those images were included in this new batch.

So you can see the lander from 3 different perspectives collected here:

1st Photo of Chang'e-3 moon lander taken by the panoramic camera on the Yutu moon rover after it drove all 6 wheels onto the lunar surface on Dec. 15, 2013. Credit: CNSA
1st Photo of Chang’e-3 moon lander taken by the panoramic camera on the Yutu moon rover after it drove all 6 wheels onto the lunar surface on Dec. 15, 2013. Credit: Chinese Academy of Sciences
Side view Chang'e-3 moon lander in this image taken by the panoramic camera on the Yutu moon rover as it drove in a semicircle around the lander heading south. Credit: Chinese Academy of Sciences
Side view Chang’e-3 moon lander in this image taken by the panoramic camera on the Yutu moon rover as it drove in a semicircle around the lander heading south. Credit: Chinese Academy of Sciences
Photo of Chang'e-3 moon lander emblazoned with Chinese national flag taken by the panoramic camera on the Yutu moon rover on Dec. 22, 2013. Credit: CNSA
Photo of Chang’e-3 moon lander emblazoned with Chinese national flag taken by the panoramic camera on the Yutu moon rover on Dec. 22, 2013 during 5th and final stop as it drove in a semicircle around the lander heading south. Yutu is looking north, lander looking south. Credit: Chinese Academy of Sciences

Here’s a pair of very cool 360 degree panoramas – taken by each spacecraft and showing the other.

This digitally-combined polar panorama shows a 360 degree color view of the moonscape around the Chang’e-3 lander after the Yutu moon rover drove onto the lunar surface leaving visible tracks behind.  Images were taken from Dec. 17 to Dec. 18, 2013.  Credit: Chinese Academy of Sciences
This digitally-combined polar panorama shows a 360 degree color view of the moonscape around the Chang’e-3 lander after the Yutu moon rover drove onto the lunar surface leaving visible tracks behind. Images were taken from Dec. 17 to Dec. 18, 2013. Credit: Chinese Academy of Sciences
This digitally-combined polar panorama shows a 360 degree black and white view of the moonscape around the Yutu moon rover after it drove off the Chang’e-3 lander at top and left visible tracks behind.  Images were taken on Dec. 23, 2013.  Credit: Chinese Academy of Sciences
This digitally-combined polar panorama shows a 360 degree black and white view of the moonscape around the Yutu moon rover after it drove off the Chang’e-3 lander at top and left visible tracks behind. Images were taken on Dec. 23, 2013. Credit: Chinese Academy of Sciences
1st panorama around Chang’e-3 landing site after China’s Yutu rover drove onto the Moon’s surface on Dec. 15, 2013. The images were taken by Chang’e-3 lander following Dec. 14 touchdown. Panoramic view was created from screen shots of a news video assembled into a mosaic. Credit: CNSA/CCTV/screenshot mosaics & processing by Marco Di Lorenzo/Ken Kremer
1st panorama around Chang’e-3 landing site after China’s Yutu rover drove onto the Moon’s surface on Dec. 15, 2013. The images were taken by Chang’e-3 lander following Dec. 14 touchdown. Panoramic view was created from screen shots of a news video assembled into a mosaic. Credit: CNSA/CCTV/screenshot mosaics & processing by Marco Di Lorenzo/Ken Kremer

Finally here’s imagery taken during the landing sequence by the descent imager in the final minutes before touchdown at Mare Imbrium, nearby the Bay of Rainbows, or Sinus Iridum region.

It is located in the upper left portion of the moon as seen from Earth. You can easily see the landing site with your own eyes.

And be sure to check my earlier story with an eye popping astronauts eye view video combining all the descent imagery – here.

Photo taken by the descent imaging camera on Dec. 14, 2013 shows lunar landscape during Chang'e-3 lunar probe's landing at an altitude of 99 meters.  Credit: Chinese Academy of Sciences
Photo taken by the descent imaging camera on Dec. 14, 2013 shows lunar landscape during Chang’e-3 lunar probe’s landing at an altitude of 99 meters. Credit: Chinese Academy of Sciences
Photo taken by the descent imaging camera on Dec. 14, 2013 shows lunar landscape during Chang'e-3 lunar probe's landing at an altitude of 7.9 kilometers.  Credit: Chinese Academy of Sciences
Photo taken by the descent imaging camera on Dec. 14, 2013 shows lunar landscape during Chang’e-3 lunar probe’s landing at an altitude of 7.9 meters. Credit: Chinese Academy of Sciences

The landmark Chang’e-3 mission marks the first time that China has sent a spacecraft to touchdown on the surface of an extraterrestrial body.

China is only the 3rd country in the world to successfully soft land a spacecraft on Earth’s nearest neighbor after the United States and the Soviet Union.

Stay tuned here for Ken’s continuing Chang’e-3, Orbital Sciences, SpaceX, commercial space, LADEE, Mars and more news.

Ken Kremer

Cygnus Commercial Carrier Hurtling towards Space Station Rendezvous Following Spectacular Antares Blastoff – Photo & Video Gallery

Antares rocket blastoff on Jan. 9 from Launch Pad 0A at NASA Wallops Flight Facility, VA lofting the Cygnus resupply vehicle on a mission for NASA bound for the International Space Station. Docking at ISS planned for Jan. 9. Both vehicles built by Orbital Sciences. Photo taken by remote camera at launch pad. Credit: Alan Walters/AmericaSpace/awaltersphoto.com

Antares rocket blastoff on Jan. 9 from Launch Pad 0A at NASA Wallops Flight Facility, VA lofting the Cygnus resupply vehicle on a mission for NASA bound for the International Space Station. Docking at ISS planned for Jan. 12. Both vehicles built by Orbital Sciences. Photo taken by remote camera at launch pad. Credit: Alan Walters/AmericaSpace/awaltersphoto.com
See Photo Gallery below
Story updated[/caption]

WALLOPS ISLAND, VA – The Cygnus commercial resupply freighter is hurtling towards the International Space Station (ISS) at 17,500 MPH following the flawless Jan. 9 blastoff from NASA Wallops Island, Va., atop the Orbital Sciences Corp. Antares rocket.

Cygnus is bound for the ISS on its historic first operational mission to deliver over 1.5 tons of science experiments, provisions and belated Christmas presents to the six man crew aboard the massive orbiting outpost, under Orbital Science’s $1.9 Billion resupply contract with NASA.

See our up close photo and video gallery of the spectacular Jan 9. Launch – above and below.

The privately built Cygnus cargo vessel is in the midst of a two and a half day high speed orbital chase and is scheduled to rendezvous and dock with the station early Sunday morning, Jan 12.

The Orbital-1 ship is named the “SS C. Gordon Fullerton” in honor of NASA space shuttle astronaut C. Gordon Fullerton who later worked at Orbital Sciences and passed away in 2013.

The imagery was shot by remote cameras set up all around the NASA Wallops Launch Pad 0A as well as from the media viewing site some 2 miles away.

Orbital Sciences Antares rocket blasts off on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission bound for ISS.  Photo taken by remote camera at launch pad. Credit: Alan Walters/AmericaSpace/awaltersphoto.com
Orbital Sciences Antares rocket blasts off on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission bound for ISS. Photo taken by remote camera at launch pad. Credit: Alan Walters/AmericaSpace/awaltersphoto.com

Currently, the Cygnus spacecraft is barely 12 hours from its carefully choreographed arrival at the station on Sunday morning.

NASA TV will provide live coverage starting at 5 a.m. EST Sunday – http://www.nasa.gov/multimedia/nasatv/

Orbital Sciences’ first dedicated Cygnus mission gets underway at 1:07 p.m. EST, Thursday, 9 January, with the launch of Antares from Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) on Wallops Island, Va. Credit: Mike Killian/mikekillianphotography.com
Orbital Sciences’ first dedicated Cygnus mission gets underway at 1:07 p.m. EST, Thursday, 9 January, with the launch of Antares from Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) on Wallops Island, Va. Credit: Mike Killian/mikekillianphotography.com/AmericaSpace

“All Cygnus systems are performing as expected with no issues,” said Orbital Sciences in an update.

“The spacecraft has conducted five orbit-raising maneuvers and is on track for rendezvous with the International Space Station tomorrow morning [Sunday, Jan. 12].”

“Cygnus will maneuver to a distance of about 30 feet from the station,” said Frank Culbertson, executive vice president and general manager of Orbital’s advanced spaceflight programs group, and former Space Shuttle commander.

The third Antares rocket springs away from Pad 0A on a mission which firmly establishes Orbital Sciences Corp. as one of NASA’s Commercial Resupply Services (CRS) suppliers.   Credit: Mike Killian/mikekillianphotography.com
The third Antares rocket springs away from Pad 0A on a mission which firmly establishes Orbital Sciences Corp. as one of NASA’s Commercial Resupply Services (CRS) suppliers. Credit: Mike Killian/mikekillianphotography.com/AmericaSpace

The goal of Orbital Sciences Cygnus – and the Space X Dragon – is to restore America’s cargo delivery capabilities to low Earth orbit and the ISS that was totally lost following the forced retirement of NASA’s Space Shuttles, by utilizing new and privately developed resupply freighters that will cuts costs.

Cygnus is packed with 2,780 pounds (1261 kg) of station supplies and vital research experiments.

Cygnus pressurized cargo module - side view - during prelaunch processing by Orbital Sciences at NASA Wallops, VA.  Credit: Ken Kremer - kenkremer.com
This Cygnus is streaking to the ISS and docks on Jan. 12
Cygnus pressurized cargo module – side view – during prelaunch processing by Orbital Sciences at NASA Wallops, VA. Docking mechanism to ISS at right. Credit: Ken Kremer – kenkremer.com

Expedition 38 crew members Engineers Mike Hopkins and Koichi Wakata aboard the station will reach out and with the stations 57 foot long Canadarm2 and grapple Cygnus with the robotic arm on Sunday at 6:02 a.m. EDT.

Hopkins and Wakata will then carefully maneuver the robot arm and guide Cygnus to its berthing port on the Earth-facing side of the Harmony node.

The installation begins around 7:20 a.m. EDT. And NASA TV will provide continuous live coverage of Cygnus rendezvous, docking and berthing operations.

Billowing smoke and flame in all directions, ORB-1 takes flight on Jan. 9, 2014. Credit: Mike Killian/mikekillianphotography.com
Billowing smoke and flame in all directions, ORB-1 takes flight on Jan. 9, 2014. Credit: Mike Killian/mikekillianphotography.com

The majestic blastoff of Orbital Science’s two stage Antares rocket took place from a beachside pad at NASA’s Wallop’s Flight Facility along the eastern shore of Virginia, Thursday, at 1:07 p.m. EST.

The station was flying about 260 miles over the Atlantic Ocean just off the coast of Brazil as Antares soared aloft.

Following the 10 minute ascent to orbit, Cygnus separated as planned from the ATK built upper stage about 30 minutes after launch. The Ukrainian supplied first stage fired for approximately four and one half minutes

The solar arrays deployed as planned once Cygnus was in Earth orbit to provide life giving energy required to command the spacecraft.

The picture perfect launch of the 133 foot tall Antares put on a spectacular sky show following a trio of delays since mid- December 2013.

The first postponement was forced when spacewalking astronauts were called on to conduct urgent repairs to fix an unexpected malfunction in the critical cooling system on board the station.

Then, unprecedented frigid weather caused by the ‘polar vortex’ forced a one day from Jan. 7 to Jan. 8.

Finally, an unexpected blast of solar radiation from the Earth’s Sun on Tuesday (Jan. 7) caused another 24 postponement because the highly energetic solar particles could have fried the delicate electronics controlling the rockets ascent with disastrous consequences.

Cygnus is loaded with science experiments, computer supplies, spacewalk tools, food, water, clothing and experimental hardware.

“The crew will unload Cygnus starting probably the next day after it docks at station,” said Culbertson.

Among the research items packed aboard the Cygnus flight are an experiment to study the effectiveness of antibiotics in space and a batch of 23 student experiments involving life sciences topics ranging from amoeba reproduction to calcium in the bones to salamanders.

The student experiments selected are from 6 middle school and high school teams from Michigan, Texas, Colorado, and Washington, DC.

Watch for my ongoing Antares/Cygnus reports.

Stay tuned here for Ken’s continuing Orbital Sciences, SpaceX, commercial space, Chang’e-3, LADEE, Mars and more news.

Ken Kremer

Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS.  Photo taken by remote camera at launch pad. Credit: Ken Kremer - kenkremer.com
Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS. Photo taken by remote camera at launch pad. Credit: Ken Kremer – kenkremer.com
Birds take flight as Antares lifts off for Space Station from Virginia Blastoff of Antares commercial rocket built by Orbital Sciences on Jan. 9, 2014 from Launch Pad 0A at NASA Wallops Flight Facility, VA on a mission for NASA bound for the International Space Station and loaded with science experiments. Credit: Ken Kremer – kenkremer.com
Birds take flight as Antares lifts off for Space Station from Virginia Blastoff of Antares commercial rocket built by Orbital Sciences on Jan. 9, 2014 from Launch Pad 0A at NASA Wallops Flight Facility, VA on a mission for NASA bound for the International Space Station and loaded with science experiments.
Credit: Ken Kremer – kenkremer.com
Antares soars aloft on Jan. 9, 2014 from NASA Wallops.  Credit: Elliot Severn/SpaceFlight Insider
Antares soars aloft on Jan. 9, 2014 from NASA Wallops. Credit: Elliot Severn/SpaceFlight Insider
Antares soars from NASA Wallops. Credit: Mike Killian/mikekillianphotography.com/AmericaSpace
Antares soars from NASA Wallops. Credit: Mike Killian/mikekillianphotography.com/AmericaSpace
Antares rocket the night before launch beautifully reflected in icy water at NASA Wallops launch pad amidst bone chilling cold during remote camera setup for the photos featured herein.  Credit: Ken Kremer - kenkremer.com
Antares rocket the night before launch beautifully reflected in icy water at NASA Wallops launch pad amidst bone chilling cold during remote camera setup for the photos featured herein. Credit: Ken Kremer – kenkremer.com
Space journalists Ken Kremer/Universe Today (left) and Mike Killian  and Alan Walters  of AmericaSpace (center, right) setting remote cameras at Antares launch pad amidst bone chilling cold for the photos featured herein.  Credit: Ken Kremer - kenkremer.com
Space journalists Ken Kremer/Universe Today (left) and Mike Killian and Alan Walters of AmericaSpace (center, right) setting remote cameras at Antares launch pad amidst bone chilling cold for the photos featured herein. Credit: Ken Kremer – kenkremer.com

NASA Antares Jan. 9, 2014 Launch Video



Video caption: U.S. Cargo Ship Launches to ISS on First Resupply Mission from NASA Wallops

What Are Cassini’s Most Interesting Discoveries?

What Are Cassini's Most Interesting Discoveries?

We recently interviewed Dr. Kevin Grazier, on of the scientist who has worked extensively on the Cassini mission. Here’s what he had to tell us about that mission’s discoveries.

“My name is Kevin Grazier. I am a planetary scientist, and for my research I do long-term integrations or simulations of early solar system evolution. I’m a former scientist on the Cassini mission and a consultant to several TV series such as Defiance, Falling Skies, the movie Gravity, and formerly, Battlestar Galactica.”

What are Cassini’s most amazing discoveries?
“Cassini has essentially rewritten the book on the Saturn system. I was on the spacecraft team for 15 years. I worked as a science planner and as the Investigation Scientist on the ISS instrument. (That’s Imaging Science Subsystem, not International Space Station.) And of the discoveries we found, I’m trying to think of what I’d call or classify as the most exciting.”

“One was predicted – the fact that it was believed that there could be ice volcanoes on Enceladus. And as a matter of fact, there are volcanoes on Enceladus, or active venting, however you want to look at that. Those vents create the “E” ring, so we have a ring created by material vented off Enceladus. That’s pretty exciting, because we see an active object venting material, and there aren’t a lot of active objects in the solar system.”

This mosaic of Titan was created from the first flyby of the moon by Cassini in 2004. Credit: NASA/JPL/SS
This mosaic of Titan was created from the first flyby of the moon by Cassini in 2004. Credit: NASA/JPL/SS

“The surface of Titan is really fantastic. We have open oceans or seas of hydrcarbons on Titan. We have the possibility of an open ocean underneath the crust, just like we believe is under the surface of Europa. We have one image which seems to capture what might be a volcanic eruption. That’s important, because in the outer solar system, planetary science considers ice a rock. What a rock is defined as depends on where you are in the solar system. So in the outer solar system, ice is a rock. All of the moons in the outer solar system except Io have icy crusts. Now, if you have a volcanic eruption on Titan, we have an eruption of magma, and if ice is a rock, that eruption is water. So we have evidence of magma chambers which could be cauldrons of life-giving water.”

“How cool is that? How counter-intuitive is that? How science-fiction-y is that? That one of the most interesting places to look for is a lava chamber or magma chamber that could be suitable for sustaining life. I think that’s really exciting.”

You can follow Dr. Kevin on Twitter