How to See Spectacular Antares Commercial Rocket Launch to Space Station on Jan. 8 – Complete Viewing Guide

Orbital 1 Launch from NASA Wallops Island, VA on Jan. 8, 2014- Time of First Sighting Map This map shows the rough time at which you can first expect to see Antares after it is launched on Jan. 8, 2014. It represents the time at which the rocket will reach 5 degrees above the horizon and varies depending on your location . We have selected 5 degrees as it is unlikely that you'll be able to view the rocket when it is below 5 degrees due to buildings, vegetation, and other terrain features. As an example, using this map when observing from Washington, DC shows that Antares will reach 5 degrees above the horizon approximately 100 seconds after launch (L + 100 sec). Credit: Orbital Sciences/NASA

Orbital 1 Launch from NASA Wallops Island, VA on Jan. 8, 2014- Time of First Sighting Map
This map shows the rough time at which you can first expect to see Antares after it is launched on Jan. 8, 2014. It represents the time at which the rocket will reach 5 degrees above the horizon and varies depending on your location . We have selected 5 degrees as it is unlikely that you’ll be able to view the rocket when it is below 5 degrees due to buildings, vegetation, and other terrain features. As an example, using this map when observing from Washington, DC shows that Antares will reach 5 degrees above the horizon approximately 100 seconds after launch (L + 100 sec). Credit: Orbital Sciences/NASA [/caption]

WALLOPS ISLAND, VA – Catching a slim weather break amidst the monster blizzard and unprecedented arctic air low temperatures afflicting the central and northern United States, Orbital Sciences Corp. is marching forward with plans for a spectacular daylight blastoff of the firms privately developed Antares rocket and Cygnus cargo spacecraft on Wednesday, Jan. 8 from a beachside pad at NASA Wallops Island, VA – on a critical mission for NASA bound for the Space Station carrying a huge cargo of vital science experiments.

Here’s our complete guide on “How to See the Antares/Cygnus Jan. 8 Blastoff” – chock full of viewing maps and trajectory graphics (above and below) from a variety of prime viewing locations; including historic landmarks in Washington, DC., NYC, Baltimore, Philadelphia, Virginia and more.

The cold weather, daytime Antares liftoff is currently scheduled for 1:32 p.m. EST from Launch Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) at NASA Wallops, Virginia.

Antares will be the 2nd of two private rockets soaring to space this week. And the path up is clear following today’s successful blastoff of the SpaceX upgraded Falcon 9 with the Thaicom-6 commercial telecom satellite.

National Mall, Washington, DC
National Mall, Washington, DC

Due to continuing extremely cold weather conditions forecast for mid week, the launch could slip a day to Thursday, Jan. 9 when slightly warmer temperatures are expected, but it looks acceptable at this time.

This flight was originally due to blastoff at night in mid-December 2013 but was postponed due to the unexpected need for urgent repairs to get the stations critical cooling system restored to full operation following a malfunction. The fixes were accomplished during a pair of pre-Christmas spacewalks by American astronauts Rick Mastracchio and Mike Hopkins, paving the way for the Antares/Cygnus rescheduled liftoff.

Antares rocket and Cygnus spacecraft at Launch Pad 0A at NASA Wallops Flight Facility Facility, VA. LADEE lunar mission launch pad 0B stands adjacent to right of Antares. Credit: Ken Kremer - kenkremer.com
Antares rocket and Cygnus spacecraft at Launch Pad 0A at NASA Wallops Flight Facility Facility, VA. LADEE lunar mission launch pad 0B stands adjacent to right of Antares. Credit: Ken Kremer – kenkremer.com

And although it’s now moved to daylight due to orbital mechanics, the two stage Antares rockets exhaust plume should easily be visible to many millions of residents up and down the US East Coast spanning from South Carolina to Massachusetts – weather permitting.

Antares will be able to be seen by spectators inland as well, reaching potentially into portions of West Virginia, western Pennsylvania and New England depending on cloud cover.

For example; Here’s the expected view from the US Capitol – for all the politicians who decide NASA’s budget as well as myriads of tourists visiting from all across the globe.

Capitol-East-Front-Steps
US Capitol- East Front Steps

The viewing maps are courtesy of Orbital Sciences, the private company that developed both the Antares rocket and Cygnus resupply vessel aimed at keeping the International Space Station (ISS) fully stocked and operational for science research.

Up top is the time of first sighting map showing when the rocket reaches 5 degrees of elevation in the eastern United States.

If you want to imitate Rocky’s famous workout on the steps of the Philadelphia Art Museum, here’s what you’ll see:

Philadelphia
Philadelphia

And with yet another cold arctic air mass gushing towards eastwards, its certain to be frigid in many regions – so be sure to dress warmly.

The flight is designated the Orbital-1, or Orb-1 mission.

Orb-1 is the first of eight commercial cargo resupply missions to the ISS by Orbital under its Commercial Resupply Services (CRS) contract with NASA.

Battery Park, NYC
Battery Park, NYC

This launch follows a pair of successful launches in 2013, including the initial test launch in April and the 1st demonstration launch to the ISS in September.

So here’s your chance to witness a mighty rocket launch – from the comfort of your home from locations along the east coast.

Naval Station Norfolk, Virginia
Naval Station Norfolk, Virginia

Best viewing of all will be in the mid-Atlantic region closest to Wallops Island.

If you have the opportunity to observe the launch locally, you’ll get a magnificent view and hear the rockets thunder at either the NASA Wallops Visitor Center or the Chincoteague National Wildlife Refuge/Assateague National Seashore.

For more information about the Wallops Visitors Center, including directions, see: http://www.nasa.gov/centers/wallops/visitorcenter

The rocket was rolled out to the Wallops launch pad on Sunday by Orbital’s technicians.

Cygnus is loaded with approximately 2,780 pounds / 1,261 kilograms of cargo for the ISS crew for NASA including science experiments, computer supplies, spacewalk tools, food, water, clothing and experimental hardware.

Cygnus pressurized cargo module - side view - during prelaunch processing by Orbital Sciences at NASA Wallops, VA.  Credit: Ken Kremer - kenkremer.com
Cygnus pressurized cargo module – side view – during prelaunch processing by Orbital Sciences at NASA Wallops, VA. Docking mechanism to ISS at right. Credit: Ken Kremer – kenkremer.com

Among the research items packed aboard the Antares/Cygnus flight are an experiment to study the effectiveness of antibiotics in space and a batch of 23 student experiments involving life sciences topics ranging from amoeba reproduction to calcium in the bones to salamanders.

Of course you can still view the launch live via the NASA TV webcast.

NASA Television coverage of the Antares launch will begin at 1 p.m. on Jan. 8 – www.nasa.gov/ntv

A launch on either Jan. 8 or Jan. 9 will result in a grapple of Cygnus by the Expedition 38 crew aboard the station on Sunday, Jan. 12 at at 6:02 a.m. EDT.

Weather outlook appears rather promising at this time – 90% favorable chance of lift off.

Watch for my ongoing Antares launch reports from on site at NASA Wallops.

Stay tuned here for Ken’s continuing Orbital Sciences, SpaceX, commercial space, Chang’e-3, LADEE, Mars and more news.

Ken Kremer

…………….

Learn more about Orbital Sciences Antares Jan. 8 launch, SpaceX, Curiosity, Orion, MAVEN, MOM, Mars rovers and more at Ken’s upcoming presentations

Jan 7-9: “Antares/Cygnus ISS Rocket Launch from Virginia on Jan. 8” & “Space mission updates”; Rodeway Inn, Chincoteague, VA, evening

Iwo Jima memorial
Iwo Jima memorial
Dover
Dover
Antares rocket slated for Jan. 7, 2014 launch undergoes processing at the Horizontal Integration Facility at NASA Wallops, Virginia, during exclusive visit by  Ken Kremer/Universe Today.   Credit: Ken Kremer - kenkremer.com
Antares rocket slated for Jan. 8, 2014 launch undergoes processing at the Horizontal Integration Facility at NASA Wallops, Virginia, during exclusive visit by Ken Kremer/Universe Today. Credit: Ken Kremer – kenkremer.com
Seaside panoramic view of an Antares rocket and Cygnus spacecraft at Launch Pad 0A at NASA Wallops Flight Facility on the Virginia Eastern Shore.  Blastoff for the ISS is slated for Jan. 7 at 1:55 p.m. EDT.  Credit: Ken Kremer (kenkremer.com)
Seaside panoramic view of an Antares rocket and Cygnus cargo spacecraft built by Orbital Sciences at Launch Pad 0A at NASA Wallops Flight Facility on the Virginia Eastern Shore. Blastoff for the ISS is slated for Jan. 8, 2014 at 1:32 p.m. EDT. Credit: Ken Kremer – kenkremer.com
Antares Launch from Virginia– Maximum Elevation Map  The Antares daytime launch will be visible to millions of spectators across a wide area of the Eastern US -weather permitting. This map shows the maximum elevation (degrees above the horizon) that the Antares rocket will reach during the Jan 7, 2014 launch depending on your location along the US east coast. Credit: Orbital Sciences
Antares Launch from Virginia– Maximum Elevation Map
The Antares daytime launch will be visible to millions of spectators across a wide area of the Eastern US -weather permitting. This map shows the maximum elevation (degrees above the horizon) that the Antares rocket will reach during the Jan 8, 2014 launch depending on your location along the US east coast. Credit: Orbital Sciences
Mike Whalen of Orbital Sciences and Ken Kremer of Universe Today pose at the base of the Antares rocket 1st stage now slated for liftoff on Jan. 7, 2014 at NASA Wallops, Virginia.  Credit: Ken Kremer - kenkremer.com
Mike Whalen of Orbital Sciences and Ken Kremer of Universe Today pose at the base of the Antares rocket 1st stage now slated for liftoff on Jan. 8, 2014 at NASA Wallops, Virginia. Credit: Ken Kremer – kenkremer.com

Kepler Finds an Earth-Sized “Gas Giant”

Artist's impression of KOI-xxx, fjkdshfkdsajhkfdkfd

Gas planets aren’t always bloated, monstrous worlds the size of Jupiter or Saturn (or larger) they can also apparently be just barely bigger than Earth. This was the discovery announced earlier today during the 223rd meeting of the American Astronomical Society in Washington, DC, when findings regarding the gassy (but surprisingly small) exoplanet KOI-314c were presented.

“This planet might have the same mass as Earth, but it is certainly not Earth-like,” said David Kipping of the Harvard-Smithsonian Center for Astrophysics (CfA), lead author of the discovery. “It proves that there is no clear dividing line between rocky worlds like Earth and fluffier planets like water worlds or gas giants.”

Discovered by the Kepler space telescope — ironically, during a hunt for exomoons — KOI-314c was found transiting a red dwarf star only 200 light-years away — “a stone’s throw by Kepler’s standards,” according to Kipping. (Kepler’s observation depth is about 3000 light-years.)

Relative size comparison of KOI-314c and Earth; both have similar mass. (J. Major)
Relative size comparison of KOI-314c and Earth; both have similar mass. (J. Major)

Kipping used a technique called transit timing variations (TTV) to study two of three exoplanets found orbiting KOI-314. Both are about 60% larger than Earth in diameter but their respective masses are very different. KOI-314b is a dense, rocky world four times the mass of Earth, while KOI-314c’s lighter, Earthlike mass indicates a planet with a thick “puffy” atmosphere… similar to what’s found on Neptune or Uranus.

Unlike those chilly worlds, though, this newfound exoplanet turns up the heat. Orbiting its star every 23 days, temperatures on KOI-314c reach 220ºF (104ºC)… too hot for water to exist in liquid form and thus too hot for life as we know it.

In fact Kipping’s team found KOI-314c to only be 30 percent denser than water, suggesting that it has a “significant atmosphere hundreds of miles thick,” likely composed of hydrogen and helium.

It’s thought that KOI-314c may have originally been a “mini-Neptune” gas planet and has since lost some of its atmosphere, boiled off by the star’s intense radiation.

Not only is KOI-314c the lightest exoplanet to have both its mass and diameter measured but it’s also a testament to the success and sensitivity of the relatively new TTV method, which is particularly useful in multiple-planet systems where the tiniest gravitational wobbles reveal the presence and details of neighboring bodies.

(Watch the latest Kepler Orrery video here)

“We are bringing transit timing variations to maturity,” Kipping said. He added during the closing remarks of his presentation at AAS223: “It’s actually recycling the way Neptune was discovered by watching Uranus’ wobbles 150 years ago. I think it’s a method you’ll be hearing more about. We may be able to detect even the first Earth 2.0 Earth-mass/Earth-radius using this technique in the future.”

Source: Harvard Smithsonian CfA press release

SpaceX Starts 2014 With Spectacular Private Rocket Success Delivering Thai Satellite to Orbit – Gallery

Blastoff of 1st Falcon 9 rocket in 2014 with Thaicom 6 commercial satellite from Cape Canaveral, FL on Jan. 6. Credit: Jeff Seibert

SpaceX began 2014 with a spectacular big bang for private space today, Jan. 6, when the firms next generation Falcon 9 rocket blasted off for the first time this year and successfully delivered the Thaicom 6 commercial broadcasting satellite to its target orbit.

The new, next generation Falcon 9 rocket lifted off at 5:06 p.m. EST (2206 GMT) from Cape Canaveral Air Force Station, Florida with the Thai payload.

The sunset SpaceX launch from the Florida Space Coast took place precisely on time with ignition of the nine Merlin 1-D first stage engines at Space Launch Complex 40.

TCom6-01

The launch was broadcast live via a SpaceX webcast.

The nine engines on the 224 foot tall Falcon 9 v1.1 rocket generate 1.3 million pounds of thrust, about 50% more than the initial Falcon 9.

The second stage Merlin vacuum engine fired twice as planned.

The first firing began approximately 184 seconds into flight and lasted five minutes and 35 second to deliver Thaicom 6 into its parking orbit.

Clearing the strongback, the Thaicom 6/Falcon 9 mission roars from the pad in its quest for supergeosync orbit. Credit: nasatech.net
Clearing the strongback, the Thaicom 6/Falcon 9 mission roars from the pad in its quest for supergeosync orbit. Credit: nasatech.net

The engine relit for a second burn eighteen minutes later and lasted just over one minute to carry the satellite to its final geostationary transfer orbit.

The restart of the Falcon 9 second stage is a requirement for all geostationary transfer missions.

Falcon 9 rocket soar to space with Thaicom 6 commercial satellite on Jan 6, 2014 from Cape Canaveral, FL. Credit: Jeff Seibert
Falcon 9 rocket soars to space with Thaicom 6 commercial satellite on Jan 6, 2014 from Cape Canaveral, FL. Credit: Jeff Seibert

31 minutes after liftoff the Thaicom 6 spacecraft separated from the Falcon 9 launch vehicle and was placed into the desired geosynchronous transfer orbit of 295 x 90,000 km geosynchronous at 22.5 degrees inclination.

SpaceX said in a statement that, “The Falcon 9 launch vehicle performed as expected, meeting 100% of mission objectives.”

SpaceX did not attempt to recover the first stage booster on this mission, SpaceX spokeswoman Emily Shanklin told me. “We may try on the next flight.”

Thaicom 6 commercial broadcasting satellite in geosynchronous orbit, artists concept
Thaicom 6 commercial broadcasting satellite in geosynchronous orbit, artists concept

This marks the second launch of the upgraded Falcon 9 in just over a month, following closely on the heels of the maiden flight from Cape Canaveral on Dec. 3 with another commercial satellite, namely SES-8.

“Today’s successful launch of the THAICOM 6 satellite marks the eighth successful flight in a row for Falcon 9,” said Gwynne Shotwell, President of SpaceX. “SpaceX greatly appreciates THAICOM’s support throughout this campaign and we look forward to a busy launch schedule in 2014.”

Both the Thaicom-6 and SES-8 satellites were built by Orbital Sciences, one of SpaceX’s chief competitors in the commercial space race, making for strange bedfellows.

Thaicom 6 patch
Thaicom 6 patch

Indeed it’s a very busy week for private rockets.

Orbital Sciences is poised to launch their Antares rocket in less than 48 hours on Wednesday, Jan. 8 on a commercial resupply mission for NASA that’s bound for the international Space Station (ISS).

The new Falcon 9 is the key to fulfilling SpaceX’s future launch manifest of nearly 50 payloads worth billions of dollars for a diverse customer base.

Next Generation SpaceX Falcon 9 rocket blasts off with SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
Next Generation SpaceX Falcon 9 rocket blasts off with SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

The next gen Falcon 9 will also launch the human rated SpaceX Dragon to the ISS in a bid to restore America’s human spaceflight capability.

A pair of critical Falcon 9/Dragon abort tests are planned for 2014. Read my new article and discussion with SpaceX CEO Elon Musk – here.

The next SpaceX Dragon cargo launch to the ISS is currently scheduled for Feb. 22, said SpaceX spokeswoman Emily Shanklin told Universe Today.

Sunset launch of Falcon 9 with Thiacom 6 broadcast satellite on Jan 6, 2014 from Cape Canaveral, FL.   Credit: Jeff Seibert
Sunset launch of Falcon 9 with Thiacom 6 broadcast satellite on Jan 6, 2014 from Cape Canaveral, FL. Credit: Jeff Seibert
Almost clear of the catenary wires, the Thaicom 6/Falcon 9 mission streaks to orbit. Credit: nasatech.net
Almost clear of the catenary wires, the Thaicom 6/Falcon 9 mission streaks to orbit. Credit: nasatech.net

Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Chang’e-3, LADEE, Mars and more news.

Ken Kremer

…………….

Learn more about SpaceX, Orbital Sciences Antares Jan. 8 launch, Curiosity, Orion, MAVEN, MOM, Mars rovers and more at Ken’s upcoming presentations

Jan 7-9: “Antares/Cygnus ISS Rocket Launch from Virginia on Jan. 8” & “Space mission updates”; Rodeway Inn, Chincoteague, VA, evening

Falcon 9 rocket disappears into the clouds following blastoff on Jan. 6, 2014 from Cape Canaveral, FL. Credit: Jeff Seibert
Falcon 9 rocket disappears into the clouds following blastoff on Jan. 6, 2014 from Cape Canaveral, FL. Credit: Jeff Seibert
Blastoff of 1st Falcon 9 rocket in 2014 with Thaicom 6 commercial satellite from Cape Canaveral, FL on Jan. 6. Credit: SpaceX
Blastoff of 1st Falcon 9 rocket in 2014 with Thaicom 6 commercial satellite from Cape Canaveral, FL on Jan. 6. Credit: SpaceX

Satellite Image of the “Polar Vortex” Over the US

This image was captured by NOAA's GOES-East satellite on January 6, 2014 at 1601 UTC/11:01 a.m. EST. A frontal system that brought rain to the coast is draped from north to south along the U.S. East Coast. Behind the front lies the clearer skies bitter cold air associated with the Polar Vortex.

If you live in the north and eastern part of the US, you’re probably experiencing some frigid weather. You’re probably also hearing people talk about something called a “polar vortex.”

Just what is a polar vortex and why is it making the temperatures so cold?

This image was captured by NOAA’s GOES-East satellite on Jan. 6, 2014, at 11:01 a.m. EST (1601 UTC). A frontal system that brought rain and snow to the US East coast is seen draped from north to south, and behind the front lies the clearer skies bitter cold air associated with the polar vortex. Also visible in the image is snow on the ground in Minnesota, Wisconsin, Illinois, Indiana, Ohio, Michigan, Iowa and Missouri. The clouds over Texas are associated with a low pressure system centered over western Oklahoma that is part of the cold front connected to the movement of the polar vortex.

NASA explains that the polar vortex is a “whirling and persistent large area of low pressure, found typically over both North and South poles.”

Weather reports say the northern polar vortex was pushing southward over western Wisconsin and eastern Minnesota on Monday, Jan. 6, 2014, and was bringing frigid temperatures to half of the continental United States. It is expected to move northward back over Canada toward the end of the week.

More about the polar vortex:

Both the northern and southern polar vortexes are located in the middle and upper troposphere (lowest level of the atmosphere) and the stratosphere (next level up in the atmosphere). The polar vortex is a winter phenomenon. It develops and strengthens in its respective hemispheres’ winters as the sun sets over the polar region and temperatures cool. They weaken in the summer. In the Northern Hemisphere, they circulate in a counterclockwise direction, so the vortex sitting over western Wisconsin is sweeping in cold Arctic air around it.

Source: NASA

Internet Search Yields No Evidence of Time Travelers

Comet ISON was used in a search for time travelers. NASA’s Hubble Space Telescope provides a close-up look of Comet ISON (C/2012 S1), as photographed on April 10. Credit: NASA, ESA, J.-Y. Li (Planetary Science Institute), and the Hubble Comet ISON Imaging Science Team.

You can find anything on the internet, right? A new study reveals, however, that you can’t find evidence of time travelers on the internet. Credible time travelers, that is.

The study was conducted by astrophysicist Robert Nemiroff who is part of the Astronomy Picture of the Day (APOD) team, along with some of his students from Michigan Technological University.

They did three separate types of searches, and developed a search strategy based on what they call “prescient knowledge.” They looked for discussions on social media and various websites where there might be evidence of a mention of something or someone before people should have known about it. If they were able to find evidence of that, it could indicate that whoever wrote it had traveled from the future.

They selected search terms relating to two recent phenomena, Pope Francis and Comet ISON, and began looking for references to them before they were known to exist.

First, they looked for specific terms on Twitter, then secondly looked for “prescient” inquiries submitted to a search engine, and the third search involved a request for a direct Internet communication, either by email or tweet, pre-dating to the time of the inquiry.

The team used a variety of search engines, such as Google and Bing, and combed through Facebook and Twitter.

Their results? “No time travelers were discovered,” says the abstract of their paper.

“In our limited search we turned up nothing,” Nemiroff said in a press release. “I didn’t really think we would. But I’m still not aware of anyone undertaking a search like this. The Internet is essentially a vast database, and I thought that if time travelers were here, their existence would have already come out in some other way, maybe by posting winning lottery numbers before they were selected.”

So far, no lottery winners have confessed to using time travel to make their winnings.

In the case of Comet ISON, there were no mentions before it was discovered in September 2012. They discovered only one blog post referencing a Pope Francis before Jorge Mario Bergoglio was elected head of the Catholic Church on March 16, but it seemed more accidental than prescient.

In the third part of their search, the researchers created a post in September 2013 asking readers to email or tweet one of two messages on or before August 2013: “#ICanChangeThePast2” or “#ICannotChangeThePast2.”

No replies have been given … yet.

And just in case you’re wondering credible time travelers do not include the two “chrononauts” who said they time traveled with a young Barack Obama.

Nemiroff and physics graduate student Teresa Wilson will present their findings today, Monday, Jan. 6, at the American Astronomical Society meeting in Washington, DC.

Carnival of Space #335

Carnival of Space. Image by Jason Major.
Carnival of Space. Image by Jason Major.

This week’s Carnival of Space is hosted by Brian Wang at his Next Big Future blog.

Click here to read Carnival of Space #335

And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.

Astronomy Cast Ep. 329: Telescope Making, Part 3: Space Telescopes

As we’ve said before, all telescopes really want to be in space. In part 3 of our series on amateur telescope making, we bring you up to speed on the final frontier: amateurs building space telescopes. The hardware and software is available off the shelf, and launches have never been more affordable. The era of amateur space telescopes has arrived.
Continue reading “Astronomy Cast Ep. 329: Telescope Making, Part 3: Space Telescopes”

Astro-Challenge: Nabbing Venus… at Inferior Conjunction

Venus as seen on the morning of inferior conjunction January 11th from Rekyavik, Iceland. Created by the author using Stellarium

Residents of high northern latitudes can take heart this frigid January: this coming weekend offers a chance to replicate a unique astronomical sighting.

Veteran sky watcher Bob King recently wrote a post for Universe Today describing what observers can expect from the planet Venus for the last few weeks of this current evening apparition leading  up to Venus’s passage between the Earth and the Sun on January 11th. Like so many other readers, we’ve been holding a nightly vigil to see when the last date will be that we can spot the fleeing world… and some great pics have been pouring in.

But did you know that when the conditions are just right, that you can actually spy Venus at the moment of inferior conjunction?

No, we’re not talking about a rare transit of Venus as last occurred on June 6th, 2012, when Venus crossed the disk of the Sun as seen from our Earthly perspective… you’ll have to wait until 2117 to see that occur again. What we’re talking about is a passage of Venus high above or below the solar disk, when spying it while the Sun sits just below the horizon might just be possible.

The disk of Venus at inferior conjunction. Simulation created by the author using Starry Night.
The disk of Venus at inferior conjunction. Simulation created by the author using Stellarium.

Not all inferior conjunctions of Venus are created equal. The planet’s orbit is tilted 3 degrees with respect to our own and can thus pass a maximum of eight degrees north or south of the Sun. Venus last did this on inferior conjunction in 2009 and will once again pass a maximum distance north of the Sun in 2017. For the southern hemisphere, the red letter years are 2007, and next year in 2015.

You’ll note that the above periods mark out an 8-year cycle, a period after which a roughly similar apparition of the planet Venus repeats. This is because Venus takes just over 224 days to complete one orbit, and 13 orbits of Venus very nearly equals 8 Earth years.

And while said northern maximum is still three years away, this week’s inferior conjunction is close at five degrees from the solar limb. The best prospects to see Venus at or near inferior conjunction occur for observers “North of the 60”. We accomplished this feat two Venusian 8-year cycles ago during the inferior conjunction of January 16th, 1998 from latitude 65 degrees north just outside of Fairbanks, Alaska. We set up on the Chena Flood Channel, assuring as low and as flat a horizon as possible… and we kept the engine of our trusty Jeep Wrangler idling as a refuge from the -40 degrees Celsius temperatures!

A daytime Venus just over five days from inferior conjunction. Credit
A 1.3% illuminated daytime Venus just over five days from inferior conjunction. Credit Shahrin Ahmad www.shahgazer.net

It took us several frigid minutes of sweeping the horizon with binoculars before we could pick up the dusky dot of Venus through the low atmospheric murk and pervasive ice fog. We could just glimpse Venus unaided afterward, once we knew exactly where to look!

This works because the ecliptic is at a relatively shallow enough angle to the horizon as seen from the high Arctic that Venus gets its maximum ~five degree “boost” above the horizon.

A word of warning is also in order not to attempt this sighting while the dazzling (and potentially eye damaging) Sun is above the horizon. Start sweeping the horizon for Venus about 30 minutes before local sunrise, with the limb of the Sun safely below the horizon.

Venus presents a disk 1’ 02” across as seen from Earth during inferior conjunction, the largest of any planet and the only one that can appear larger than an arc minute in size. Ironically, both Venus and Earth reach perihelion this month. Said disk is, however, only 0.4% illuminated and very near the theoretical edge of visibility known as the Danjon Limit. And although the technical visual magnitude of Venus at inferior conjunction is listed as -3.1, expect that illumination scattered across that razor thin crescent to be more like magnitude -0.6 due to atmospheric extinction.

The mid-January passage of Venus through the field of view of SOHO's LASCO C3 imager. Field orientation is set for January 7th. Created using Starry Nite Software.
The mid-January passage of Venus through the field of view of SOHO’s LASCO C3 imager. Field orientation is set for January 7th. Created using Starry Nite Software.

Are you one of the +99% of the world’s citizens that doesn’t live in the high Arctic? You can still watch the passage of Venus from the relative warmth of your home online, via the Solar Heliospheric Observatory’s (SOHO) vantage point in space. SOHO sits at the sunward L1 point between the Earth and the Sun and has been monitoring Sol with a battery on instruments ever since its launch in 1995. A great side benefit of this is that SOHO also catches sight of planets and the occasional comet that strays near the Sun in its LASCO C2 and C3 cameras. Venus will begin entering the 15 degree wide field of view for SOHO’s LASCO C3 camera on January 7th, and you’ll be able to trace it all the way back out until January 14th.

Venus post solar transit as seen in SOHO's LASCO C3 imager. Credit-ESA/NASA
Venus post solar transit as seen in SOHO’s LASCO C3 imager. Credit-ESA/NASA

From there on out, Venus will enter the early morning sky. When is the first date that you can catch it from your latitude with binoculars and /or the naked eye? Venus spends most of the remainder of 2014 in the dawn, reaching greatest elongation 46.6 degrees west of the Sun on March 22nd, 2014 and is headed back towards superior conjunction on the farside of the Sun on October 25th, 2014. But there’s lots more Venusian action in 2014 in store…. more to come!

Global Warming Explained in 52 Seconds

Graphic from "How Global Warming Works."

We are awash in the unseen, the unknown and the unexplained. Our Universe is enshrouded in mystery. Even what we do know — the complex physical laws that describe the planets, stars and galaxies — can seem just beyond any normal human being’s grasp. We can’t all be Einsteins, after all.

But excluding string theory, dark energy and quantum field theory most of science is remarkably within our grasp. And in less than a minute, a concept as culturally conflicted and misunderstood as global warming, can be explained. See above.

The motivation behind this video is simple. Research shows that virtually no Americans — roughly 0 percent — can explain the physical mechanisms of global warming at even a basic level. So Berkeley Professor Michael Ranney and colleagues created a total of five videos (with the longest clocking in at 656 words in under five minutes) with the hope of elucidating the basics of global warming.

Their initial study, completed in 2011, surveyed 270 people in San Diego parks in order to assess how well the average American understands global warming. San Diego was chosen because it draws tourists from across the United States, and would thus create a better rounded sample.

“The main concept we were hoping people would tell us, which is at the heart of understanding global warming, is that there is an asymmetry between stuff that’s coming in to our planet and stuff that’s heading out,” Ranney told Universe Today.

This asymmetry explains why sunlight (in the form of visible light) may enter the atmosphere unhindered but is later impeded by greenhouse gases (because it is no longer in the form of visible light — it has been absorbed by the Earth and emitted in the form of infrared light). But not a single person could explain global warming at this basic level.

“We were shocked at how few people knew this” Ranney said. “I thought it was a moral imperative to get the word out as fast as possible.”

So Ranney and his colleagues set out with their work in front of them, creating the videos in order to increase the average American’s understanding of global warming. Their goal is that any one of the five videos will change the lives of seven billion viewers.

“We hope that a video of 400 words or even 35 words will allow people to have a moment in time to which they fix that they knew what the mechanism of climate change was,” Ranney told Universe Today. For that single moment “their knowledge was obvious, valid, understandable and available.”

In order to drive this point home, Ranney used an analogy that began like this: “So a climate change acceptor walks into a bar.” But all jokes aside, if one who accepts anthropogenic global warming tries to convince the man sitting next to him that global warming is real, but cannot explain the physical mechanism behind global warming, then he’s in trouble. He’s likely not only lost his bar mate but encouraged a life-time of global warming denial.

We cannot expect to increase the public’s awareness and acceptance of climate change without a huge increase in scientific literacy. Even if every viewer can’t recall the exact mechanistic details of global warming they can at least say to the man sitting next to them at the bar: “Look, I can’t regurgitate it now but I did understand it then.”

This graph from NOAA shows the annual trend in average global air temperature in degrees Celsius, through December 2012. For each year, the range of uncertainty is indicated by the gray vertical bars. The blue line tracks the changes in the trend over time. Click here or on the image to enlarge. (Image courtesy NOAA's National Climatic Data Center.)
This graph from NOAA shows the annual trend in average global air temperature in degrees Celsius, through December 2012. For each year, the range of uncertainty is indicated by the gray vertical bars. The blue line tracks the changes in the trend over time. Click here or on the image to enlarge. (Image courtesy NOAA’s National Climatic Data Center.)

A second study provided college students with an explanation akin to the one found in the five-minute video.  After reading it, the students not only understood global warming better but they were also more likely to accept global warming as a reality — suggesting these videos have the power to change people’s minds.

“Eventually people come to appreciate salient evidence,” Ranney told Universe Today. “Let’s say you think you’re in a fantastic monogamous relationship. If you come home and find your partner with someone else, it only takes that one moment in time to change your belief.”

Helping people to understand the basic physics behind global warming is a vital tool in convincing them that global warming is as real as it gets. Once someone clicks on the video, the next 52 seconds alone might leave a pretty big impact.

You can view all the videos on howglobalwarmingworks.org.

Ranney emphasized help from graduate student Lee Nevo Lamprey, undergraduate student Kimberly Le and other collaborators (including Dav Clark, Daniel Reinholz, Lloyd Goldwasser, Sarah Cohen and Rachel Ranney).

Will The Sun Explode?

Will The Sun Explode?

All stars die, some more violently than others.

Once our own Sun has consumed all the hydrogen fuel in its core, it too will reach the end of its life. Astronomers estimate this to be a short 7 billion years from now. For a few million years, it will expand into a red giant, puffing away its outer layers. Then it’ll collapse down into a white dwarf and slowly cool down to the background temperature of the Universe.

I’m sure you know that some other stars explode when they die. They also run out of fuel in their core, but instead of becoming a red giant, they detonate in a fraction of a second as a supernova.

So, what’s the big difference between stars like our Sun and the stars that can explode as supernovae?

Mass. That’s it.

Supernova progenitors – these stars capable of becoming supernovae – are extremely massive, at least 8 to 12 times the mass of our Sun. When a star this big runs out of fuel, its core collapses. In a fraction of a second, material falls inward to creating an extremely dense neutron star or even a black hole. This process releases an enormous amount of energy, which we see as a supernova.

If a star has even more mass, beyond 140 times the mass of the Sun, it explodes completely and nothing remains at all. If these other stars can detonate like this, is it possible for our Sun to explode?

Could there be some chain reaction we could set off, some exotic element a rare comet could introduce on impact, or a science fiction doomsday ray we could fire up to make the Sun explode?

Nope, quite simply, it just doesn’t have enough mass. The only way this could ever happen is if it was much, much more massive, bringing it to that lower supernovae limit.

In other words, you would need to crash an equally massive star into our Sun. And then do it again, and again.. and again… another half dozen more times. Then, and only then would you have an object massive enough to detonate as a supernova.

We don't have to worry about our sun exploding into a supernova.
We don’t have to worry about our sun exploding into a supernova.

Now, I’m sure you’re all resting easy knowing that solar detonation is near the bottom of the planetary annihilation list. I’ve got even better news. Not only will this never happen to the Sun, but there are no large stars close enough to cause us any damage if they did explode.
A supernova would need to go off within a distance of 100 light-years to irradiate our planet.

According to Dr. Phil Plait from Bad Astronomy, the closest star that could detonate as a supernova is the 10 solar mass Spica, at a distance of 260 light-years. No where near close enough to cause us any danger.

So don’t worry about our Sun exploding or another nearby star going supernova and wiping us out. You can put your feet up and relax, as it’s just not going to happen.