Can The International Space Station Fit Bigger Astronaut Crews?

Astronauts from Expeditions 37, 38 and 39 during a rare space station press conference Nov. 8, 2013. Front row, left to right: NASA astronaut Karen Nyberg, Russian cosmonaut Fyodor Yurchikhin and European Space Agency astronaut Luca Parmitano. Middle row, left to right: NASA astronaut Michael Hopkins, Russian cosmonaut Oleg Kotov and Russian cosmonaut Russian cosmonaut Sergey Ryazanskiy. Back row, left to right: NASA astronaut Rick Mastracchio, Japanese astronaut Koichi Wakata and Russian cosmonaut Mikhail Tyurin. Credit: NASA TV (screencap)

Things are a little more crowded than usual in the International Space Station. For a few days, nine astronauts and cosmonauts are floating in the cramped quarters of the orbiting complex. Typical crew sizes range between three and six. How did the astronauts find room to work and sleep?

“One of the things we had to do was make space for them,” said European Space Agency astronaut Luca Parmitano in a rare press conference today (Nov. 8) from orbit, which included participation from Universe Today. He then explained a procedure where the astronauts swapped a Soyuz crew spacecraft from one Russian docking port to another a few days before Expedition 38/39’s crew arrived on board on Thursday. This cleared the way for three more people to arrive.

“We [also] had to adjust for emergency procedures. All of our procedures are trained and worked for a group of six. We had to work on a way to respond if something happened.” As for sleeping, it was decided the six people already on board, “as seniority, would stay in the crew quarters.” The newer astronauts have temporary sleeping arrangements in other modules until the ranks thin out a bit on Sunday.

So this works for a short while, but what about the long-term? Could the station handle having nine people there for weeks at a time, rather than six, and would there be enough science work to go around?

Luca Parmitano controlled the K-10 rover from space on July 26, 2013. Credit: NASA Television (screencap)
Luca Parmitano controlling the K-10 rover from space on July 26, 2013 in a test intended to see how well astronauts in a spacecraft can communicate with rovers on the surface. This information could be used for missions far in the future. Credit: NASA Television (screencap)

“I think, absolutely, moving to nine people is doable and in terms of the science would be fantastic,” NASA astronaut Karen Nyberg said. The station partners had experience with increasing crews before, she added, as for several years a regular space station rotation was only three astronauts during construction. Bumping up to the current maximum of six was a “big jump.”

“One of the things to be concerned about our environmental control system, our CO2 [carbon dioxide scrubbing] system … and also the consumables and the supplies we need,” she added. “Making up the science for us to do would be very doable. I think the hard part would be getting the systems to accommodate nine people.”

Parmitano, Nyberg and Russian cosmonaut Fyodor Yurchikhin plan to return to Earth Sunday, but a busy weekend lies ahead. On Saturday, Roscosmos (Russian Federal Space Agency) flight engineers Oleg Kotov and Sergey Ryazanskiy of the Russian Federal Space Agency will start a spacewalk around 9:30 a.m. EST (2:30 p.m. UTC) if all goes to plan.

Expedition 38/39 poses with the Olympic torch that they brought into orbit with them in November 2013 as part of the relay for the 2014 Games in Sochi, Russia. From left, Koichi Wakata of the Japan Aerospace Exploration Agency, Mikhail Tyurin of Roscosmos, and Rick Mastracchio of NASA. Credit: NASA/Bill Ingalls
Expedition 38/39 poses with the Olympic torch that they brought into orbit with them in November 2013 as part of the relay for the 2014 Games in Sochi, Russia. From left, Koichi Wakata of the Japan Aerospace Exploration Agency, Mikhail Tyurin of Roscosmos, and Rick Mastracchio of NASA. Credit: NASA/Bill Ingalls

As part of the Olympic torch relay ahead of the Sochi games in 2014, they will briefly bring the Olympic torch outside with them, unlit, before doing some outside maintenance.

“After the photo opportunity, Kotov and Ryazanskiy will prepare a pointing platform on the hull of the station’s Zvezda service module for the installation of a high resolution camera system in December, relocate … a foot restraint for use on future spacewalks and deactivate an experiment package,” NASA stated in a Thursday press release.

Several journalists were unable to ask questions during the NASA portion of the press conference, which included participation from countries covered by NASA, the European Space Agency, the Japanese Aerospace Exploration Agency and Roscosmos (the Russian Federal Space Agency).

“We had a failure in a crucial component in the phone bridge,” NASA spokesman Kelly Humphries told Universe Today following the media event. They don’t know what component failed, but most of the journalists were unable to hear the moderator or the astronauts.

“A piece of equipment picked the wrong time to fail,” Humphries said

NASA will do a thorough investigation before holding another event like this to make sure it works for everyone.

Here’s a replay of the news conference:

Do You Need Some Space?

Much to learn about Pluto's surface we have. (Screenshot)

Of course you do! (Who doesn’t?) And so here’s a wonderful tour of our Solar System to provide you with just the type of space you need.


A 3D animation project by Australian video artist Shane Gehlert, I Need Some Space takes us from low-Earth orbit to the Moon and Sun and then through the lineup of planets in the Solar System, using images and models from NASA to accurately depict their unique appearances. Along the way we’ll get some basic info on the planets, select moons, and a few of the various spacecraft that have visited (or are visiting) each world. Set to an intriguing string score by The Zephyr Quartet (of which Shane’s sister Belinda is a member) I Need Some Space is a mesmerizing 6-minute voyage for any space fan — myself very included.

I particularly like the “ghostly” look of Pluto, reminding us that we still have another year and a half before New Horizons reveals its true appearance to us.

Enjoy! (As with most videos, full-screening and HD-ing are strongly suggested.)

Video © Shane Gehlert/BlueDog Films. HT to FastCoCreate.

Orion Service Module Comes Together and Testing Affirms Flight Design for 2014 Blastoff

Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, a crane moves the service module for the Orion spacecraft toward a lift station where it will be mated to the spacecraft adapter cone. Photo credit: NASA/Jim Grossmann

KENNEDY SPACE CENTER, FL – All of the key hardware elements being assembled for NASA’s new Orion spacecraft launching just under one year from now are nearing completion at the Kennedy Space Center (KSC) – at the same time as a crucial and successful hardware test in California this week helps ensure that the Exploration Flight Test-1 (EFT-1) vehicle will be ready for an on-time liftoff.

Orion is NASA’s first spaceship designed to carry human crews on long duration flights to deep space destinations beyond low Earth orbit, such as asteroids, the moon, Mars and beyond.

In a major construction milestone, Orion’s massive Service Module (SM) was hoisted out from the tooling stand where it was manufactured at the Operations and Checkout Building (O & C) at KSC and moved to the next assembly station where it will soon be mated to the spacecraft adapter cone.

The SM should be mated to the crew module (CM) by year’s end, Orion managers told Universe Today during my recent inspection tour of significant Orion hardware at KSC.

“We are working 24 hours a day, 7 days a week,” said Jules Schneider, Orion Project manager for Lockheed Martin at KSC, during an exclusive interview with Universe Today inside the Orion clean room at KSC. “We are moving fast!”

The three panel or fairings encapsulating a stand-in for Orion’s service module successfully detach during a test Nov. 6, 2013 at Lockheed Martin’s facility in Sunnyvale, Calif. Image Credit: Lockheed Martin
The three panels or fairings encapsulating a stand-in for Orion’s service module successfully detach during a test Nov. 6, 2013 at Lockheed Martin’s facility in Sunnyvale, Calif. Image Credit: Lockheed Martin

The Orion CM recently passed a significant milestone when it was “powered on” for the first time at KSC.

“We are bringing Orion to life. Lots of flight hardware has now been installed.”

And on the other side of the country, the Service Module design passed a key hurdle on Wednesday (Nov. 6) when the trio of large spacecraft panels that surround the SM were successfully jettisoned from the spacecraft during a systems test by Lockheed Martin that simulates what would happen during an actual flight several minutes after liftoff.

“Hardware separation events like this are absolutely critical to the mission and some of the more complicated things we do,” said Mark Geyer, Orion program manager at NASA’s Johnson Space Center in Houston. “We want to know we’ve got the design exactly right and that it can be counted on in space before we ever launch.”

Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) mock up stack inside the transfer aisle of the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC) in Florida.  Powerful quartet of LAS abort motors will fire in case of launch emergency to save astronauts lives.  Credit: Ken Kremer/kenkremer.com
Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) mock up stack inside the transfer aisle of the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC) in Florida. Powerful quartet of LAS abort motors will fire in case of launch emergency to save astronauts lives. Credit: Ken Kremer/kenkremer.com

Lockheed Martin is the prime contractor for Orion and responsible for assembly, testing and delivery of the Orion EFT-1 spacecraft to NASA that’s slated for an unmanned test flight targeted to lift off from Cape Canaveral, Florida in September 2014.

The CM rests atop the SM similar to the Apollo Moon landing program architecture.

However in a significant difference from Apollo, the Orion fairings support half the weight of the crew module and the launch abort system during launch and ascent. The purpose is to improve performance by saving weight thus maximizing the vehicles size and capability.

The SM also provides in-space power, propulsion capability, attitude control, thermal control, water and air for the astronauts.

At Lockheed Martin’s Sunnyvale, California facility a team of engineers used a series of precisely-timed, explosive charges and mechanisms attached to the Orion’s protective fairing panels in a flight-like test to verify that the spacecraft can successfully and confidently jettison them as required during the ascent to orbit.

The trio of fairing panels protect the SM radiators and solar arrays from heat, wind and acoustics during ascent.

The three panels or fairings encapsulating a stand-in for Orion’s service module successfully detach during a test Nov. 6, 2013 at Lockheed Martin’s facility in Sunnyvale, Calif. Image Credit: Lockheed Martin
The three panels or fairings encapsulating a stand-in for Orion’s service module successfully detach during a test Nov. 6, 2013 at Lockheed Martin’s facility in Sunnyvale, Calif. Image Credit: Lockheed Martin

“This successful test provides the Orion team with the needed data to certify this new fairing design for Exploration Flight Test-1 (EFT-1) next year. The test also provides significant risk reduction for the fairing separation on future Orion manned missions,” said Lance Lininger, engineering lead for Lockheed Martin’s Orion mechanism systems in a statement.

This was the 2nd test of the fairing jettison system. During the first test in June, one of the three fairing panels did not completely detach due to an interference “when the top edge of the fairing came into contact with the adapter ring and kept it from rotating away and releasing from the spacecraft,” said NASA.

Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, a crane moves the service module for the Orion spacecraft toward a lift station where it will be mated to the spacecraft adapter cone. Photo credit: NASA/Jim Grossmann
Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, a crane moves the service module for the Orion spacecraft toward a lift station where it will be mated to the spacecraft adapter cone. Photo credit: NASA/Jim Grossmann

2013 has been an extremely busy and productive year for the Orion EFT-1 team.

“There are many significant Orion assembly events ongoing this year,” said Larry Price, Orion deputy program manager at Lockheed Martin, in an interview with Universe Today at Lockheed Space Systems in Denver.

“This includes the heat shield construction and attachment, power on, installing the plumbing for the environmental and reaction control system, completely outfitting the crew module, attached the tiles, building the service module and finally mating the crew and service modules (CM & SM),” Price told me.

Technicians work inside the Orion crew module being built at Kennedy Space Center to prepare it for its first power on. Turning the avionics system inside the capsule on for the first time marks a major milestone in Orion’s final year of preparations before its first mission, Exploration Flight Test 1 Credit: Lockheed Martin
Technicians work inside the Orion crew module being built at Kennedy Space Center to prepare it for its first power on. Turning the avionics system inside the capsule on for the first time marks a major milestone in Orion’s final year of preparations before its first mission, Exploration Flight Test 1
Credit: Lockheed Martin

The two-orbit, four- hour flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.

Ken Kremer

Skim Across Mars In Virtual Reality With These New Orbital Images

A crater imaged by the Mars Reconnaissance Orbiter's HiRISE (High Resolution Imaging Science Experiment). Credit: NASA/JPL/University of Arizona

Stop what you’re doing, grab the nearest 3-D glasses (red/blue type) you have available and then pretend you’re hovering above Mars for a while. These are some of the latest images from the Mars Reconnaissance Orbiter, which has been cruising above the planet since 2006.

Make sure to click through these pictures to see the full, raw files from the University of Arizona’s High Resolution Imaging Science Experiment (HiRISE) web page. HiRISE was the imager that took these pictures. Enjoy!

"Candidate Future Landing Site at Valley North of Jezero Crater", imaged by the Mars Reconnaissance Orbiter's HiRISE (High Resolution Imaging Science Experiment). Credit: NASA/JPL/University of Arizona
“Candidate Future Landing Site at Valley North of Jezero Crater”, imaged by the Mars Reconnaissance Orbiter’s HiRISE (High Resolution Imaging Science Experiment). Credit: NASA/JPL/University of Arizona
"Fossae Source of Outflows," a picture taken by Mars Reconnaissance Orbiter's HiRISE (High Resolution Imaging Science Experiment). Credit: NASA/JPL/University of Arizona
“Fossae Source of Outflows,” a picture taken by Mars Reconnaissance Orbiter’s HiRISE (High Resolution Imaging Science Experiment). Credit: NASA/JPL/University of Arizona
"Floor of East Candor Chasma," a picture taken by the Mars Reconnaissance Orbiter's HiRISE (High Resolution Imaging Science Experiment). Credit: NASA/JPL/University of Arizona
“Floor of East Candor Chasma,” a picture taken by the Mars Reconnaissance Orbiter’s HiRISE (High Resolution Imaging Science Experiment). Credit: NASA/JPL/University of Arizona
"Knobs with bright layers in Noctis Labyrinthus", a picture taken by the Mars Reconnaissance Orbiter's HiRISE (High Resolution Imaging Science Experiment). Credit: NASA/JPL/University of Arizona
“Knobs with bright layers in Noctis Labyrinthus”, a picture taken by the Mars Reconnaissance Orbiter’s HiRISE (High Resolution Imaging Science Experiment). Credit: NASA/JPL/University of Arizona

Chris Hadfield On Space-y $5 Bill: ‘It Reminds Us That Our Dreams Do Not Have A Limit’

Former Canadian astronaut Chris Hadfield was on hand for the official circulation ceremony of Canada's new space-themed $5 bill on Nov. 7, 2013. The press conference took place in two locations; Hadfield was at the Canadian Space Agency headquarters near Montreal, Que. The red flower on his lapel is a poppy for Remembrance Day, a Nov. 11 commemoration of veterans. Credit: Bank of Canada (webcast/screenshot)

In Canada, “gimme five” could soon have a space connotation. Today the country announced it is preparing to put new polymer $5 bills into circulation that feature Canadian robotics and an astronaut.

At the official circulation ceremony near Montreal, Que. was none other than Canadian astronaut Chris Hadfield, who brought unprecedented social media attention to space through social media. The world was enchanted by his guitar playing and crying in space, but in space circles he also commands a lot of respect. The trilingual Hadfield visited two space stations, helped build the robotic Canadarm2 in space, and commanded the International Space Station, among other achievements.

His presence was appropriate, because the $5 bill has a lot of robotics on it. Canadarm2, Dextre and an astronaut are splashed across one face of the bill. “It reminds us that our dreams do not have a limit,” Hadfield said in French.

Canadarm2, Dextre and an unidentified astronaut will all feature on Canada's new $5 bill. Credit: Bank of Canada
Canadarm2, Dextre and an unidentified astronaut on Canada’s new $5 bill. Credit: Bank of Canada

“It serves as a reminder to all Canadians of the dedication and hard work of so many people across the Canadian Space Agency and the space industry across Canada, and the scientists and engineers that make the design of these incredibly complex robots and getting them into space somehow easy,” Hadfield added in English. “Being involved in it is the real inspiration part. Who knows where such innovation can take us.”

The Bank of Canada first unveiled the new $5 and $10 bills in April, while Hadfield was at the helm of the station. Canada’s central banking authority is touting the new plasticized bill series as more durable than past cotton-based ones, with better counterfeit measures such as transparency. Polymer bills are available already in $20, $50 and $100 denominations.

Opposite to the space-themed side of the $5 bill is a picture of past prime minister Wilfrid Laurier. The new $10 bill features a train on one side and (as with the past iteration) John A. Macdonald, the first Canadian prime minister, on the other.

Hadfield himself has featured on both Canadian currency and stamps in the past: the Royal Mint of Canada issued two coins with him and Canadarm2 in 2006, and Hadfield was among several astronauts put on to Canadian stamps in 2003.

Canadian astronaut Chris Hadfield holds a version of the $5 bill on the International Space Station on April 30, 2013. Credit: Bank of Canada (webcast)
Canadian astronaut Chris Hadfield holds a version of the $5 bill on the International Space Station on April 30, 2013. Credit: Bank of Canada (webcast)

Newly Released Security Cam Video Shows Chelyabinsk Meteorite Impact in Lake Chebarkul

The 20-foot (6-meter) hole punched through the ice on Chebarkul Lake by a large fragment of the Chelyabinsk meteorite. Credit: AP


Security camera video showing the impact of the largest piece of the Chelyabinsk meteorite striking Lake Chebarkul during the Feb. 15, 2013 Russian fireball. Credit: Nikolaj Mel’nikov.

When I first watched this video of the half-ton Chelyabinsk meteorite crashing into Lake Chebarkul last Feb. 15 I didn’t see anything. But once you pay close attention, what you’ll see is nothing short of amazing. You’ll recall that a 20-foot (6 meter) hole appeared in the ice immediately after the fall. While no one witnessed the impact, a security camera caught the critical moment from the other side of the lake.

The video recently appeared in an online presentation by Peter Jenniskens, noted meteorite expert and senior research scientist at the SETI Institute. It was released as part of a paper and Powerpoint on the Chelyabinsk airburst. You can listen to Jenniskens’ presentation HERE.

Frame grab from the video showing the breakdown of the impact and resulting ice and snow cloud.
Frame grab from the video showing the breakdown of the impact and resulting ice and snow cloud.

When you watch the video, focus your attention just to the left of what looks like an ice fishing shack at top center and use the handy frame grab above. In the slowed-down portion of the footage you’ll see a cloud of ice and snow blow up and quickly drift to the right of the shack  seconds after impact. While blurry and small, it’s amazing good fortune we have a document of this fall.


Video of the recovery of the largest piece of the Chelyabinsk meteorite

Divers ultimately fished the 1/2 ton Chelyabinsk meteorite – the largest found so far – from the lake on Oct. 16. It measured 5 feet long (1.5 meter) and broke into three pieces as scientists hoisted it into a scale to weigh it.

As a return favor,  the little piece of heaven broke the scale.

‘Freakish’ Asteroid Has Six Tails, Sheds Stuff Into Space

Pictures of asteroid P/2013 P5 taken by the Hubble Space Telescope. Credit: NASA, ESA, and D. Jewitt (UCLA)

A lawn sprinkler in space. That’s one of the descriptions NASA has for the curious P/2013 P5, which is spewing not one, not two, but six comet-like tails at the same time.

“We were literally dumbfounded when we saw it,” stated David Jewitt of the University of California at Los Angeles, who led the research. “Even more amazing, its tail structures change dramatically in just 13 days as it belches out dust. That also caught us by surprise. It’s hard to believe we’re looking at an asteroid.”

UCLA described the asteroid as a “weird and freakish object” in its own press release.

The mystery started when astronomers spotted a really blotchy thing in space Aug. 27 with the Pan-STARRS survey telescope in Hawaii. The Hubble Space Telescope then swung over to take a look on Sept. 10, revealing all these tails of debris flying off the asteroid.

Pan-STARRS PS1 Observatory just before sunrise on Haleakala, Maui.  Credit: Harvard-Smithsonian Center for Astrophyiscs
Pan-STARRS PS1 Observatory just before sunrise on Haleakala, Maui. Credit: Harvard-Smithsonian Center for Astrophyiscs

It appears, scientists say, that the asteroid is rotating so quickly that it is ripping its very surface apart. They’ve ruled out a collision because the dust leaves in spurts; calculations by team member Jessica Agarwal of the Max Planck Institute for Solar System Research in Lindau, Germany estimated this happened on April 15, July 18, July 24, Aug. 8, Aug. 26 and Sept. 4.

Once the dust gets loose, the sun’s continuous stream of particles then pushes the debris into these extraordinary tails. It’s also possible that this “radiation pressure” contributed to the asteroid’s high spin rate. It appears the team is looking to find more of these objects to see if this is a way that smaller asteroids commonly fall apart.

“In astronomy, where you find one, you eventually find a whole bunch more,” Jewitt stated. “This is just an amazing object to us, and almost certainly the first of many more to come.”

The research appeared in Astrophysical Journal Letters and is also available in prepublished form on Arxiv.

Source: NASA

Comet ISON Heats Up, Grows New Tail

Two new tail streamers are visible between Comet ISON's green coma and bright star near center. in this photo taken on Nov. 6. They're possibly the beginning of an ion tail. Click to enlarge. Credit: Damian Peach

I’m starting to get the chills about Comet ISON. I can’t help it. With practically every telescope turned the comet’s way fewer than three short weeks before perihelion, every week brings new images and developments. The latest pictures show a brand new tail feature emerging from the comet’s bulbous coma. For months, amateur and professional astronomers alike have watched ISON’s slowly growing dust tail that now stretches nearly half a degree or a full moon’s diameter. In the past two days, photos taken by amateur astronomers reveal what appears to be a nascent ion or gas tail. Damian Peach’s Nov. 6 image clearly shows two spindly streamers.

Early detection of ISON's possible ion tail on Oct. 31 by amateur astronomer Efrain Morales Rivera in a 12-inch telescope.
Early detection of ISON’s possible ion tail on Oct. 31 by amateur astronomer Efrain Morales Rivera in a 12-inch telescope.

A picture of the comet two days earlier on Nov. 4 also shows new tail structures. Credit: Justin Ng
The comet on Nov. 4 also shows the new tail structures extending farther from the coma. Credit: Justin Ng

Ion tails are composed of gases like carbon monoxide and carbon dioxide  blown into a narrow straight tail by the solar wind and electrified to fluorescence by the sun’s ultraviolet light. Being made of ions (charged particles), they interact with the sun’s wind of charged particles. Changes in the intensity and direction of the magnetic field associated with sun’s exhalations kink and twist ion tails into strange shapes. Strong particle blasts can even snap off an ion tail. Not that a comet could care. Like a lizard, it grows a new one back a day or three later.

Comet ISON plunges sunward across Virgo in the coming days. Watch for it low in the eastern sky shortly before the start of dawn. Click to enlarge and print for outdoor use. Stellarium
Comet ISON plunges sunward across Virgo in the coming days. Watch for it low in the eastern sky shortly before the start of dawn. Click to enlarge and print for outdoor use. Stellarium

A fresh forked tail isn’t ISON’s only new adornment. Its inner coma, location of the bright “false nucleus”, is becoming more compact, and the overall magnitude of the comet has been slowly but steadily rising. Two mornings ago I pointed a pair of 10×50 binoculars ISON’s way and was surprised to see it glowing at magnitude 8.5.  Things happen quickly now that the comet is picking up speed  While it appeared as little more than a small smudge, any comet crossing into binocular territory is cause for excitement. Other observers are reporting magnitudes as bright as 8.0. Estimates may vary among observers, but the trend is up. Seiichi Yoshida’s excellent Weekly Information about Bright Comets site predicts another half magnitude brightening over the next few days. You can use the map here to spot it in your own glass before the moon returns to the morning sky.

Photo taken through the TRAPPIST 60-cm telescope using a narrowband CN (390 nm) filter shows two active jets in ISON's inner coma (right) and a broad dust tail at left. Credit: Cyrielle Opitom, TRAPPIST team
False color photo taken with the TRAPPIST 60-cm telescope using a narrowband CN (390 nm) filter at 8:45 Universal Time Nov. 5 shows two active jets (small double-plume) in ISON’s inner coma (right) and the dust tail at left. Field of view is 5×5 arc minutes. North is up, east to the left. Credit: Cyrielle Opitom, TRAPPIST team

But wait, there’s more. Emmanuel Jehin, a member of the TRAPPIST ( TRAnsiting Planets and PlanetesImals in Small Telescopes) team, a group of astronomers dedicated to the detection of exoplanets and the study of comets and other small solar system bodies, reports a rapid rise in ISON’s gas production rate in the past several days. They’ve increased by a factor of two since Nov. 3. Could the spike be connected to the development of an ion tail? Jehin and team have also recorded two active jets coming from the comet’s nucleus using specialized filters. Dust production rates however have remained flat.

The Comet ISON Observing Campaign is both terrestrial and celestial. Nine different NASA and ESA spacecraft, eight of which are shown here, have observed comet ISON so far. Credit: NASA/ESA
The Comet ISON Observing Campaign is both terrestrial and celestial. Nine different NASA and ESA spacecraft, eight of which are shown here, have observed comet ISON so far. Credit: NASA/ESA

Casey Lisse of the Comet ISON Observing campaign (CIOC) reports that the Chandra X-ray Observatory just became the 9th spacecraft to image the comet . More details and photos should be available soon. The campaign predicts the comet will peak in brightness between -3 to -5 magnitude when it zips closest to the sun on Nov. 28. Want to ride alongside the comet during its passage through the inner solar system? Click on this awesome, interactive simulator.

 Hubble Space Telescope image of comet C/1999 S4 (LINEAR) that disintegrated around July 23, 2000. Credit: NASA/ESA

Hubble Space Telescope image of comet C/1999 S4 (LINEAR) that disintegrated around July 23, 2000. Credit: NASA/ESA

Because ISON is a fresh-faced visitor from the distant Oort Cloud that will soon face the full fury of the sun, speculation of its fate has ranged across the spectrum. Everything from breakup and dissolution before perihelion to surviving intact trailing a spectacular dust tail. The comet is currently approaching the 0.8 A.U. mark (74.4 million miles / 120 million km) when previous comets C/1999 S4 LINEAR in 2000 and C/2010 X1 Elenin in 2011 crumbled to pieces and vaporized away. Will ISON have the internal strength to pass the test and venture further into the solar boil? Should it survive, it faces a formidable foe – the sun. Both the intense solar heat and gravitational stress on the comet’s nucleus could easily tear it apart. If this happens a few days before perihelion we’ll be left with little to see, but if ISON busts up a day or two after perihelion, watch out baby. When the comet reappears in the morning sky, it may be missing its head but make it up for the loss with a spectacular tail of fresh dust and ice many degrees in length. This is exactly what happened to Comet C/2011 W3 (Lovejoy) in December 2011. After its close graze with the home star, the nucleus disintegrated, producing a striking tail seen by skywatchers in the southern hemisphere.

Pictures of Comet C/2011 W3 Lovejoy on Dec. 22, 2011 after perihelion passage. Its head was very tiny and faint with a long tail. Credit: Chris Wyatt
Pictures of Comet C/2011 W3 Lovejoy on Dec. 22, 2011 after perihelion passage. Will ISON be a repeat? Credit: Chris Wyatt

The final scenario sees Comet ISON pushing past all barriers intact and ready to put on a splendid show. Whatever happens, I suspect we’re in for surprises ahead. For a more detailed analysis of these possibilities I invite you check out Matthew Knight’s blog on the CIOC website.

India’s Mars Orbiter Mission Rising to Red Planet – Glorious Launch Gallery

Clouds on the ground ! The sky seems inverted for a moment ! Blastoff of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO

Clouds on the ground !
The sky seems inverted for a moment ! Blastoff of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO[/caption]

With India’s Mars Orbiter Mission (MOM) safely and flawlessly injected into her initial elliptical Earth parking orbit following Tuesday’s (Nov. 5) spectacular launch, the flight has quickly transitioned to the next stage – the crucial series of thruster firings to raise MOM’s orbit around Earth dubbed “Midnight Maneuvers” and achieve escape velocity.

Barely a day after blastoff, ISRO engineers successfully completed the first of six orbit raising “Midnight Maneuver” burns at 01:17 hrs IST today (Nov. 6) with MOM’s liquid fueled thruster – see graphic below.

The goal is to gradually maneuver MOM – India’s 1st mission to the Red Planet – into a hyperbolic trajectory so that the spacecraft will escape from the Earth’s Sphere of Influence (SOI) and eventually arrive at the Mars Sphere of Influence after a 10 month interplanetary cruise.

Artists concept shows First Midnight Manouever of ISRO’s Mars Orbiter Mission Spacecraft with successful thruster firing of the liquid engine on Nov. 6 2013.  Credit: ISRO
Artists concept shows First Midnight Manouever of ISRO’s Mars Orbiter Mission Spacecraft with successful thruster firing of the liquid engine on Nov. 6 2013. Credit: ISRO

To do this involves a lot of complicated orbital mechanics calculations, as noted by ISRO’s chief during the launch webcast.

“The journey has only begun. The challenging phase is coming,” said Dr. K. Radhakrishnan, Chairman ISRO.

India’s PSLV rocket is not powerful enough to send MOM on a direct flight to Mars.

The launch “placed MOM very precisely into an initial elliptical orbit around Earth of 247 x 23556 kilometers with an inclination of 19.2 degrees,” said Radhakrishnan. “MOM is a huge step taking India beyond Earth’s influence for the first time.”

So ISRO’s engineers devised a clever procedure to get the spacecraft to Mars on the least amount of fuel via six “Midnight Maneuver” engine burns over the next several weeks – and at an extremely low cost.

First orbit raising Midnight Manouever of ISRO’s Mars Orbiter Mission Spacecraft completed successfully. Credit: ISRO
First orbit raising Midnight Manouever of ISRO’s Mars Orbiter Mission Spacecraft completed successfully. Credit: ISRO

The 440 Newton engine fires when MOM is at its closest point in orbit above Earth. This increases the ships velocity and gradually widens the ellipse and raises the apogee of the six resulting elliptical orbits around Earth that eventually injects MOM onto the Trans-Mars trajectory.

The 1st firing lasted 416 seconds and raised the spacecraft’s apogee to 28,825 km and perigee to 252 km.

The remaining burns are planned for November 7, 8, 9, 11, and 16.

MOM is expected to achieve escape velocity on Dec. 1 and depart Earth’s sphere of influence tangentially to Earth’s orbit to begin the 300 day long voyage to the Red Planet.

She will follow a path that’s roughly half an ellipse around the sun.

MOM arrives in the vicinity of Mars on September 24, 2014 for the absolutely essential Mars orbital insertion firing by the 440 Newton liquid fueled main engine which slows the probe and places it into a 366 km x 80,000 km elliptical orbit.

If all continues to goes well, India will join an elite club of only four who have launched probes that successfully investigated the Red Planet from orbit or the surface – following the Soviet Union, the United States and the European Space Agency (ESA).

MOM is the first of two new Mars orbiter science probes from Earth blasting off for the Red Planet this November. Half a globe away, NASA’s $671 Million MAVEN orbiter remains on target to launch barely two weeks after MOM on Nov. 18 – from Cape Canaveral, Florida.

Both MAVEN and MOM’s goal is to study the Martian atmosphere , unlock the mysteries of its current atmosphere and determine how, why and when the atmosphere and liquid water was lost – and how this transformed Mars climate into its cold, desiccated state of today.

The MAVEN and MOM science teams will “work together” to unlock the secrets of Mars atmosphere and climate history, MAVEN’s top scientist told Universe Today.

Stay tuned here for continuing MOM and MAVEN news and Ken’s MAVEN launch reports from on site at the Kennedy Space Center press center.

Here’s a glorious gallery of launch images of the PSLV-25 rocket & Mars Orbiter Mission (MOM) on Nov. 5, 2013.

Ken Kremer

It’ s a Mind-Blowing Midnight Marvel !  Fueled PSLV rocket and India’s Mars Orbiter Mission (MOM) awaits Nov. 5 blastoff.  Credit: ISRO.  Watch ISRO’s Live  Webcast
It’ s a Mind-Blowing Midnight Marvel ! Fueled PSLV rocket and India’s Mars Orbiter Mission (MOM) awaits Nov. 5 blastoff. Credit: ISRO.
Gorgeous view of the majestic Polar Satellite Launch Vehicle, PSLV C25 with its passenger, the Indian Space Research Organization’s (ISRO's) Mars Orbiter Mission (MOM) spacecraft inside. The Mobile service tower is also seen in the background.  Credit: IRSO
Gorgeous view of the majestic Polar Satellite Launch Vehicle, PSLV C25 with its passenger, the Indian Space Research Organization’s (ISRO’s) Mars Orbiter Mission (MOM) spacecraft inside. The Mobile service tower is also seen in the background. Credit: IRSO
Blastoff of the Indian developed Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO
Blastoff of the Indian developed Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO
Surreal view of 'T zero' Launch of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013. Credit: ISRO
Surreal view of ‘T zero’
Launch of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013. Credit: ISRO
Golden smoke engulfs the First Launch Pad as the PSLV C25 takes off with ISRO's Mars Orbiter Mission Spacecraft. Credit: ISRO
Golden smoke engulfs the First Launch Pad as the PSLV C25 takes off with ISRO’s Mars Orbiter Mission Spacecraft. Credit: ISRO
Celebrating MOM’s Victory over Gravitation !  There she goes taking our dreams into deeper space !  Launch of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013. Credit: ISRO
Celebrating MOM’s Victory over Gravitation !
There she goes taking our dreams into deeper space ! Launch of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013. Credit: ISRO
Clouds on the ground !  The sky seems inverted for a moment ! Blastoff of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO
Clouds on the ground !
The sky seems inverted for a moment ! Blastoff of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO
India’s Mars Orbiter Mission (MOM) streaks to orbit after launch on Nov. 5, 2013.  Credit: ISRO
India’s Mars Orbiter Mission (MOM) streaks to orbit after launch on Nov. 5, 2013. Credit: ISRO

…………….

Learn more about MAVEN, MOM, Mars rovers, Orion and more at Ken’s upcoming presentations

Nov 14-19: “MAVEN Mars Launch and Curiosity Explores Mars, Orion and NASA’s Future”, Kennedy Space Center Quality Inn, Titusville, FL, 8 PM

Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM

Crew Launches to Space Station with Olympic Torch

The Soyuz TMA-11M rocket is launched with Expedition 38/39. Credit: NASA/Bill Ingalls.

Update: the crew has now arrived safely at the ISS. You can watch the arrival video below.

Three new crew members are on their way to the International Space Station. NASA astronaut Rick Mastracchio, Japan Aerospace Exploration Agency astronaut Koichi Wakata and Soyuz Commander Mikhail Tyurin of Roscosmos launched on a Soyuz TMA-11M spacecraft from the Baikonur Cosmodrome at 11:14 p.m. EST (04:14:00 UTC, 10:14 a.m. Thursday, Kazakh time). They’ll use the accelerated “fast-track” trajectory and arrive at the station in just a few hours, at 10:31 UTC (5:31 a.m. EST Thursday.)

You can watch the launch video below.

In an usual situation, when the new crew arrives, there will be nine crew members and three Soyuz vehicles at the ISS. The timing of crew exchange works to enable a complicated “relay race” of a special Olympic torch from the 2014 Sochi Winter Olympics in Russia. The new crew is bringing the unlit torch along, then, over the weekend Russian cosmonauts Oleg Kotov and Sergei Ryazanskiy, who are part of the space station’s current crew, will take the torch out on a spacewalk, with plans to take pictures and video (they’ll try to take pictures when the station flies over Russia and the southern resort of Sochi). The real reason for the spacewalk is to do some routine Russian maintenance outside the station.

The Soyuz TMA-11M spacecraft launches from the Baikonur Cosmodrome  with the crew of Expedition 38. Via NASA TV.
The Soyuz TMA-11M spacecraft launches from the Baikonur Cosmodrome with the crew of Expedition 38. Via NASA TV.

Then, on Sunday, three crew members will return home (Fyodor Yurchikhin, Luca Parmitano and Karen Nyberg) and they will bring the torch back home, with landing planned at about 9:50 p.m. EST on Nov 10 (02:50 UTC on Nov 11.) The torch then will be given back to Olympic officials and it will be used in the opening ceremonies of the February games.

After that crew departs, Expedition 38 will begin with Kotov as Commander.

Nine crew members together on the International Space Station. The Expedition 38 crew entered the ISS at 12:44 UTC (7:44 am EST). The crew of nine will work together till Sunday. Credit: NASA
Nine crew members together on the International Space Station. The Expedition 38 crew entered the ISS at 12:44 UTC (7:44 am EST). The crew of nine will work together till Sunday. Credit: NASA

There have not been nine crew members on the ISS since 2009. During the second half of the new crew’s Expedition, when it changes to Expedition 39, Wakata will make history by becoming the first Japanese commander of the International Space Station. You can read more about Wakata and Mastracchio and their upcoming mission in an interview they did with Elizabeth Howell during their training.

The new fast-track trajectory has the Soyuz rocket launching shortly after the ISS passes overhead. Then, additional firings of the vehicle’s thrusters early in its mission expedites the time required for a Russian vehicle to reach the Station, in about 6 hours or four orbits.

Launch video:

Arrival and docking: