Our Sun isn’t just a terrifying ball of white hot plasma, it’s actually a lot more complex. It’s got layers. And today, we’re going to peel back those layers and learn about the Sun – from the inside out.
We record Astronomy Cast as a live Google+ Hangout on Air every Monday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch here on Universe Today or from the Astronomy Cast Google+ page.
Astronomers: Gary Gonella, Roy Salisbury, Nicole Gugliucci
We hold the Virtual Star Party every Sunday night as a live Google+ Hangout on Air. We begin the show when it gets dark on the West Coast. If you want to get a notification, make sure you circle the Virtual Star Party on Google+. You can watch on our YouTube channel or here on Universe Today.
Last week I held an interview with Dr. Sara Seager – a lead astronomer who has contributed vastly to the field of exoplanet characterization. The condensed interview may be found here. Toward the end of our interview we had a lengthy conversation regarding the future of exoplanet research. I quickly realized that this subject should be an article in itself.
The following is a list of approved missions that will continue the search for habitable worlds, with input from Dr. Seager about their potential for finding planets that might harbor life.
Transiting Exoplanet Survey Satellite (TESS)
Slated to launch in 2017, TESS will search for exoplanets by looking for faint dips in brightness as the unseen planet passes in front of its host star. With a price tag of $200 million, TESS will be the first space-based mission to scan the entire sky for exoplanets.
While the Kepler space telescope confirmed hundreds of exoplanets (with thousands of candidates yet to be confirmed) it stared 3000-light-years deep into a single patch of sky. TESS will scan hundreds of thousands of the brightest and closest stars in our galactic neighborhood.
“TESS will find many planets,” explained Seager in our interview. “The ones we’re highlighting it will find are rocky planets transiting small stars.” One of the missions goals is to find earth-like exoplanets in the habitable zone – the band around a star where water can exist in its liquid state.
The team hopes that TESS will find up to 1000 exoplanets in the first two years of searching. This will give astronomers a wealth of new worlds to study in more detail.
While the stars Kepler examined were faint and difficult to study in follow-up observations, the stars TESS will focus on are bright and close to home. These stars will be prime targets for further scrutiny with other space based telescopes.
“We plan to have a pool of planets, maybe a handful of them, that we can follow up with the James Webb Space Telescope … which will look at the atmospheres of those transiting planets, looking for signs of life,” Seager said.
ExoplanetSat
While slightly under the radar, ExoplanetSat will monitor bright stars using nano-satellites. Each nano-satellite will be capable of monitoring a single, bright, sun-like star for two years.
“The way that we describe this mission is not that we will find earth,” Seager said. “But if there is a transiting earth-like planet around a bright sun-like star, we will find it.”
Currently no planned mission has the capability to survey the brightest stars in the sky. TESS will observe stars of magnitude 5 through 12 – the dimmest our eyes can see and fainter.
The brightest stars are too widely spaced for a single telescope to continuously monitor. The best method is to monitor the brightest sun-like stars in a targeted star search instead.
The mission is pretty far along in terms of funding. It has already received a few million dollars and is about one million short of launching the first prototype.
After a successful demonstration the goal is to launch a fleet of nano-satellites to observe enough bright stars to find a number of interesting exoplanets. One day we may be able to look at a bright star in our night sky and know it has a planet.
Direct Imaging Missions
Disentangling a faint, barely reflective, exoplanet from its overwhelmingly bright host star in a direct image seems nearly impossible. A common analogy is looking for a firefly next to a searchlight across North America. Needless to say, very few exoplanets have been seen directly.
Because of the difficulties NASA is fostering a study and soliciting applications with a single goal in mind: create a mission that will directly image exoplanets under a price cap of one billion dollars.
Seager is working with a team that plans to utilize a star shade – “a specially shaped screen that will fly far from the telescope and block out the light from the star so precisely that we will see any planets like earth.”
The shade isn’t circular but shaped like a flower. Light waves would bend around a circle and create spots brighter than the planets themselves. The flower-like shape avoids this while blocking out the starlight – making a planet that is one ten billionth as bright as its host star visible.
The star shade and the telescope have to be aligned perfectly at 125,000 miles away. Once aligned, the system will observe a distant star, and then move to another distant star and re-align. This is technologically speaking, unchartered territory.
While this mission may not occur in full tomorrow, or even years from tomorrow, astronomers’ synapses are firing. We’re coming up with new techniques that will advance technology and find earth-like worlds.
Etc.
Above is a list of only a handful of future exoplanet missions – all at various stages in their production – with some still on the drawing board and others having received full funding and preparing for launch. With creativity and advancing technology we’ll detect a true-earth analogue in the near future.
UPDATE: Editor’s note: Here’s a story that we’ve updated a couple of times, and now it ultimately has a happy ending. We originally posted a picture from Oliver Broadie who thought he captured an image of the ATV-4 Albert Einstein right before it burned up in the atmosphere. That image, see below, was ultimately determined to be of the International Space Station and not the ATV-4, so yesterday we pulled the image and explained why. But now, thanks to a great discussion between the photographer and satellite tracker Marco Langbroek (see it in the comment section), they have determined that Oliver actually did capture the ATV-4 in a subsequent image taken about 4 minutes later. Thanks to both Ollie and Marco for analyzing the timing and images. Also, we were in error for saying that the image showed the ATV-4 burning up in the atmosphere. That was my mistake (Nancy).
And you can now actually see images of ATV-4’s fiery plunge taken by the ISS astronauts here — Nancy Atkinson, Senior Editor.
Each Automated Transfer Vehicle series ferries cargo to the International Space Station, stays attached for a few months to do routine boosts to the station’s altitude, then leaves with a haul of trash to burn up in Earth’s atmosphere.
Albert Einstein carried a record 5,467 pounds (2,480 kg) of cargo for its type of vehicle and also brought away the most garbage of the series of vehicles. It did six reboosts of the ISS’ altitude and among its precious cargo was a GPS antenna for Japan’s Kibo laboratory as well as a water pump for Europe’s Columbus laboratory, according to the European Space Agency.
The cargo ship undocked from the space station on Oct. 28 after five months in space. It burned up Nov. 2 at 12:04 GMT within sight of the astronauts. The next of the series, Georges Lemaitre, is in French Guiana for a launch aboard an Ariane 5 rocket that will take place in June 2014.
The ATVs are just one of many space trucks that visit the International Space Station. Check out this recent article on cargo ships past and present to see other ones that ferry stuff into space.
From guitar playing to quilting, it’s clear that the astronauts aboard the International Space Station have excellence in other interests besides their core jobs. NASA astronaut Karen Nyberg, shortly finishing up her nearly half-year mission in space as part of Expedition 35/36, is an accomplished crafter. She’s found time to make a dinosaur from spare scraps and severalheadbandsto keep her long hairfrom flying in her face. And now she wants you to join with her work.
Despite her skill in crafting, however, Nyberg says working in microgravity is quite the challenge. She keeps all her supplies in a ziploc so they don’t go flying in all directions when she’s not using them. A pile felt board keeps everything secured while she is working on a piece.
But measuring and cutting when you can’t lay something down means working takes a long, long time. That’s what makes this single nine-inch-by-nine-inch quilting block below so precious.
Nyberg says her work is “far from being a masterpiece”, but is inviting other quilters to share the metaphorical stage with her creation. Quilters anywhere in the world can make star pieces of their own and send it to the International Quilting Festival organizers for display in fall 2014. If all goes well, Nyberg expects to make an appearance to view the creation herself.
Here’s a short summary of the requirements (which you can read officially on this page):
– Have a star theme;
– 9.5 inches (24 centimeters) square;
– One block per person, signed on the front with a permanent marker marking name and location;
– Mail by Aug. 1, 2014 to “Star Block Challenge, Attn: Rhianna Griffin, 7660 Woodway Ste. 550, Houston, TX 77063.”
By the way, the full video of Nyberg explaining her sewing challenges makes you sympathize with how hard microgravity can be. Although the backflip she does at the end likely makes up for at least some of it, right?
The newly announced World View balloon flight concept shares a number of “striking” similarities to an older proposal for ‘near-space flight experience’ balloon rides, according to the head of the zero2infinity Inbloon project.
Both concepts are competing in the nascent high-altitude balloon market, which would see these craft fly high in the stratosphere with paying clients and/or payloads on board. Some of them would be paying tourists to look at the view, while others would be institutions looking to get above most of the Earth’s atmosphere for scientific and other purposes.
The groundwork for zero2infinity’s Inbloon has been in the works since about 2002, founder Jose Mariano Lopez Urdiales said. So far, the Spanish company has run three test flights with micro versions of its balloon; the last one was in September. A ride high in the atmosphere would (when it happens) cost the equivalent of $150,000 (110,000 Euros).
World View — backed by Arizona’s Paragon Space Development Corp., which is involved in several startup space projects — announced in late October that it would offer rides to the high atmosphere for $75,000 each. Few details were provided, but Paragon president Jane Poynter told Universe Today that more announcements will come. She added that the company has been thinking about this kind of work seriously for at least a decade.
The companies were in talks for Paragon to provide life support systems for Inbloon, Urdiales said, but Paragon decided to go its own route. The World View announcement came shortly after Urdiales was told of Paragon’s decision, he added.
“We were speaking to them for a couple of years. They learned about our business and what we were doing,” Urdiales said in late October.
“A month ago or so, they said ‘We’re not going to be able to supply you. We don’t think we’re going to be able to export this to Spain.’ And then we said, ‘Fine, we’re talking to other suppliers’ … and then they launched this thing. The commonalities are striking.”
As examples, Urdiales said a lot of the marketing language was similar and that the artists’ concepts of the balloon designs for the two companies also appeared to be about the same. He added, however, that he is not planning to pursue any formal action because he would rather focus on running safe flights. The first human-rated Inbloon flight is expected in 2014, he said.
“The hard part is getting the investment, and doing the flight. Both things are pretty hard, and require a level of integrity. Otherwise the tests don’t work and you break something and you [could] kill people.”
World View told Universe Today that Paragon has been pursuing this idea independently for years, long before they heard of Urdiales’ plans. The company did not comment on Urdiales’ claims about previous business talks.
“Let me start by emphasizing that we are not duplicating anyone’s plans. The World View concept has been an interest of ours for many years,” Paragon’s Poynter told Universe Today in an e-mail.
“It is worth mentioning, I think, that the idea of human flight using high altitude balloons is not a recent development. In fact, the origins of this idea date back to the 1950s with the work of Otto Winzen and others. As for our own origins, [co-founder] Taber [MacCallum] went to high-altitude balloon launches as a child, as his father is an astrophysicist and was studying gamma-ray astronomy using high-altitude balloon launches of telescopes.
“That experience translated,” she added, “later in life, to Paragon’s work on a commercial airship project a decade ago for tourism and cargo. We began developing World View long before we heard about Jose and his initiative. In fact, we’ve been looking at commercial uses of lighter-than-air craft for a long time.”
The URL for World View, worldviewexperience.com, was registered Aug. 24, 2013, according to public domain records. Inbloon’s URL, inbloon.com, was registered May 6, 2009.
When you look up at the night sky, assuming conditions are just right, you might just catch a glimpse of a faint, white band reaching across the heavens. This band, upon closer observation, looks speckled and dusty, filled with a million tiny points of light and halos of glowing matter. What you are seeing is the Milky Way, something that astronomers and stargazers alike have been staring up at since the beginning of time.
But just what is the Milky Way? Well, simply put, it is the name of the barred spiral galaxy in which our solar system is located. The Earth orbits the Sun in the Solar System, and the Solar System is embedded within this vast galaxy of stars. It is just one of hundreds of billions of galaxies in the Universe, and ours is called the Milky Way because the disk of the galaxy appears to be spanning the night sky like a hazy band of glowing white light. Continue reading “What is the Milky Way?”
The countdown has commenced and the excitement is building for India’s Mars Orbiter Mission (MOM) – which will conduct a detailed study of the Martian atmosphere and is the nation’s first ever mission to the Red Planet.
The 56 hour 30 min countdown started at 6:06 a.m. IST today (Nov. 3), according to an official statement from the Indian Space Research Organization (ISRO) leading to liftoff on Tuesday, Nov 5, from a seaside launch pad in Sriharikota, India.
MOM is the first of two new Mars orbiter science probes from Earth set to blast off for the Red Planet this November. Half a globe away, NASA’s MAVEN orbiter remains on target to launch barely two weeks after MOM on Nov. 18 – from the Florida Space Coast.
ISRO will broadcast the momentous MOM launch live at – starting at 14:00 hrs IST.
“The Launch Authorisation Board has approved & cleared the PSLV-C25/Mars Orbiter Mission launch on Nov 05, 2013 at 14:38 hrs IST (9:08 UTC, 4:08 a.m. EST)” from the state-of-the-art Satish Dhawan Space Centre SHAR, Sriharikota, located on India’s east coast in Andhra Pradesh state.
MOM is on schedule to lift off atop the powerful, extended XL version of India’s highly reliable four stage Polar Satellite Launch Vehicle (PSLV-C25).
Fueling of the PSLV-C25/Mars Orbiter Mission rocket stages is now in progress following a completely successful dress rehearsal and launch countdown exercise completed on Oct. 31.
“The filling of propellants into the Roll Control Thrusters as well as the Fourth stage of the PSLV C25 rocket [with mixed nitrogen oxides and monomethylhydrazine] is completed,” ISRO declared a short while ago.
During the dress rehearsal the vehicle systems were powered, the health was normal and the spacecraft & launch vehicle integrated level checks were completed.
Two tracking ships have been deployed to the Indian Ocean to relay critical in flight telemetry.
The 44 meter (144 ft) PSLV will launch MOM into an initially elliptical Earth parking orbit of 248 km x 23,500 km. A series of six orbit raising burns will eventually dispatch MOM on a trajectory to Mars around December 1.
Following a 300 day interplanetary cruise phase, the do or die Mars orbital insertion engine will fire on September 21, 2014 and place MOM into an 366 km x 80,000 km elliptical orbit.
MOM arrives about the same time as NASA’s MAVEN orbiter. They will significantly bolster Earth’s armada of five operational orbiters and surface rovers currently investigating the Red Planet.
MAVEN and MOM will “work together” to help solve the mysteries of Mars atmosphere, the chief MAVEN scientist told Universe Today.
“We plan to collaborate on some overlapping objectives,” Bruce Jakosky told me. Jakosky is MAVEN’s principal Investigator from the University of Colorado at Boulder.
The 1,350 kilogram (2,980 pound) MOM orbiter, also known as ‘Mangalyaan’, is the brainchild of ISRO.
‘Mangalyaan’ is outfitted with an array of five indigenous science instruments including a multi color imager and a methane gas sniffer to study the Red Planet’s atmosphere, morphology, mineralogy and surface features. Methane on Earth originates from both biological and geological sources.
MOM’s 15 kg (33 lb) science suite comprises:
MCM: the tri color Mars Color Camera images the planet and its two tiny moons, Phobos and Deimos
LAP: the Lyman Alpha Photometer measures the abundance of hydrogen and deuterium to understand the planets water loss process
TIS: the Thermal Imaging Spectrometer will map surface composition and mineralogy
MENCA: the Mars Exospheric Neutral Composition Analyser is a quadrapole mass spectrometer to analyze atmospheric composition
MSM: the Methane Sensor for Mars measures traces of potential atmospheric methane down to the ppm level.
Scientists will be paying close attention to whether MOM detects any atmospheric methane to compare with measurements from NASA’s Curiosity rover – which found ground level methane to be essentially nonexistent – and Europe’s upcoming 2016 ExoMarsTrace Gas Orbiter.
Although there are no NASA instruments on board MOM, NASA is providing key communications and navigation support to ISRO and MOM through the agency’s trio of huge tracking antennas in the Deep Space Network (DSN).
“At the point where we [MAVEN and MOM] are both in orbit collecting data we do plan to collaborate and work together with the data jointly,” MAVEN’s PI Jakosky told me.
“We agreed on the value of collaboration and will hold real discussions at a later time,” he noted.
India would become only the 4th nation or entity from Earth to survey Mars up close with spacecraft, following the Soviet Union, the United States and the European Space Agency (ESA)- if all goes well.
Past attempts to reach the Red Planet from both China and Japan have unfortunately failed.
Some observers speculate that India’s MOM mission will ignite a new Asian Space Race.
The $69 Million ‘Mangalyaan’ mission is expected to continue gathering measurements at the Red Planet for at least six months and hopefully much longer.
Learn more about MAVEN, MOM, Mars rovers, Orion and more at Ken’s upcoming presentations
Nov 14-19: “MAVEN Mars Launch and Curiosity Explores Mars, Orion and NASA’s Future”, Kennedy Space Center Quality Inn, Titusville, FL, 8 PM
Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM
George Whitesides, the CEO of Virgin Galactic, will give a special presentation at the 2013 meeting for the Association of Science Writers in Gainsville Florida.
The presentation will begin at 1:30 pm Pacific Standard Time / 4:30 pm Eastern.
Join Fraser Cain, Alan Boyle and Scott Lewis for live coverage of the presentation.
Many lucky people around the world were treated to a an unusual “hybrid” solar eclipse today — so called because the extent to which the Sun was blocked out varied around the world. Those along North America’s east coast and the northern half of South America saw a brilliant Sun partially eclipsed by the Moon just at dawn, as in our lead image from South Carolina, USA. But regions like equatorial Africa had a total eclipsed Sun for about a minute, while those in southern Europe, the Middle East, were able to see an “annular” or partial, eclipse. This type of variable eclipse is rare — the last time one occurred was Nov. 20, 1854 and the next one won’t happen until Oct. 17, 2172! This was also the last eclipse of the year, and photographers were out to capture the views.
UPDATE: We’ve now added more images, including this new one from Uganda that shows totality:
See more below, and we’ll continue to add images as they come in.
Here’s a gorgeous timelapse by Steve Ellington, who shot this from the US east coast:
The following two images were sent to us by Victor Pinheiro from Espargos, Sal Island, one of 10 islands that make up the Republic of Cabo Verde, in the central Atlantic Ocean, 570 kilometers off the coast of Western Africa. Africa had some of the best views of the eclipse, with some areas seeing totality.
The image above and below were captured by Gadi Eidelheit from Israel. You can see his entire collection of images from the eclipse at his website.
Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.