Giveaway and Review: Astronomy Photographer of the Year: Collection Two

Universe Today and Royal Observatory Greenwich are pleased to offer one free copy of Astronomy Photographer of the Year: Collection Two!

Universe Today Review by Dave Dehetre

Astronomy Photographer of the Year is a large format glossy book that covers the Royal Observatory, Greenwich’s annual astrophotography competition. It covers the competition years from 2009 to 2012 and subject categories: Earth and Space, Our Solar System, Deep Space, Young Astronomy Photographer, People and Space, Best Newcomer, and Robotic Scope. It also includes a brief how-to primer on astrophotography which, while fine, seemed perfunctory and tacked on.

The book is organized by years and then by category, with nice double page section breaks and clear detailed info alongside each image. However, within each year, the categories aren’t delineated, either through typographic means, such as headers or section breaks, or through any indication alongside the images themselves. Usually the category was obvious enough, but it was somewhat confusing at times. Each category contains images by the winner, runner-up, and sometimes one or more ‘highly-commended’ entrants. Some categories also had other images without any designation of why they were included. This could be a typographic omission of some sort, or it could be that they were just additional entrants worthy of inclusion.

I was happy to see the consistently high caliber of work that came out of the competition. There isn’t one image in the book that was less than outstanding. I’ve spent many a night far out in the countryside doing astrophotography as a hobby, and I’ve never come up with an image to compare.

I was also happy to see the competition segmented into subject areas as well as the more expected age/experience categories. This seems to acknowledge that there are different metrics and merit for the broad scope of styles/subjects in astrophotography.

One other point worth mentioning is that I found that many of the astrophotographers presented were people I was already familiar with, some from Flickr, some from Youtube, and some from periodicals like Sky at Night. I knew these people, and not because they produce great images, but because they are some of the people I learned astrophotography from. I think this points out one of the great underlying aspects of astrophotography: that it is collaborative in nature. And I find it heartening that the people who share the most, who help others and communicate, seem to be the ones who do the best work and are the most successful.

I’m of two minds about Astronomy Photographer of the Year though. On the one hand, it’s very well done, beautiful, and stunning. Really everything you could ask for in a book on this subject. But against it, in part it is trying to document something (astrophotography) that is bigger and richer than can be captured in a book.

While the images are flawlessly presented, they lack the backlit brilliance provided by a computer screen, and they aren’t zoomable to view fine details. Many astrophotography images are available on-line at resolutions equivalent to wall-size if they were printed out.

There is also the problem of completeness. While the book is cover-to-cover with great images, in large part it is singular images from outstanding photographers who have dozens or hundreds of stunning images on-line. I found myself flipping a few pages at a time, and then being overcome with a desire to go search out a photographer’s other images. This is perhaps an inevitable outcome of the fact that the competition was conducted on-line (via Flickr), so it’s hard to see it as a negative.

So it really is a fantastic book, I love having it on my shelf, and I often flip through at random and find myself getting inspired, but I don’t think I would have searched it out for that purpose, and I’m not sure who the target customer is supposed to be. It seems incomplete and cursory, especially in the technical details, for someone already involved with the hobby and yet it has a price tag and scope that seem inconsistent with an introductory level book. It would make a great addition to a library collection.

~

If you want to purchase a copy of Astronomy Photographer of the Year: Collection Two, it is available on Amazon.com.

Universe Today and Royal Observatory Greenwich are pleased to be able to offer one free copy of Astronomy Photographer of the Year: Collection Two to our readers. In order to be entered into the giveaway drawing, just put your email address into the box at the bottom of this post (where it says “Enter the Giveaway”) before Monday, November 4, 2013. If this is the first time you’re registering for a giveaway from Universe Today, you’ll receive a confirmation email immediately where you’ll need to click a link to be entered into the drawing. For those who have registered previously, you’ll receive an email later where you can enter this drawing.

Closest Star To Our Sun Beckons In New Hubble Image

A Hubble Space Telescope image of Proxima Centauri, the closest star to Earth. Credit: ESA/Hubble & NASA

Remember that planet discovered near Alpha Centauri almost exactly a year ago? As you may remember, it’s the closest system to Earth, making some people speculate about how quickly we could get a spacecraft in that general direction. Four light years is close in galactic terms, but it’s a little far away for the technology we have now — unless we wanted to wait a few tens thousands of years for the journey to complete.

Meanwhile, we can at least take pictures of that star system. The Hubble Space Telescope team has released a new picture of Alpha Centauri’s sister star, Proxima Centauri. While Proxima is technically the closest star to Earth, it’s too faint to be seen by the naked eye, which is not all that surprising given it is only an eighth of the sun’s mass. Sometimes, however, it gets a little brighter.

“Proxima is what is known as a ‘flare star’, meaning that convection processes within the star’s body make it prone to random and dramatic changes in brightness.” stated the Hubble European Space Agency Information Centre.

“The convection processes not only trigger brilliant bursts of starlight but, combined with other factors, mean that Proxima Centauri is in for a very long life.”

How long? Well, consider the following: the universe is about 13.8 billion years old and Proxima is expected to remain in middle age for another four TRILLION years. Plenty of time for us to send a spacecraft over there if we’re patient enough. (The universe itself is expected to last a while, as Wise Geek explains.)

The picture was nabbed with Hubble’s Wide Field and Planetary Camera 2, with neighbouring stars Alpha Centauri A and B out of the frame.

Source: Hubble European Space Agency Information Centre

Stunning New Flyover Video: Volcanoes, Canyons and Craters of Mars

Mars Express over water-ice crater. ESA Celebrates 10 Years since the launch of Mars Express. This artists concept shows Mars Express set against a 35 km-wide crater in the Vastitas Borealis region of Mars at approximately 70.5°N / 103°E. The crater contains a permanent patch of water-ice that likely sits upon a dune field – some of the dunes are exposed towards the top left in this image. Copyright ESA/DLR/FU-Berlin-G.Neukum

Go from the highest volcano to the deepest canyon on Mars in this great new complication video from images taken by ESA’s Mars Express. The data shown here was gathered from the nearly 12,500 orbits by the Mars Express spacecraft since its arrival at the Red Planet in late 2003, and used to create digital topographic models of almost the entire surface of the planet. Not only does this provide unique and stunning visualization to create these “flyovers” of various locals on Mars, it also enables researchers to acquire new and surprising information about the evolution of the Red Planet.

The images in this movie were taken by the High Resolution Stereo Camera and the video was released by the DLR German Aerospace Center as part of the ten years of Mars Express celebrations in June 2013, and was just released online today.

Enjoy another recent Mars Express video, a flythrough of Hebes Chasma:

ATV-4 ‘Einstein’ Says Goodbye to the Space Station

The current Expedition 37 crew took this picture inside the ATV-4 before undocking as a tribute to Albert Einstein. Credit: ESA/Luca Parmitano.

The Expedition 37 crew onboard the International Space Station closed the hatch and said goodbye to the ATV-4 “Albert Einstein” cargo ship early this morning, Oct. 28. Europe’s 4th Automated Transfer Vehicle undocked at 08:55 UTC (4:55 a.m. EDT). The cargo carrier was filled with trash and it will be deorbited on Nov. 2 for a destructive entry back into the Earth’s atmosphere over the Pacific Ocean. ATV-4 has been at the ISS since June 15, delivering more than 7 tons of food, fuel and supplies. Its departure helps prepare for more action at the ISS: the current Soyuz spacecraft docked at the station will be moved to a different location so that a new Soyuz can dock with three new crew members. The Soyuz TMA-11M is scheduled to launch on Nov. 6, 2013 with the Expedition 38/39 crew of Rick Mastracchio, Koichi Wakata, Mikhail Tyurin.

Some images of the undocking, below:

This photo was taken from Japan shorty after the undocking:

ATV-4 backing away from the ISS. Credit: NASA TV.
ATV-4 backing away from the ISS. Credit: NASA TV.
The ATV-4 is just visible as it passes into Earth's terminator. Credit: NASA TV.
The ATV-4 is just visible as it passes into Earth’s terminator. Credit: NASA TV.

Giveaway and Review: Star Trek Federation: The First 150 Years

Hello Readers! We have a new book review and giveaway for your enjoyment: Star Trek Federation: The First 150  Years. 

From the Publisher:

Star Trek Federation: The First 150 Years
For the first time, an ‘in universe’ history of Star Trek, complete with excerpts from Starfleet records and intergalactic intelligence, including James T. Kirk’s official biography and newly translated Klingon reports.

Star Trek Federation: The First 150 Years celebrates the 150th anniversary of the founding of the United Federation of Planets.

This unprecedented illustrated volume chronicles the pivotal era leading up to Humankind’s First Contact with Vulcan in 2063, the Romulan War in 2156, the creation of the Federation in 2161, and the first 150 years of the intergalactic democracy up until the year 2311. Meticulously researched, this account covers a multitude of alien species, decisive battles, and the technology that made the Age of Exploration possible. It includes field sketches, illustrations, and reproductions of historic pieces of art from across the Galaxy, along with over fifty excerpts from key Federation documents and correspondence, Starfleet records, and intergalactic intelligence.

David A. Goodman has spent the last 26 years writing for television. His credits include The Golden Girls, Star Trek: Enterprise, Futurama (where he wrote the Nebula Award nominated Star Trek homage “Where No Fan Has Gone Before”), and Family Guy where he was head writer for six years. This is his first book. He lives in Pacific Palisades, CA with his family.

You can purchase a copy of Star Trek Federation: The First 150 Years through Amazon.com.

Universe Today Review by Kristopher A. Poskey

Hypothetically, in the year 2347, young students throughout the Alpha Quadrant of The United Federation of Planets have found the book Star Trek Federation, The First 150 Years an exhilarating 167 page chronological review of exploration and diplomacy in space. Yet, here we are in the year 2013, reading as if we had survived to see the end of the first 150 years.Perhaps 27 year old David A. Goodman, Memory Alpha Historian, has travelled back in time to the year 2013 and brought this book back with him.

Goodman is well known for his work on “The Golden Girls”, “Family Guy”,” Futurama”, and ultimately his work on “Star Trek: Enterprise”. Goodman first publicly expressed his interest in Star Trek when he wrote, Where No Fan Has Gone Before, a well-known Futurama episode from the fourth season dedicated to Star Trek (it was nominated for the Nebula Award). Perhaps Goodman may even speak Klingon, but this episode showed just how vast Goodman’s knowledge was of Star Trek, its characters, and its history. Goodman says the inspiration for this book came from “The Star Trek Spaceflight Chronology” that was published in December, 1979. As its title suggests, the original book chronicles humans’ space ventures from Sputnik I to the events depicted in “Star Trek: The Motion Picture”.

Goodman’s new book begins on April 5, 2063 with the events surrounding “First Contact” and extends to the year 2311. The year 2311 marked the first 150 years of The Federation. As any good historian, Goodman not only told the stories that built the federation, but included minute details, allowing the reader to get a full grasp on what kinds of dynamic situations, the early pioneers faced. Goodman teamed up with 4 artists (Joe Corroney, Mark McHaley, Cat Staggs, and Jeff Carlisle) to add a plethora of illustrations that bring the history and its stories to life. Depictions of your favorite characters and pivotal moments truly add a new perspective to this captivating story. Excerpts from the Captain’s Log, as well as newspaper clippings are scattered throughout the book. Documents written in Klingon, Vulcan, Andorian, Romulan, Tellarite, and Coridan are included, along with their English translations. These and many other surprises lie within the pages of this sophisticated historical document.

If you’re an avid Trekkie, this book is a must-have for your collection (you may even learn a thing or two). If you’ve never been a huge Star Trek fan, this book will still appeal to you, not only in an emotional but also in a logical way. While the book is particularly broad about specifics, it focuses on the Federation as a whole, and the more widespread effects of decisions the leaders made. While we may have enjoyed the detail and the excitement in each episode of Star Trek, from our younger days, this book truly takes the story to a whole new level: by evaluating the entire galaxy and plotting the historical significance of various events that occurred. This book is a must read for Star Trek and science fiction fans alike.

Universe Today and Titan Books are pleased to be able to offer two free copies of Star Trek Federation to our readers. In order to be entered into the giveaway drawing, just put your email address into the box at the bottom of this post (where it says “Enter the Giveaway”) before Monday, November 4, 2013. If this is the first time you’re registering for a giveaway, you’ll receive a confirmation email immediately where you’ll need to click a link to be entered into the drawing. For those who have registered previously, you’ll receive an email later where you can enter this drawing.

 

How Far is Earth from the Sun?

How Far is Earth from the Sun?

It’s amazing to think that for the majority of human history, we had almost no understanding about the Sun. We didn’t know what it was made of, how it formed, or how it produced energy. We didn’t know how big it was, and we didn’t know how far away it was.

We orbit the Sun at a distance of about 150 million kilometers. This number is actually an average, since we follow an elliptical path. At its closest point, the Earth gets to 147 million km, and at its most distant point, it’s 152 million km.

Distances in the Solar System are so vast that astronomers use this distance as a standard for measurement, and so the average distance from the Earth to the Sun is called an astronomical unit. Instead of saying that Pluto is 5.87 billion kilometers away from the Sun, astronomers say that it’s 39 astronomical units, or AUs.

You might be surprised to know that the distance from the Sun to the Earth was only determined within the last few hundred years. There were just too many variables. If astronomers knew how big it was, they could figure out how far away it was, or vice versa, but both of these numbers were mysteries.

Ancient astronomers, especially the Greeks, tried estimating the distance to the Sun in several different ways: measuring the length of shadows on Earth, or comparing the size of the Moon and its orbit to the Sun. Unfortunately, their estimates were off at least by a factor of 10.

The key to figuring out the distance to the Sun came from observing Venus as it passed directly in front of the Sun. This rare event, known as a Transit of Venus, happens only twice every 108 years. Once devised, the best opportunities for taking this precise measurement came during the Venus transits of 1761 and 1769. Astronomers were dispatched to remote corners of the globe to observe the precise moment when Venus began to move in front of the Sun, and when it had moved completely across the surface.

By comparing these measurements, astronomers could use geometry to calculate exactly how far away the Sun is. Their initial calculations put the distance at 24,000 times the radius of the Earth. Not bad considering our modern measurement of 23,455 times the radius of the Earth.

Modern astronomers can use radar and laser pulses to calculate the distance to objects in the Solar System. For example, they fire an intense beam of radio waves at a distant object, like Mercury, and then calculate how long it takes for the waves to bounce off the planet and return to Earth. Since the speed of light is well known, the return travel time tells you how far away the planet is.

Astronomy has truly helped us find our place in the Universe. It nice to be living in a time when many of these big mysteries have been solved. I don’t know about you, but I can’t wait to see what’s around the corner of the next discovery.

Dream Chaser spaceship test article damaged during 1st Free-Flight Drop Test

Sierra Nevada Dream Chaser engineering test article in flight during a captive-carry test this past summer. Credit: NASA

The engineering test article of the commercial Dream Chaser spaceship being developed by Sierra Nevada Corp (SNC) suffered some significant damage during its critical 1st ever approach-and-landing (ALT) drop test on Saturday, Oct. 26, in California due to an unspecified type of malfunction with the deployment of the left landing gear.

The Dream Chaser mini-shuttle suffered “an anomaly as it touched down on the Runway 22L at Edwards Air Force Base, Calif.,” according to a post-test statement from NASA.

A report at NASA Spaceflight.com indicated that the Dream Chaser “flipped over on the runway” after touchdown.

The full extent of damage to the winged vehicle or whether it can be repaired and reflown is not known at this time. No photos or details explaining the damage have yet emerged – beyond brief press releases issued by SNC and NASA.

The performance of the vehicles’ nose skid, brakes, tires and other flight systems is being tested to prove that it can safely land an astronaut crew returning from the space station after surviving the searing heat of re-entry from Earth orbit.

This initial atmospheric drop test was conducted in an automated mode. There was no pilot on board and no one was hurt on the ground.

“No personnel were injured. Damage to property is being assessed,” said NASA. “Edwards Air Force Base emergency personnel responded to scene as a precaution.

“Support personnel are preparing the vehicle for transport to a hangar.”

Dream Chaser is one of three private sector manned spaceships being developed with funding from NASA’s commercial crew program known as Commercial Crew Integrated Capability (CCiCap) initiative to develop a next-generation crew transportation vehicle.

Dream Chaser on the runway with landing gear deployed. Credit: NASA
Dream Chaser on the runway with landing gear deployed. Credit: NASA

The NASA seed money aims at restoring America’s manned spaceflight access to low Earth orbit and the International Space Station (ISS) – perhaps by 2017 – following the forced shutdown of the Space Shuttle program in 2011.

Until one of the American commercial space taxis is ready for liftoff, NASA is completely dependent on the Russian Soyuz capsule for astronaut rides to the ISS at a cost of roughly $70 million per seat.

SNC was awarded $227.5 million in the current round of NASA funding and must complete specified milestones including up to five ALT drop tests to check the aerodynamic handling.

To date this test vehicle has successfully accomplished a series of runway tow and airborne captive carry tests.

Dream Chaser commercial crew vehicle built by Sierra Nevada Corp docks at ISS
Dream Chaser commercial crew vehicle built by Sierra Nevada Corp docks at ISS

Development of crew versions of the SpaceX Dragon and Boeing CST-100 capsules are also being funded by NASA’s commercial crew program office.

Dream Chaser can carry a crew of up to seven and is the only reusable, lifting body shuttle type vehicle with runway landing capability among the three competitors.

Scale models of NASA’s Commercial Crew program vehicles and launchers; Boeing CST-100, Sierra Nevada Dream Chaser, SpaceX Dragon. Credit: Ken Kremer/kenkremer.com
Scale models of NASA’s Commercial Crew program vehicles and launchers; Boeing CST-100, Sierra Nevada Dream Chaser, SpaceX Dragon.
Credit: Ken Kremer/kenkremer.com

During Saturday’s test, SNC was performing the first in a series of free-flight approach-and-landing tests with the Dream Chaser prototype test vehicle known as the ETA.

The prototype spaceship was released as planned from its carrier aircraft, an Erickson Air-Crane helicopter, at approximately 11:10 a.m. Pacific Standard Time (2:10 p.m. EDT), said SNC in a statement.

Dream Chaser awaits launch atop United Launch Alliance Atlas V rocket
Dream Chaser awaits launch atop United Launch Alliance Atlas V rocket
The post release flare and touchdown appeared normal at first until the left landing gear deployment failed at some point after runway touchdown.

“Following release, the Dream Chaser spacecraft automated flight control system gently steered the vehicle to its intended glide slope. The vehicle adhered to the design flight trajectory throughout the flight profile. Less than a minute later, Dream Chaser smoothly flared and touched down on Edwards Air Force Base’s Runway 22L right on centerline,” according to the SNC press release.

SNC went on to say that reviews are in progress to determine the cause of the landing gear failure.

“While there was an anomaly with the left landing gear deployment, the high-quality flight and telemetry data throughout all phases of the approach-and-landing test will allow SNC teams to continue to refine their spacecraft design. SNC and NASA Dryden are currently reviewing the data. As with any space flight test program, there will be anomalies that we can learn from, allowing us to improve our vehicle and accelerate our rate of progress.”

The engineering test article (ETA) is a full sized vehicle.

Dream Chaser is a reusable mini shuttle that launches from the Florida Space Coast atop a United Launch Alliance Atlas V rocket and lands on the shuttle landing facility (SLF) runway at the Kennedy Space Center, like the space shuttle.

“It’s not outfitted for orbital flight. It is outfitted for atmospheric flight tests,” said Marc Sirangelo, Sierra Nevada Corp. vice president and SNC Space Systems chairman told Universe Today previously.

“The best analogy is it’s very similar to what NASA did in the shuttle program with the Enterprise, creating a vehicle that would allow it to do significant flights whose design then would filter into the final vehicle for orbital flight,” Sirangelo told me.

We’ll provide further details as they become known.

Ken Kremer

Carnival of Space #325

Carnival of Space. Image by Jason Major.
Carnival of Space. Image by Jason Major.

This week’s Carnival of Space is hosted by Brian Wang at his Next Big Future blog.

Click here to read Carnival of Space #325

And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.

Jupiter Bound Juno snaps Dazzling Gallery of Planet Earth Portraits

This colorized composite shows more than half of Earth’s disk over the coast of Argentina and the South Atlantic Ocean as the Juno probe slingshotted by on Oct. 9, 2013 for a gravity assisted acceleration to Jupiter. The mosaic was assembled from raw images taken by the Junocam imager. Credit: NASA/JPL/SwRI/MSSS/Ken Kremer/Marco Di Lorenzo

Juno Portrait of Earth
This false color composite shows more than half of Earth’s disk over the coast of Argentina and the South Atlantic Ocean as the Juno probe slingshotted by on Oct. 9, 2013 for a gravity assisted acceleration to Jupiter. The mosaic was assembled from raw images taken by the Junocam imager. Credit: NASA/JPL/SwRI/MSSS/Ken Kremer/Marco Di Lorenzo
See below a gallery of Earth from Juno[/caption]

During a crucial speed boosting slingshot maneuver around Earth on Oct. 9, NASA’s Jupiter-bound Juno probe snapped a dazzling gallery of portraits of our Home Planet over the South American coastline and the Atlantic Ocean. See our mosaics of land, sea and swirling clouds above and below, including several shown in false color.

But an unexpected glitch during the do or die swing-by sent the spacecraft into ‘safe mode’ and delayed the transmission of most of the raw imagery and other science observations while mission controllers worked hastily to analyze the problem and successfully restore Juno to full operation on Oct. 12 – but only temporarily!

Because less than 48 hours later, Juno tripped back into safe mode for a second time. Five days later engineers finally recouped Juno and it’s been smooth sailing ever since, the top scientist told Universe Today.

“Juno is now fully operational and on its way to Jupiter,” Juno principal investigator Scott Bolton told me today. Bolton is from the Southwest Research Institute (SwRI), San Antonio, Texas.

“We are completely out of safe mode!”

NASA's Juno probe captured the image data for this composite picture during its Earth flyby on Oct. 9 over Argentina,  South America and the southern Atlantic Ocean. Raw imagery was reconstructed and aligned by Ken Kremer and Marco Di Lorenzo, and false-color blue has been added to the view taken by a near-infrared filter that is typically used to detect methane. Credit: NASA/JPL/SwRI/MSSS/Ken Kremer/Marco Di Lorenzo
NASA’s Juno probe captured the image data for this composite picture during its Earth flyby on Oct. 9 over Argentina, South America and the southern Atlantic Ocean. Raw imagery was reconstructed and aligned by Ken Kremer and Marco Di Lorenzo, and false-color blue has been added to the view taken by a near-infrared filter that is typically used to detect methane. Credit: NASA/JPL/SwRI/MSSS/Ken Kremer/Marco Di Lorenzo

With the $1.1 Billion Juno probe completely healthy once again and the nail-biting drama past at last, engineers found the time to send the stored photos and research data back to ground station receivers.

“The science team is busy analyzing data from the Earth flyby,” Bolton informed me.

The amateur image processing team of Ken Kremer and Marco Di Lorenzo has stitched together several portraits from raw images captured as Juno sped over Argentina, South America and the South Atlantic Ocean and within 347 miles (560 kilometers) of the surface. We’ve collected the gallery here for all to enjoy.

Several portraits showing the swirling clouds and land masses of the Earth’s globe have already been kindly featured this week by Alan Boyle at NBC News and at the Daily Mail online.

NASA's Juno probe captured the image data for this composite picture during its Earth flyby on Oct. 9 over Argentina,  South America and the southern Atlantic Ocean. Raw imagery was stitched by Ken Kremer and Marco Di Lorenzo in this view taken by a near-infrared filter that is typically used to detect methane. Credit: NASA/JPL/SwRI/MSSS/Ken Kremer/Marco Di Lorenzo
NASA’s Juno probe captured the image data for this composite picture during its Earth flyby on Oct. 9 over Argentina, South America and the southern Atlantic Ocean. Raw imagery was stitched by Ken Kremer and Marco Di Lorenzo in this view taken by a near-infrared filter that is typically used to detect methane. Credit: NASA/JPL/SwRI/MSSS/Ken Kremer/Marco Di Lorenzo

Raw images from the Junocam camera are collected in strips – like a push broom. So they have to be carefully reconstructed and realigned to match up. But it can’t be perfect because the spacecraft is constantly rotating and its speeding past Earth at over 78,000 mph.

So the perspective of Earth’s surface features seen by Junocam is changing during the imaging.

And that’s what is fascinating – to see the sequential view of Earth’s beautiful surface changing as the spacecraft flew over the coast of South America and the South Atlantic towards Africa – from the dayside to the nightside.

This composite shows more than half of Earth’s disk over the coast of Argentina and the South Atlantic Ocean as the Juno probe slingshotted by on Oct. 9, 2013 for a gravity assisted acceleration to Jupiter. The mosaic was assembled from raw images taken by the Junocam imager. Credit: NASA/JPL/SwRI/MSSS/Ken Kremer/Marco Di Lorenzo
This composite shows more than half of Earth’s disk over the coast of Argentina and the South Atlantic Ocean as the Juno probe slingshotted by on Oct. 9, 2013 for a gravity assisted acceleration to Jupiter. The mosaic was assembled from raw images taken by the Junocam imager. Credit: NASA/JPL/SwRI/MSSS/Ken Kremer/Marco Di Lorenzo

It’s rare to get such views since only a few spacecraft have swung by Earth in this manner – for example Galileo and MESSENGER – on their way to distant destinations.

Coincidentally this week, the Cygnus cargo carrier departed the ISS over South America.

Fortunately, the Juno team knew right from the start that the flyby of Earth did accomplish its primary goal of precisely targeting Juno towards Jupiter – to within 2 kilometers of the aim point, despite going into safe mode.

“We are on our way to Jupiter as planned,” Juno Project manager Rick Nybakken, told me in a phone interview soon after the flyby of Earth. Nybakken is from NASA’s Jet Propulsion Lab in Pasadena, CA.

“None of this affected our trajectory or the gravity assist maneuver – which is what the Earth flyby is,” he said.

Juno swoops over Argentina  This reconstructed day side image of Earth is one of the 1st snapshots transmitted back home by NASA’s Jupiter-bound Juno spacecraft during its speed boosting flyby on Oct. 9, 2013. It was taken by the probes Junocam imager and methane filter at 12:06:30 PDT and an exposure time of 3.2 milliseconds. Juno was flying over South America and the southern Atlantic Ocean. The coastline of Argentina is visible at top right. Credit: NASA/JPL/SwRI/MSSS/Ken Kremer
Juno swoops over Argentina
This reconstructed day side image of Earth is one of the 1st snapshots transmitted back home by NASA’s Jupiter-bound Juno spacecraft during its speed boosting flyby on Oct. 9, 2013. It was taken by the probes Junocam imager and methane filter at 12:06:30 PDT and an exposure time of 3.2 milliseconds. Juno was flying over South America and the southern Atlantic Ocean. The coastline of Argentina is visible at top right. Credit: NASA/JPL/SwRI/MSSS/Ken Kremer

It also accelerated the ships velocity by 16,330 mph (26,280 km/h) – thereby enabling Juno to be captured into polar orbit about Jupiter on July 4, 2016.

Dayside view of a sliver of Earth snapped by Juno during flyby on Oct. 9, 2013.  This mosaic has stitched from raw image data captured by methane near-infrared filter on Junocam imager at 11:57:30 PDT.  Credit: NASA/JPL/SwRI/MSSS/Ken Kremer/Marco Di Lorenzo
Dayside view of a sliver of Earth snapped by Juno during flyby on Oct. 9, 2013. This mosaic is stitched from raw image data captured by methane near-infrared filter on Junocam imager at 11:57:30 PDT. Credit: NASA/JPL/SwRI/MSSS/Ken Kremer/Marco Di Lorenzo

The safe mode did not impact the spacecraft’s trajectory one smidgeon!

It was likely initiated by an incorrect setting for a fault protection trigger for the spacecraft’s battery when Juno was briefly in an eclipse during the flyby.

Nybakken also said that the probe was “power positive and we have full command ability,” while it was in safe mode.

Safe mode is a designated fault protective state that is preprogrammed into spacecraft software in case something goes amiss. It also aims the craft sunwards thereby enabling the solar arrays to keep the vehicle powered.

False-color composite of a sliver of Earth snapped by Juno during flyby on Oct. 9, 2013.  This mosaic is stitched from raw image data captured by methane near-infrared filter on Junocam imager at 11:57:30 PDT.  Credit: NASA/JPL/SwRI/MSSS/Ken Kremer/Marco Di Lorenzo
False-color composite of a sliver of Earth snapped by Juno during flyby on Oct. 9, 2013. This mosaic is stitched from raw image data captured by methane near-infrared filter on Junocam imager at 11:57:30 PDT. Credit: NASA/JPL/SwRI/MSSS/Ken Kremer/Marco Di Lorenzo

The Earth flyby maneuver was necessary because the initial Atlas V rocket launch on Aug. 5, 2011 from Cape Canaveral Air Force Station, FL was not powerful enough to place Juno on a direct trajectory flight to Jupiter.

As of today, Juno is more than was 6.7 million miles (10.8 million kilometers) from Earth and 739 million miles (7.95 astronomical units) from Jupiter. It has traveled 1.01 billion miles (1.63 billion kilometers, or 10.9 AU) since launch.

With Juno now on course for our solar system’s largest planet, there won’t be no any new planetary images taken until it arrives at the Jovian system in 2016. Juno will then capture the first ever images of Jupiter’s north and south poles.

We have never seen Jupiter’s poles imaged from the prior space missions, and it’s not possible from Earth.

During a year long mission at Jupiter, Juno will use its nine science instruments to probe deep inside the planet to reveal its origin and evolution.

“Jupiter is the Rosetta Stone of our solar system,” says Bolton. “It is by far the oldest planet, contains more material than all the other planets, asteroids and comets combined and carries deep inside it the story of not only the solar system but of us. Juno is going there as our emissary — to interpret what Jupiter has to say.”

Based on what we’ve seen so far, Junocam is sure to provide spectacular views of the gas giants poles and cloud tops.

Only 982 days to go !

Ken Kremer

Credit: NASA/JPL
Credit: NASA/JPL

ALMA Warms Up the View of the Coldest Place In the Universe

Where is the coldest place in the Universe? Right now, astronomers consider the “Boomerang Nebula” to have the honors. Located about 5,000 light-years away in the constellation Centaurus, this pre-planetary nebula carries a temperature of about one Kelvin – or a brisk, minus 458 degrees Fahrenheit. That makes it even colder than the natural background temperature of space! What makes it more frigid than the elusive afterglow of the Big Bang? Astronomers are employing the powers of the Atacama Large Millimeter/submillimeter Array (ALMA) telescope to tell us more about its chilly properties and unusual shape.

The “Boomerang” is different all the way around. It is not yet a planetary nebula. The fueling light source – the central star – just isn’t hot enough yet to emit the massive amounts of ultra-violet radiation which lights up the structure. Right now it is illuminated by starlight shining off its surrounding dust grains. When it was first observed in optical light by our terrestrial telescopes, the nebula appeared to be shifted to one side and that’s how it got its fanciful name. Subsequent observations with the Hubble Space Telescope revealed an hour-glass structure. Now, enter ALMA. With these new observations, we can see the Hubble images only show part of what’s happening and the dual lobes seen in the older data were probably only a “trick of the light” as presented by optical wavelengths.

“This ultra-cold object is extremely intriguing and we’re learning much more about its true nature with ALMA,” said Raghvendra Sahai, a researcher and principal scientist at NASA’s Jet Propulsion Laboratory in Pasadena, California, and lead author of a paper published in the Astrophysical Journal. “What seemed like a double lobe, or ‘boomerang’ shape, from Earth-based optical telescopes, is actually a much broader structure that is expanding rapidly into space.”

So what is going on out there that makes the Boomerang such a cool customer? It’s the outflow, baby. The central star is expanding at a frenzied pace and it is lowering its own temperature in the process. A prime example of this is an air conditioner. It uses expanding gas to create a colder core and as the breeze blows over it – or in this case, the expanding shell – the environment around it is cooled. Astronomers were able to determine just how cool the gas in the nebula is by noting how it absorbed the constant of the cosmic microwave background radiation: a perfect 2.8 degrees Kelvin (minus 455 degrees Fahrenheit).

Credit: NASA/ESA
Credit: NASA/ESA
“When astronomers looked at this object in 2003 with Hubble, they saw a very classic ‘hourglass’ shape,” commented Sahai. “Many planetary nebulae have this same double-lobe appearance, which is the result of streams of high-speed gas being jettisoned from the star. The jets then excavate holes in a surrounding cloud of gas that was ejected by the star even earlier in its lifetime as a red giant.”

However, the single-dish millimeter wavelength telescopes didn’t see things the same as Hubble. Rather than a skinny waist, they found a fuller figure – a “nearly spherical outflow of material”. According to the news release, ALMA’s unprecedented resolution permitted researchers to determine why there was such a difference in overall appearance. The dual-lobe structure was evident when they focused on the distribution of carbon monoxide molecules as seen at millimeter wavelengths, but only toward the inside of the nebula. The outside was a different story, though. ALMA revealed a stretched, cold gas cloud that was relatively rounded. What’s more, the researchers also pinpointed a thick corridor of millimeter-sized dust grains enveloping the progenitor star – the reason the outer cloud took on the appearance of a bowtie in visible light! These dust grains shielded a portion of the star’s light, allowing just a glimpse in optical wavelengths coming from opposite ends of the cloud.

“This is important for the understanding of how stars die and become planetary nebulae,” said Sahai. “Using ALMA, we were quite literally and figuratively able to shed new light on the death throes of a Sun-like star.”

There’s even more to these new findings. Even though the perimeter of the nebula is beginning to warm up, it’s still just a bit colder than the cosmic microwave background. What could be responsible? Just ask Einstein. He called it the “photoelectric effect”.

Original Story Source: NRAO News Release.