Quantum physics is a fascinating yet complicated subject to understand, and one of the things that freaks out physics students every is the concept of entanglement. That occurs when physicists attempt to measure the state of a particle and that affects the state of another particle instantly. (In reality, the particles are in multiple states — spinning in multiple directions, for example — and can only be said to be in one state or another when they are measured.)
“Spooky action at a distance” is how Albert Einstein reportedly referred to it. Here’s the new bit about this: Julian Sonner, a senior postdoctoral researcher at the Massachusetts Institute of Technology, led research showing that when two of these quarks are created, string theory creates a wormhole linking the quarks.
According to MIT, this could help researchers better understand the link between gravity (which takes place on a large scale) to quantum mechanics (which takes place on a very tiny scale). As MIT puts it, up to now it’s been very hard for physicists to “explain gravity in quantum-mechanical terms”, giving rise to a preoccupation of coming up with a single unifying theory for the universe. No luck yet, but many people believe it exists.
“There are some hard questions of quantum gravity we still don’t understand, and we’ve been banging our heads against these problems for a long time,” Sonner stated. “We need to find the right inroads to understanding these questions.”
Quantum entanglement sounds so foreign to our experience because it appears to exceed the speed of light, which violates Einstein’s general relativity. (The speed limit is still being tested, of course, which is why scientists were so excited when it appeared particles were moving faster than light in a 2011 experiment that was later debunked due to a faulty sensor.)
Anyway, this is how the new research proceeded:
– Sonner examined the work of Juan Maldacena of the Institute for Advanced Study and Leonard Susskind of Stanford University. The physicists were looking at how entangled black holes would behave. “When the black holes were entangled, then pulled apart, the theorists found that what emerged was a wormhole — a tunnel through space-time that is thought to be held together by gravity. The idea seemed to suggest that, in the case of wormholes, gravity emerges from the more fundamental phenomenon of entangled black holes,” MIT stated.
– Sonner then set about to create quarks to see if he could watch what happens when two are entangled with each other. Using an electric field, he was able to catch pairs of particles coming out of a vacuum environment with a few “transient” particles in it.
– Once he caught the particles, he mapped them in terms of space-time (four-dimensional space). Note: gravity is believed to be the fifth dimension because it can bend space-time, as you can see in these images of galaxies below.
– Sonner then tried to figure out what would happen in the fifth dimension when quarks were entangled in the fourth dimension, using a string theory concept called holographic duality. “While a hologram is a two-dimensional object, it contains all the information necessary to represent a three-dimensional view. Essentially, holographic duality is a way to derive a more complex dimension from the next lowest dimension,” MIT stated.
– And it was under holographic duality that Sonner found a wormhole would be created. The implication is that gravity itself may come out of entanglement of these particles, and that the bending we see in the universe would also be due to the entanglement.
“It’s the most basic representation yet that we have where entanglement gives rise to some sort of geometry,” Sonner stated. “What happens if some of this entanglement is lost, and what happens to the geometry? There are many roads that can be pursued, and in that sense, this work can turn out to be very helpful.”
A raging hurricane is creating a “suck zone” at Saturn’s north pole. The handy Cassini spacecraft recently captured a bunch of images of the six-sided jet stream surrounding the storm, which mission managers then put together into an awesome animation showing the wind currents shifting. (You can see the animation below the jump.)
The feature is pretty in a picture, but NASA has a special interest because there is nothing else like this anywhere in our solar system, the agency stated. The immense storm stretches 20,000 miles (30,000 kilometers) across with winds whipping in its jet stream at 200 miles per hour (322 kilometers per hour). And despite all the turbulence, the storm is staying put at the north pole for reasons scientists are still trying to understand.
“The hexagon is just a current of air, and weather features out there that share similarities to this are notoriously turbulent and unstable,” said Andrew Ingersoll, a Cassini imaging team member at the California Institute of Technology in Pasadena. “A hurricane on Earth typically lasts a week, but this has been here for decades — and who knows — maybe centuries.”
Cassini has been orbiting Saturn since 2004, but it’s only since last year that it’s been able to peer at the hexagon with much success. That’s because the angle of the sun is finally favorable to peer at the storm. This has allowed scientists, for example, to look at the types of particles inside. They discovered that the jet stream is a sort of barrier around the storm, delineating a location with a lot of small haze particles and few large haze particles. (It’s the opposite outside of the jet stream). Scientists said it looks like the Antarctic ozone hole on Earth.
“The Antarctic ozone hole forms within a region enclosed by a jet stream with similarities to the hexagon,” NASA stated.
“Wintertime conditions enable ozone-destroying chemical processes to occur, and the jet stream prevents a resupply of ozone from the outside. At Saturn, large aerosols cannot cross into the hexagonal jet stream from outside, and large aerosol particles are created when sunlight shines on the atmosphere. Only recently, with the start of Saturn’s northern spring in August 2009, did sunlight begin bathing the planet’s northern hemisphere.”
Should Cassini have enough funding to function for a few more years, scientists are eager to watch as Saturn gets to its summer solstice in 2017 and the lighting gets even better around the north pole.
NASA also held an interesting Google+ Hangout yesterday (Nov. 4) about Saturn and the Cassini mission that featured Carolyn Porco, director of the Cassini Imaging Team and the Cassini Imaging Central Laboratory for Operations (CICLOPS). The whole video below is worth a watch, but here’s a little tidbit to let you know some of what was talked about:
“If you took all the mass of Saturn’s rings and recomposed it into a moon, it would be no bigger than Enceladus, so it’s a big spectacle coming from little mass,” Porco said. “The main rings are very thin, only about 30 feet [9 meters] thick, no bigger than about 2 stories in a modern day building. Despite the fact they are about 280,000 km [174,000 miles] across.”
The fun and challenge of exoplanet science is the planets are so far away and so tiny. Figuring out what they look like isn’t as simple as just pointing a telescope and observing. This new video from NASA explains how astronomers use the parent star to figure out the planet’s size, mass, atmosphere and more.
Alien planets are generally detected through blocking the light of their parent star (from the vantage point of Earth) or through their gravitational effects that cause the star to slightly “wobble” during each orbit. These methods can reveal the mass and size of the planet. As for the atmosphere, that takes a bit more work.
“As the planet crosses its star, its atmosphere absorbs certain wavelengths of light or colors, while allowing other wavelengths of light to pass through,” the video stated.
“Because each molecule absorbs distinct wavelengths, astronomers spread the light into its spectrum of colors to see which wavelengths have been absorbed. The dark absorption bands act as molecular fingerprints, revealing the atmosphere’s chemical makeup.”
And this science can reveal amazing things, such as the recent Hubble find of a “clear signal” of water in five exoplanet atmospheres. The video has more detail on how individual elements are identified, so be sure to check it out.
This article was originally published on Aug 10, 2012. We’ve updated it and added this cool new video!
Sending spacecraft to Mars is all about precision. It’s about blasting off from Earth with a controlled explosion, launching a robot into space in the direction of the Red Planet, navigating the intervening distance between our two planets, and landing with incredible precision.
This intricate and complicated maneuver means knowing the exact distance from Earth to Mars. Since Mars and Earth both orbit the Sun – but at different distance, with different eccentricities, and with different orbital velocities – the distance between then is constantly changing
The first person to ever calculate the distance to Mars was the astronomer Giovanni Cassini, famous for his observations of Saturn. Giovanni made observations of Mars in 1672 from Paris, while his colleague, Jean Richer made the same observation from Cayenne, French Guiana. They used the parallax method to calculate the distance to Mars with surprising accuracy.
However, astronomers now calculate the distance to objects in the Solar System using the speed of light. They measure the time it takes for signals to reach spacecraft orbiting other planets. They can bounce powerful radar off planets and measure the time it takes for signals to return. This allows them to measure the distance to planets, like Mars, with incredible accuracy.
Distance Between Earth and Mars:
So, how far away is Mars? The answer to that question changes from moment to moment because Earth and Mars are orbiting the Sun. It also requires a little explanation about the orbital mechanics of each. Both Earth and Mars are following elliptical orbits around the Sun, like two cars travelling at different speeds on two different racetracks.
Sometimes the planets are close together, and other times they’re on opposite sides of the Sun. And although they get close and far apart, those points depend on where the planets are on their particular orbits. So, the Earth Mars distance is changing from minute to minute.
The planets don’t follow circular orbits around the Sun, they’re actually traveling in ellipses. Sometimes they’re at the closest point to the Sun (called perihelion), and other times they’re at the furthest point from the Sun (known as aphelion).
To get the closest point between Earth and Mars, you need to imagine a situation where Earth and Mars are located on the same side of the Sun. Furthermore, you want a situation where Earth is at aphelion, at its most distant point from the Sun, and Mars is at perihelion, the closest point to the Sun.
Earth and Mars Opposition:
When Earth and Mars reach their closest point, this is known as opposition. It’s the time that Mars appears as a bright red star of the sky; one of the brightest objects, rivaling the brightness of Venus or Jupiter. There’s no question Mars is bright and close, you can see it with your own eyes. And theoretically at this point, Mars and Earth will be only 54.6 million kilometers from each other.
But here’s the thing, this is just theoretical, since the two planets haven’t been this close to one another in recorded history. The last known closest approach was back in 2003, when Earth and Mars were only 56 million km (or 33.9 million miles) apart. And this was the closest they’d been in 50,000 years.
Here’s a list of Mars Oppositions from 2007-2020 (source)
Dec. 24, 2007 – 88.2 million km (54.8 million miles)
Jan. 29, 2010 – 99.3 million km (61.7 million miles)
Mar. 03, 2012 – 100.7 million km (62.6 million miles)
Apr. 08, 2014 – 92.4 million km (57.4 million miles)
May. 22, 2016 – 75.3 million km (46.8 million miles)
Jul. 27. 2018 – 57.6 million km (35.8 million miles)
Oct. 13, 2020 – 62.1 million km (38.6 million miles)
2018 should be a very good year, with a Mars looking particularly bright and red in the sky.
Earth and Mars Conjunction:
On the opposite end of the scale, Mars and Earth can be 401 million km apart (249 million miles) when they are in opposition and both are at aphelion. The average distance between the two is 225 million km. When Mars and Earth are at their closest, you have your launch window.
Mars and Earth reach this closest point to one another approximately every two years. And this is the perfect time to launch a mission to the Red Planet. If you look back at the history of launches to Mars, you’ll notice they tend to launch about every two years.
Here’s an example of recent Missions to Mars, and the years they launched:
MER-A Spirit – 2003
MER-B Opportunity – 2003
Mars Reconnaissance Orbiter – 2005
Phoenix – 2007
Fobos-Grunt – 2011
MSL Curiosity – 2011
See the trend? Every two years. They’re launching spacecraft when Earth and Mars reach their closest point.
Spacecraft don’t launch directly at Mars; that would use up too much fuel. Instead, spacecraft launch towards the point that Mars is going to be in the future. They start at Earth’s orbit, and then raise their orbit until they intersect the orbit of Mars; right when Mars is at that point. The spacecraft can then land on Mars or go into orbit around it. This journey takes about 250 days.
Communicating with Mars:
With these incredible distances between Earth and Mars, scientists can’t communicate with their spacecraft in real time. Instead, they need to wait for the amount of time it takes for transmissions to travel from Earth to Mars and back again.
When Earth and Mars are at their theoretically closest point of 54.6 million km, it would take a signal from Earth about 3 minutes to make the journey, and then another 3 minutes for the signals to get back to Earth. But when they’re at their most distant point, it takes more like 21 minutes to send a signal to Mars, and then another 21 minutes to receive a return message.
This is why the spacecraft sent to Mars are highly autonomous. They have computer systems on board that allow them to study their environment and avoid dangerous obstacles completely automatically, without human intervention.
The distance from Earth to Mars is the main reason that there has never been a manned flight to the Red Planet. Scientists around the world are working on ways to shorten the trip with the goal of sending a human into Martian orbit within the next decade.
For more information, this website lists every Mars opposition time, from recent past all the way in the far future. You can also use NASA’s Solar System Simulator to see the current position of any object in the Solar System.
CAPE CANAVERAL AIR FORCE STATION, FL – The flawless blastoff of SpaceX’s next generation Falcon 9 rocket on Tuesday Dec. 3 put on a spectacular sky show along the Florida Space Coast that was both beautiful and unforgettable – besides being truly historic as the firms first ever delivery of a commercial space satellite to the lucrative market of geostationary orbit.
For your enjoyment here’s a collection of photos and videos from fellow space photojournalists of the 5:41 p.m. EST sunset launch from Space Launch Complex 40 (SLC-40) at Cape Canaveral Air Force Station, FL.
Following a pair of launch scrubs last week on Nov. 25 and Thanksgiving Day Nov. 28 caused by issues with the powerful new Merlin 1-D first stage engines, the third time was fat last the charm as the Falcon 9 blasted precisely at the opening of the 86 minute launch window.
Launch Video
Stay tuned here for continuing SpaceX & MAVEN news and Ken’s SpaceX and MAVEN launch reports from on site at Cape Canaveral & the Kennedy Space Center press site.
If you live in the southern hemisphere, the southern sky constellation of Centaurus may look a little different to you tonight, as a bright nova has been identified in the region early this week.
The initial discovery of Nova Centauri 2013 (Nova Cen 2013) was made by observer John Seach based out of Chatsworth Island in New South Wales Australia. The preliminary discovery magnitude for Nova Cen 2013 was magnitude +5.5, just above naked eye visibility from a good dark sky site. Estimates by observers over the past 24 hours place Nova Cen 2013 between magnitudes +4 and +5 “with a bullet,” meaning this one may get brighter still as the week progresses.
We first got wind of the discovery via the American Association of Variable Star Observers yesterday afternoon when alert notice 492 was issued. Established in 1911, the AAVSO is a great resource for info and a fine example of amateur collaboration in the effort to conduct real scientific observation.
Follow-up spectra measurements by Rob Kaufman in White Cliffs Australia and Malcolm Locke in Christchurch New Zealand demonstrated the presence of strong hydrogen alpha and hydrogen beta emission lines, the classic hallmark of an erupting nova. Like Nova Delphini 2013 witnessed by observers in the northern hemisphere, this is a garden variety nova located in our own galaxy, going off as seen along the galactic plane from our Earthbound perspective. A handful of galactic novae are seen each year, but such a stellar conflagration reaching naked eye visibility is worthy of note. In fact, Nova Cen 2013 is already knocking on the ranks of the 30 brightest novae observed of all time.
This is not to be confused with a supernova, the last of which observed in our galaxy was Kepler’s Supernova in 1604, just before the advent of the telescope in modern astronomy. Supernovae are seen in other galaxies all the time, but here at home, you could say we’re “due”.
So, who can see Nova Cen 2013, and who’s left out? Well, the coordinates for the nova are:
Right Ascension: 13 Hours 54’ 45”
Declination: -59°S 09’ 04”
That puts it deep in the southern celestial hemisphere sky where the constellation Centaurus meets up with the constellations of Circinus, Musca and the Crux. Located within three degrees of the +0.6th magnitude star Hadar — also named Beta Centauri — it would be possible to capture the southern deep sky objects of the Coal Sack and Omega Centauri with Nova Cen 2013 in the same wide field of view.
Though Nova Cen 2013 technically peeks above the southern horizon from the extreme southern United States, the viewing circumstances aren’t great. In fact, the nova only rises just before the Sun as seen from Miami in December, at 25 degrees north latitude. The Centaurus region is much better placed in northern hemisphere during the springtime, when many southern tier states can actually glimpse the celestial jewels that lie south, such as Omega Centauri.
But the situation gets better, the farther south you go. From Guayaquil, Ecuador just below the equator, the nova rises to the southeast at about 3 AM local, and sits 20 degrees above the horizon at sunrise.
The nova will be circumpolar for observers south of -30 degrees latitude, including cities of Buenos Aires, Cape Town, Sydney and Auckland. Remember, its springtime currently in the southern hemisphere, as we head towards the solstice on December 21st and the start of southern hemisphere summer. We’ve been south of the equator about a half dozen times and it’s a unique experience – for northern star gazers, at least – to see familiar northern constellations such as Orion and Leo hang “upside down” as strange a wonderful new constellations beckon the eye to the south. Also, though the Sun still rises to the east, it transits to the north as you get deep into the southern hemisphere, a fun effect to note!
Latitudes, such as those on par with New Zealand, will get the best views of Nova Cen 2013. Based near latitude 40 degrees south, observers will see the nova about 10 degrees above the southern horizon at lower culmination at a few hour after sunset, headed towards 40 degrees above the southeastern horizon at sunrise.
All indications are that Nova Cen 2013 is a classical nova, a white dwarf star accreting matter from a binary companion until a new round of nuclear fusion occurs. Recurrent novae such as T Pyxidis or U Scorpii may erupt erratically in this fashion over the span of decades.
As of yet, there is no firm distance measurement for Nova Cen 2013, though radio observations with southern sky assets may pin it down. One northern hemisphere based program, known as the EVLA Nova Project, seeks to do just that.
Congrats to John Seach on his discovery, and if you find yourself under southern skies, be sure to check out this astrophysical wonder!
Got pics of Nova Centauri 2013? Be sure to send ‘em in to Universe Today!
Two black holes in the middle of a galaxy are gravitationally bound to each other and may be starting to merge, according to a new study.
Astronomers came to that conclusion after studying puzzling behavior in what is known as WISE J233237.05-505643.5, a discovery that came from NASA’s Wide-field Infrared Survey Explorer (WISE). Follow-up studies came from the Australian Telescope Compact Array and the Gemini South telescope in Chile.
“We think the jet of one black hole is being wiggled by the other, like a dance with ribbons,” stated research leader Chao-Wei Tsai of NASA’s Jet Propulsion Laboratory. “If so, it is likely the two black holes are fairly close and gravitationally entwined.”
“The dance of these black hole duos starts out slowly, with the objects circling each other at a distance of about a few thousand light-years,’ NASA added in a press release. “So far, only a few handfuls of supermassive black holes have been conclusively identified in this early phase of merging. As the black holes continue to spiral in toward each other, they get closer, separated by just a few light-years. ”
JPL’s venerable Ed Stone, the Project Scientist for the Voyager spacecraft for over 40 years, made an appearance on the Colbert Report last night, bantering easily with the no-holds-barred host and discussing the significance of the Voyager mission, from the two launches in 1977 to Voyager 1’s recent celebrated arrival in interstellar space.
Colbert also was tasked by NASA to present Stone with NASA’s Distinguished Public Service Medal for a lifetime of scientific achievement. See below:
The radiation-heavy Van Allen Belts around Earth contain particles that can move at almost the speed of light across vast distances, new research reveals. The information came from an instrument flown aboard the Van Allen Probes twin NASA spacecraft, which launched in 2012.
According to scientists, the process that creates this is similar to what happens in the Large Hadron Collider and other particle accelerators. The magnetic field on the Earth accelerates electrons faster as these particles orbit the planet. While scientists had spotted this process happening at small scales before, the new paper has seen this across hundreds of thousands of kilometers or miles.
“With the Van Allen Probes, I like to think there’s no place for these particles to hide because each spacecraft is spinning and ‘glimpses’ the entire sky with its detector ‘eyes’, so we’re essentially getting a 360-degree view in terms of direction, position, energy, and time,” stated Harlan Spence, principal scientist for the Energetic Particle, Composition, and Thermal Plasma (ECT) instrument aboard the probes, and co-author on the research paper. He is also director of the University of New Hampshire Institute for the Study of Earth, Oceans, and Space.
The research was led by University of Alberta physicist Ian Mann, and is available in Nature Communications. “People have considered that this acceleration process might be present but we haven’t been able to see it clearly until the Van Allen Probes,” Mann stated.
The next few years will be banner ones for learning about dwarf planets. While the high-profile New Horizons spacecraft zooms towards a Pluto date in 2015, the Dawn spacecraft is making a more stealthy (in terms of media coverage) run at Ceres, which is the smallest and closest dwarf planet to Earth.
The Dawn spacecraft, as readers likely recall, made its first port of call at fellow protoplanet Vesta. What excites scientists this time around is the likelihood of water ice on Ceres’ surface. Vesta, by contrast, was very dry.
Here’s Dawn’s agenda once it gets to Ceres in April 2015:
“Dawn will make its first full characterization of Ceres later in April, at an altitude of about 8,400 miles (13,500 kilometers) above the icy surface. Then, it will spiral down to an altitude of about 2,750 miles (4,430 kilometers), and obtain more science data in its survey science orbit. This phase will last for 22 days, and is designed to obtain a global view of Ceres with Dawn’s framing camera, and global maps with the visible and infrared mapping spectrometer (VIR),” NASA stated.
“Dawn will then continue to spiral its way down to an altitude of about 920 miles (1,480 kilometers), and in August 2015 will begin a two-month phase known as the high-altitude mapping orbit. During this phase, the spacecraft will continue to acquire near-global maps with the VIR and framing camera at higher resolution than in the survey phase. The spacecraft will also image in ‘stereo’ to resolve the surface in 3-D.”
Dawn will then zoom down to an altitude of just 233 miles (375 kilometers) in November 2015 for three months to obtain information about elements and the dwarf planet’s gravity. Dawn will use its Gamma Ray and Neutron Detector (GRaND) to do the first part and a gravity experiment to perform the second.
To conserve fuel, Dawn will also use a “hybrid” pointing control method to keep it on track, using both reaction wheels and thrusters to stay in the right direction. This is needed because two of its four reaction wheels had “developed excessive friction” by the time Dawn departed Vesta. The hybrid method was tested for 27 hours and successfully concluded Nov. 13. You can check out more about the hybrid mode at this link.