With two days left before Planck switches off forever, the European Space Agency re-posted this beautiful image the telescope recently assisted in taking. It shows the Shapley Supercluster, which ESA describes as the biggest cosmic structure in our neighborhood.
First discovered in the 1930s by Harlow Shapley, a U.S. astronomer, the structure has more than 8,000 galaxies and a mass that is 10 million billion times that the mass of the Sun, ESA added. The blue parts are detections by Planck, and the Rosat satellite imaged the pink sections. Visible wavelengths shown in the picture come from the Digitised Sky Survey.
Today (Oct. 21), ESA will order Planck to run its thrusters to empty. After years hovering at a Lagrange point, the telescope will be put in a “parking orbit” to circle the sun, keeping it away from the Earth and moon for at least several centuries. The last command will be sent Oct. 23.
The crowdfunding campaign is off to a slow start, but the PHASST-1 telescope still has more than a month to reach its $88,816 (€65,000) goal of deploying telescopes devoted to searching for near-Earth asteroids.
The Potentially Hazardous Asteroid Search & Tracking Telescope, as the acronym stands for, will begin with two telescopes: an f/1 Baker-Nunn camera near Arequipa, Peru and a 50cm f/3.6 astrograph near Ager, Spain.
“Even though PHASTT-1 will have a large field of view compared to most telescopes (~5x) of a similar aperture, competing in the area of asteroid search is difficult due to a large number of teams doing similar work. Because of this, we are designing PHASTT-1 as not only a search telescope but also as a followup and characterization instrument — two key areas where we can make an impact,” the IndieGogo campaign page states.
“Follow-up observations are important as they help us refine the orbits of potentially hazardous objects and narrow the uncertainties around how close an asteroid will come to the Earth. Characterization of asteroids is also important as it helps us understand the physical properties of asteroids. This understanding critical if we want to know how to best deal with a ‘rogue’ asteroid that is on an impact course or if we just want to know which asteroids would make for interesting near-Earth exploration targets.”
The principles including astronomers, a technology consultant and a laser ranging specialist. You can read more technical details on the IndieGogo campaign page or the PHASTT-1 website. If they get the money they need, they aim to be operational by the middle of next year. The campaign completes Nov. 26.
Sunday’s Virtual Star Party felt like a reunion, with Mike Phillips, Gary Gonella, and Roy Salisbury supplying images and Scott Lewis co-hosting. We were joined by newcomer James McGee streaming a beautiful view of the Moon – when it wasn’t blocked by his apartment tower.
The Moon was just past full, so it commanded attention, but we still got a beautiful view of some fainter nebulae, galaxies and star clusters.
Astronomers: Mike Phillips, Gary Gonella, Roy Salisbury, James McGee
Hosts: Fraser Cain, Scott Lewis
Objects: The Moon, Pac Man Nebula, Eagle Nebula, Swan Nebula, Lagoon Nebula, Andromeda Galaxy, M15 globular cluster, Dumbbell Nebula, Veil Nebula and more.
We hold the Virtual Star Party every Sunday night when it gets dark on the West Coast of North America. You can watch it live on Universe Today, on Google+, or from the Universe Today YouTube Channel.
Another name for Mars is the Red Planet, and if you’ve ever seen it in the sky when the planet is bright and close to Earth, it appears like a bright red star. In Roman mythology, Mars was the god of war, so… think blood.
Even photos from spacecraft show that it’s a rusty red color. The hue comes from the fact that the surface is *actually* rusty, as in, it’s rich in iron oxide.
Iron left out in the rain and will get covered with rust as the oxygen in the air and water reacts with the iron in the metal to create a film of iron oxide.
Mars’ iron oxide would have formed a long time ago, when the planet had more liquid water. This rusty material was transported around the planet in dust clouds, covering everything in a layer of rust. In fact, there are dust storms on Mars today that can rise up and consume the entire planet, obscuring the entire surface from our view. That dust really gets around.
But if you look closely at the surface of Mars, you’ll see that it can actually be many different colours. Some regions appear bright orange, while others look more brown or even black. But if you average everything out, you get Mars’ familiar red colour.
If you dig down, like NASA’s Phoenix Lander did in 2008, you get below this oxidized layer to the rock and dirt beneath. You can see how the tracks from the Curiosity Rover get at this fresh material, just a few centimeters below the surface. It’s brown, not red.
And if you could stand on the surface of Mars and look around, what colour would the sky be? Fortunately, NASA’s Curiosity Rover is equipped with a full colour camera, and so we can see roughly what the human eye would see.
The sky on Mars is red too.
The sky here is blue because of Raleigh scattering, where blue photons of light are scattered around by the atmosphere, so they appear to come from all directions. But on Mars, the opposite thing happens. The dust in the atmosphere scatters the red photons, makes the sky appear red. We have something similar when there’s pollution or smoke in the air.
But here’s the strange part. On Mars, the sunsets appear blue. The dust absorbs and deflects the red light, so you see more of the blue photons streaming from the Sun. A sunset on Mars would be an amazing event to see with your own eyes. Let’s hope someone gets the chance to see it in the future.
We have written many articles about Mars on Universe Today. Here’s an article about a one-way, one-person trip to Mars, and here’s another about how scientists know the true color of planets like Mars.
Here are some nice color images captured of the surface of Mars from NASA’s Pathfinder mission, and here’s another explainer about why Mars is red from Slate Magazine.
NASA’s new LADEE spacecraft successfully entered lunar orbit, is operating beautifully and has begun shooting its radical laser communications experiment despite having to accomplish a series of absolutely critical do-or-die orbital insertion engine firings with a “skeleton crew ” – all this amidst the NASA and US government shutdown, NASA Ames Research Center Director Pete Worden told Universe Today in a LADEE mission exclusive.
During the two and a half week long NASA shutdown, engineers had to fire LADEE’s maneuvering thrusters three times over six days – first to brake into elliptical orbit about the Moon and then lower it significantly and safely into a circular commissioning orbit.
“All burns went super well,” Ames Center Director Worden told me exclusivly. And he is extremely proud of the entire team of “dedicated” professional men and women who made it possible during the shutdown.
“It says a lot about our people’s dedication and capability when a skeleton crew can get a new spacecraft into lunar orbit and fully commissioned in the face of a shutdown!” Worden said to Universe Today.
“I’m really happy that everyone’s back.”
After achieving orbit, a pair of additional engine burns reduced LADEE’s altitude and period into its initial commissioning orbit and teams began the month long activation and instrument checkout phase.
“We are at the commissioning orbit of 250 km,” said Worden.
And to top all that off, LADEE’s quartet of science instruments are checked out and the ground – breaking laser communications experiment that will bring about a quantum leap in transmitting space science data has already begun its work!
“All instruments are fully checked out with covers deployed.”
“We’ve begun the Lunar Laser Communications Demonstration (LLCD) tests and its working very well,” Worden explained.
And that’s the whole point of the LADEE mission in the first place.
However, orbital mechanics follows the natural laws of the Universe, continues unabated and waits for no one in Washington, D.C.
NASA’s Jupiter-bound Juno orbiter also flew by Earth amidst the DC shutdown showdown on Oct. 9 for a similarly critical do-or-die gravity assisted speed boost and trajectory targeting maneuver.
The stakes were extremely high for NASA’s Lunar Atmosphere and Dust Environment Explorer (LADEE) mission because the spacecraft was on course for the Moon and absolutely had to ignite its main engine on the Sunday morning of Oct. 6.
There were no second chances. If anything failed, LADEE would simply sail past the Moon with no hope of returning later.
So, mission controllers at NASA Ames commanded LADEE to ignite its main engine and enter lunar orbit on Oct. 6 following the spectacular Sept. 6 night launch from NASA’s Wallops Island spaceport in Virginia.
The approximately four minute long burn know as Lunar Orbit Insertion burn 1 (LOI-1) began with LADEE’s arrival at the Moon following three and a half long looping orbits of the Earth.
LOI-1 changed the spacecrafts velocity by 329.8 meters/sec so that the couch sized probe could be captured by the Moon’s gravity and be placed into a 24 hour polar elliptical orbit.
The LOI-2 maneuver on Oct. 9 put LADEE into a 4-hour elliptic lunar orbit. The third and final LOI-3 burn occurred on Oct. 12, and put the spacecraft into the 2-hour commissioning orbit (roughly 235 Km x 250 Km), according to a NASA statement.
The 844 pound (383 kg) robot explorer was assembled at NASA’s Ames Research Center, Moffett Field, Calif., and is a cooperative project with NASA Goddard Spaceflight Center in Maryland.
“LADEE is the first NASA mission with a dedicated laser communications experiment,” said Don Cornwell, mission manager for the Lunar Laser Communications Demonstration (LLCD), NASA’s Goddard Space Flight Center, Greenbelt, Md, during an interview with Universe Today at the LADEE launch.
“With the LLCD experiment, we’ll use laser communications to demonstrate at least six times more data rate from the moon than what we can do with a radio system with half the weight and 25 percent less power,” said Cornwell.
The LLCD will be operated for about 30 days during the time of the commissioning orbit period.
The purpose of LADEE is to collect data that will inform scientists in unprecedented detail about the ultra thin lunar atmosphere, environmental influences on lunar dust and conditions near the surface. In turn this will lead to a better understanding of other planetary bodies in our solar system and beyond.
The $280 million probe is built on a revolutionary ‘modular common spacecraft bus’, or body, that could dramatically cut the cost of exploring space and also be utilized on space probes to explore a wide variety of inviting targets in the solar system.
This week for the Weekly Space Hangout, we were joined by an impressive team of space journalists and special guest John Zeller, the Founder of Space Advocates – they’re best known for their Penny4NASA campaign.
We discussed the government shutdown, cool reusable spacecraft and electric aircraft, exoplanets, non-killer asteroids, tilted planets and much much more.
We organize the Weekly Space Hangout every Friday afternoon at 12:00 pm Pacific / 3:00 pm Eastern. You can watch it on Universe Today, Google+ or the Universe Today YouTube channel.
Warped visions of the cosmic microwave background – the earliest detectable light – allow astronomers to map the total amount of visible and invisible matter throughout the universe.
Roughly 85 percent of all matter in the universe is dark matter, invisible to even the most powerful telescopes, but detectable by its gravitational pull.
In order to find dark matter, astronomers look for an effect called gravitational lensing: when the gravitational pull of dark matter bends and amplifies light from a more distant object. In its most eccentric form it results in multiple arc-shaped images of distant cosmic objects.
But there’s one caveat here: in order to detect dark matter there must be an object directly behind it. The ‘stars’ have to be aligned.
In a recent study led by Dr. James Geach of the University of Hertfordshire in the United Kingdom, astronomers have set their eyes on the cosmic microwave background (CMB) instead.
“The CMB is the most distant/oldest light we can see,” Dr. Geach told Universe Today. “It can be thought of as a surface, backlighting the entire universe.”
The photons from the CMB have been hurling toward the Earth since the universe was only 380,000 years old. A single photon has had the chance to run into plenty of matter, having effectively probed all the matter in the universe along its line of sight.
“So our view of the CMB is a bit distorted from what it intrinsically looks like – a bit like looking at the pattern on the bottom of a swimming pool,” Dr. Geach said.
By noting the small distortions in the CMB, we can probe all of the dark matter throughout the entire universe. But doing just this is extremely challenging.
The team observed the southern sky with the South Pole Telescope, a 10 meter telescope designed for observations in the microwave. This large, groundbreaking survey produced a CMB map of the southern sky, which was consistent with previous CMB data from the Planck satellite.
The characteristic signatures of gravitational lensing by intervening matter can not be extracted by eye. Astronomers relied on the use of a well-developed mathematical procedure. We wont go into the nasty details.
This produced a “map of the total projected mass density between us and the CMB. That’s quite incredible if you think about it – it’s an observational technique to map all of the mass in the universe, right back to the CMB,” Dr. Geach explained.
But the team didn’t finish their analysis there. Instead, they continued to measure the CMB lensing at the positions of quasars – powerful supermassive black holes in the centers of the earliest galaxies.
“We found that regions of the sky with a large density of quasars have a clearly stronger CMB lensing signal, implying that quasars are indeed located in large-scale matter structures,” Dr. Ryan Hickox of Dartmouth College – second author on the study – told Universe Today.
Finally, the CMB map was used to determine the mass of these dark matter halos. These results matched those determined in older studies, which looked at how the quasars clustered together in space, with no reference to the CMB at all.
Consistent results between two independent measurements is a powerful scientific tool. According to Dr. Hickox, it shows that “we have a strong understanding of how supermassive black holes reside in large-scale structures, and that (once again) Einstein was right.”
The paper has been accepted for publication in the Astrophysical Journal Letters and is available for download here.
We’ll skip straight to the good news: NASA says Earth is likely safe from Asteroid 2013 TV135. Calculations put the newly discovered asteroid’s chances of hitting the planet in 2032 at incredibly small — 1 in 63,000 — despite some alarmist news reports.
“To put it another way, that puts the current probability of no impact in 2032 at about 99.998 percent,” stated Don Yeomans, manager of NASA’s Near-Earth Object Program Office.
“This is a relatively new discovery. With more observations, I fully expect we will be able to significantly reduce, or rule out entirely, any impact probability for the foreseeable future.”
Asteroid 2013 TV135 in a series of images snapped by amateur astronomer Peter Lake.
The asteroid was first spotted on Oct. 8 by scientists at the Crimean Astrophysical Observatory in Ukraine. It’s 1,300 meters (400 feet) in diameter and cycles in an orbit that goes three-quarters of the way out to Jupiter, and then back again towards its closest approach near Earth’s orbit.
The asteroid came within 4.2 million miles (6.7 million kilometers) of Earth on Sept. 16. Amateur astronomer Peter Lake uploaded a video (which you can see above) based on a few pictures he took Oct. 17-18.
“Its important to remember that new asteroids (this one has only 9 days of arc) usually don’t stay on the Torino Scale (the risk register) for long, as further data updates increase the precision of the orbit, and usually quickly remove them as potential impactors,” Lake added in a blog post.
There are many, many international efforts to watch asteroid paths and disseminate the information to the public. One of them is NASA’s Asteroid Watch website, where you can get the latest information on nearby space rocks.
Beer brewing in space? That’s what a preteen student will ask astronauts to do on the International Space Station soon. “By combining the four main ingredients (malt barley, hops, yeast, and water) of beer in space, will we be able to produce alcohol?” reads the research proposal from Michal Bodzianowski. If you follow the link, you can see how this also has medical applications on station, as alcohol can disinfect wounds.
Michal was a selectee in last year’s Student Spaceflight Experiments Program, which we’ve written about before. The program now has a new call for proposals.
“Each participating community will be provided a real microgravity research mini-laboratory capable of supporting a single experiment, and all launch services to fly it to the space station in fall 2014,” a press release stated.
The design competition, the release added, “allows student teams to design and formally propose real experiments vying for their community’s reserved mini-lab on space station. Content resources for teachers and students support foundational instruction on science in microgravity and experimental design.”
Inquiries must be sent by Nov. 20, and participating communities must sign up by Feb. 17, 2014. Final selection will take place in May.
For more information, you can visit the Student Spaceflight Experiments Program website. The program has participation from the National Center for Earth and Space Science Education, the Arthur C. Clarke Institute for Space Education, and NanoRacks.
Below is SSEP’s description of the five categories of participation:
Pre-College (the core focus for SSEP) in the U.S., (grades 5-12), with school districts—even individual schools—providing a stunning, real, on-orbit RESEARCH opportunity to their upper elementary, middle, and high school students (Explore the 60 communities that participated in the first six flight opportunities to date)
2-Year Community Colleges in the U.S., (grades 13-14), where the student body is typically from the local community, providing wonderful pathways for community-wide engagement
4-Year Colleges and Universities in the U.S., (grades 13-16), with an emphasis on Minority-Serving Institutions, where the program fosters interdisciplinary collaboration across schools and departments, and an opportunity for formal workforce development for science majors
Communities in the U.S. led by Informal Education or Out-of-School Organizations, (e.g., a museum or science center, a home school network, a scout troop), because high caliber STEM education programs must be accessible to organizations that promote effective learning beyond the traditional classroom
Communities Internationally: in European Space Agency (ESA) member nations, European Union (EU) member nations, Canada, and Japan, with participation through NCESSE’s Arthur C. Clarke Institute for Space Education. Communities in other nations should explore the potential for their participation by contacting the Institute at http://clarkeinstitute.org
A faraway group of planets is puzzling scientists. Newly reported Kepler-56’s system has three planets — two smaller ones close by, and a much larger one further out. The inner planets are orbiting at a tilt to the equator of the host star.
Scientists have seen that tilt before in other systems, but they thought you would need a “hot Jupiter” — a huge gas giant planet close to the star — to make that happen. Here, that’s not the case. The outer planet’s gravity, distant as it is, is pulling the two planets into their tilted orbits.
“This is a very puzzling result that is sure to challenge our understanding of how solar systems form,” stated co-author Tim Bedding, a physics researcher at the University of Sydney.
Kepler-56 is 3,000 light-years away from Earth and has a mass about 30% greater than that of our Sun. As the name implies, astronomers used the Kepler space telescope to make the discovery.