Curiosity Rolls into Intriguing ‘Darwin’ at ‘Waypoint 1’ on Long Trek to Mount Sharp

Curiosity’s views a rock outcrop after arriving for a short stay at ‘Waypoint 1’- dramatically back dropped by her primary destination, Mount Sharp. Front hazcam camera image from Sol 393 (Sept 13, 2013). Credit: NASA/JPL-Caltech

Curiosity’s views a rock outcrop at ‘Darwin’ after arriving for a short stay at ‘Waypoint 1’ on Sept 12 (Sol 392) – dramatically back dropped by her primary destination, Mount Sharp. Front hazcam camera image from Sol 393 (Sept 13, 2013). Credit: NASA/JPL-Caltech
Story updated – see close up mosaic views of Darwin outcrop below[/caption]

NASA’s Curiosity Mars rover has just rolled into an intriguing site called ‘Darwin’ at ‘Waypoint 1’- having quickly picked up the driving pace since embarking at last on her epic trek to mysterious Mount Sharp more than two months ago. Did life giving water once flow here on the Red Planet?

Because the long journey to Mount Sharp – the robots primary destination – was certain to last nearly a year, the science team carefully choose a few stopping points for study along the way to help characterize the local terrain. And Curiosity has just pulled into the first of these so called ‘Waypoints’ on Sept 12 (Sol 392), the lead scientist confirmed to Universe Today.

Curiosity has arrived at Waypoint 1,” project scientist John Grotzinger, of the California Institute of Technology in Pasadena, told Universe Today.

“Darwin is named after a geologic formation of rocks from Antarctica.”

She has now driven nearly 20% of the way towards the base of the giant layered Martian mountain she will eventually scale in search of life’s ingredients.

Altogether, the team selected five ‘Waypoints’ to investigate for a few days each as Curiosity travels in a southwestward direction on the road from the first major science destination in the ‘Glenelg’ area to the foothills of Mount Sharp, says Grotzinger.

“We’ll stay just a couple of sols at Waypoint 1 and then we hit the road again,” Grotzinger told me.

Curiosity's Progress on Rapid Transit Route from 'Glenelg' to Mount Sharp.  Triangles indicate geologic ‘Waypoint’ stopping points along the way.  Curiosity arrived at Waypoint 1 on Sol 392 (Sept 12, 2013). Credit: NASA
Curiosity’s Progress on Rapid Transit Route from ‘Glenelg’ (start at top) to Mount Sharp entry point (bottom). Triangles indicate geologic ‘Waypoint’ stopping points along the way. Curiosity arrived at Waypoint 1 on Sol 392 (Sept 12, 2013). Credit: NASA

‘Waypoint 1’ is an area of intriguing outcrops that was chosen based on high resolution orbital imagery taken by NASA’s Mars Reconnaissance Orbiter (MRO) circling some 200 miles overhead. See route map herein.

In fact the team is rather excited about ‘Waypoint 1’ that’s dominated by the tantalizing rocky outcrop discovered there nicknamed ‘Darwin’.

Although Curiosity will only stay a short time at each of the stops, the measurements collected at each ‘Waypoint’ will provide essential clues to the overall geologic and environmental history of the six wheeled rover’s touchdown zone.

“Waypoint 1 was chosen to help break up the drive,” Grotzinger explained to Universe Today.

“It’s a chance to study outcrops along the way.”

The images from MRO are invaluable in aiding the rover handlers planning activities, selecting Curiosity’s driving route and targeting of the most fruitful science forays during the long trek to Mount Sharp – besides being absolutely crucial for the selection of Gale Crater as the robots landing site in August 2012.

The ‘Darwin’ outcrop may provide more data on the flow of liquid water across the crater floor.

Evolving Excitement Over 'Darwin' Rock Outcrop at 'Waypoint 1'.   For at least a couple of days, the science team of NASA's Mars rover Curiosity is focused on a full-bore science campaign at a tantalizing, rocky site informally called "Darwin."   This view of Darwin was taken with the Mast Camera (Mastcam) on Sol 390 (Sept. 10, 2013). Credit: NASA/JPL-Caltech/Malin Space Science Systems
Evolving Excitement Over ‘Darwin’ Rock Outcrop at ‘Waypoint 1’. For at least a couple of days, the science team of NASA’s Mars rover Curiosity is focused on a full-bore science campaign at a tantalizing, rocky site informally called “Darwin.” This view of Darwin was taken with the Mast Camera (Mastcam) on Sol 390 (Sept. 10, 2013). Credit: NASA/JPL-Caltech/Malin Space Science Systems

The scientists goal is to compare the floor of Gale Crater to the sedimentary layers of 3 mile high (5 kilometer high) Mount Sharp.

Waypoint 1 is just over 1 mile along the approximately 5.3-mile (8.6-kilometer) route from ‘Glenelg’ to the entry point at the base of Mount Sharp.

Curiosity spent over six months investigating the ‘Yellowknife Bay’ area inside Glenelg before departing on July 4, 2013.

What’s the origin of Darwin’s name?

“Darwin comes from a list of 100 names the team put together to designate rocks in the Mawson Quadrangle – Mawson is the name of a geologist who studied Antarctic geology,” Grotzinger told me.

“Recently we left the Yellowknife Quadrangle, so instead of naming rocks after geological formations in Canada’s north, we now turn to formation names of rocks from Antarctica, and Darwin is one of them.

“That will be the theme until we cross into the next quad,” Grotzinger explained.

Curiosity investigates the ‘Darwin’ rock outcrop up close after arriving for a short stay at ‘Waypoint 1’ on Sept 12 (Sol 392). This photo mosaic was assembled from navcam images taken on Sept 12, 2013.   Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo
Curiosity investigates the ‘Darwin’ rock outcrop up close after arriving for a short stay at ‘Waypoint 1’ on Sept 12 (Sol 392). This photo mosaic was assembled from navcam images taken on Sept 12, 2013. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

Inside Yellowknife Bay, Curiosity conducted the historic first interplanetary drilling into Red Planet rocks and subsequent sample analysis with her duo of state of the art chemistry labs – SAM and CheMin.

At Yellowknife Bay, the 1 ton robot discovered a habitable environment containing the chemical ingredients that could sustain Martian microbes- thereby already accomplishing the primary goal of NASA’s flagship mission to Mars.

“We want to know how the rocks at Yellowknife Bay are related to what we’ll see at Mount Sharp,” Grotzinger elaborated in a NASA statement. “That’s what we intend to get from the waypoints between them. We’ll use them to stitch together a timeline — which layers are older, which are younger.”

On Sept. 5, Curiosity set a new one-day distance driving record for the longest drive yet by advancing 464 feet (141.5 meters) on her 13th month on the Red Planet.

As Curiosity neared Waypoint 1 she stopped at a rise called ‘Panorama Point’ on Sept. 7, spotted an outcrop of light toned streaks informally dubbed ‘Darwin and used her MastCam telephoto camera to collect high resolution imagery.

Curiosity will use her cameras, spectrometers and robotic arm for contact science and a “full bore science campaign” involving in-depth mineral and chemical composition analysis of Darwin and Waypoint 1 for the next few Sols, or Martian days, before resuming the trek to Mount Sharp that dominates the center of Gale Crater.

Curiosity Spies Mount Sharp - her primary destination. Curiosity will ascend mysterious Mount Sharp and investigate the sedimentary layers searching for clues to the history and habitability o the Red Planet of billions of years.  This mosaic was assembled from Mastcam camera images taken on Sol 352 (Aug 2, 2013. Credit: NASA/JPL-Caltech/MSSS/ Marco Di Lorenzo/Ken Kremer
Curiosity Spies Mount Sharp – her primary destination. Curiosity will ascend mysterious Mount Sharp and investigate the sedimentary layers searching for clues to the history and habitability o the Red Planet of billions of years. This mosaic was assembled from Mastcam camera images taken on Sol 352 (Aug 2, 2013). Credit: NASA/JPL-Caltech/MSSS/ Marco Di Lorenzo/Ken Kremer

She will not conduct any drilling here or at the other waypoints, several team members have told me, unless there is some truly remarkable ‘Mars-shattering’ discovery.

Why is Curiosity now able to drive longer than ever before?

“We have put some new software – called autonav, or autonomous navigation – on the vehicle right after the conjunction period back in March 2013,” Jim Erickson, Curiosity Project Manager of NASA’s Jet Propulsion Laboratory (JPL), told Universe Today.

“This will increase our ability to drive. But how much it helps really depends on the terrain.”

And so far the terrain has cooperated.

“We are on a general heading of southwest to Mount Sharp,” said Erickson. See the NASA JPL route map.

“We have been going through various options of different planned routes.”

As of today (Sol 394), Curiosity remains healthy, has traveled 2.9 kilometers and snapped over 82,000 images.

If all goes well Curiosity could reach the entry point to Mount Sharp sometime during Spring 2014, at her current driving pace.

Ken Kremer

…………….

Learn more about Curiosity, Mars rovers,LADEE, Cygnus, Antares, MAVEN, Orion and more at Ken’s upcoming presentations

Sep 17/18: LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA

Oct 3: “Curiosity, MAVEN and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM

Oct 8: LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM

Universe Today Giveaways

Once a week or so, we try to organize a giveaway for Universe Today readers with various sponsors. Sometimes it’s books, clothing, DVDs, apps or tickets to space-related stuff.

Entering the giveaways is easy. All you have to do is enter your email address into the box at the bottom of the giveaway and you’re entered. This also adds you to our giveaway email mailing list. Whenever we’ve got a new giveaway, you can click a single link and be entered into the new giveaway (and you can unsubscribe any time).

Don’t worry if you live outside of the US, almost all our giveaways are world wide.

Here’s a list of our active giveaways right now.

{OPEN_GIVEAWAYS}

What’s the catch?
Are you a skeptical person, overwhelmed with SPAM, and looking for the catch?

I can respect that.

Companies looking to promote their latest books, movies, etc, send me free stuff all the time. It fills my bookshelves and I never have time to use it all. Instead of hoarding it myself, I’d rather just reward Universe Today readers with free stuff.

Companies are able to promote their new space-related products to you; you have a chance to win free stuff; I get to clean out my bookshelves. Win-win-win.
Continue reading “Universe Today Giveaways”

Beautiful Timelapse: Night Sky at the Shore

Stars swirl over the Batsto Mansion in New Jersey. Credit and copyright: Jack Fusco.

Need a little inspiration to go out and do some stargazing this weekend? Look no further than this gorgeous timelapse by Jack Fusco. There are awesome views of both sea and sky, the Milky Way, star trails, awesome cloud scenes and funky, directionally-challenged moving lights in the sky.

I’ve been working on a timelapse of the night sky over the New Jersey coastline,” Jack told us via email. “New Jersey definitely isn’t the best location for stargazing, but I think given the circumstances, many people will be surprised. I hope it inspires people to set some time aside to stargaze where they live even if they previously thought it wasn’t worth trying.”

Jack said he’s been working on this one for 10 months, and it’s definitely worth the hard work he’s put in.

Jack also gives a shout out to those affected by Hurricane Sandy last year. “A special thank you to all of those who have worked so hard to restore the homes of those lost during Sandy,” he writes on Vimeo. “Thank you to every volunteer that has spent time bringing the beauty back to our boardwalks and our beaches. The last year has been filled with heartbreak and devastation with much work still being done.”

Check out more of Jack’s work on his website and Facebook.

Home At The Shore from Jack Fusco on Vimeo.

Weekly Space Hangout – September 13, 2013: Voyager is Out, LADEE Launches (a Frog), Asteroid 324 Bamberga

Once again, we have gathered together the forces of space journalism to report on the big news stories of the week. And there were lots of big stories indeed, with the launch of NASA’s LADEE mission to the Moon, and the awesome fact that Voyager 1 has totally left the Solar System.

Host: Fraser Cain

Journalists: Amy Shira Teitel, Nicole Gugliucci, Matthew Francis, David Dickinson, Nancy Atkinson

Frog Launches with LADEE
LADEE Launch Trajectory
Asteroid 334’s Close Approach
Voyager Has Left the Heliosphere
New Comet Lovejoy Discovered
Lots of Globular Clusters

We record the Weekly Space Hangout every Friday at 12 pm Pacific / 3 pm Eastern as a live Google+ Hangout on Air. You can watch the show from right here on Universe Today, or on our YouTube channel.

10 Historic Moments in Voyager’s Journey to Interstellar Space

The Voyager spacecraft have been on an extensive mission of discovery that has lasted some 36 years. Image Credit: NASA/JPL

Yesterday, NASA announced that as of August 2012, Voyager 1 is in a new frontier to humanity: interstellar space. Our most distant spacecraft is now in a region where the plasma (really hot gas) environment comes more from between the stars than from the sun itself. (There’s still debate as to whether it’s in or out of the solar system, as this article explains.)

The plucky spacecraft is close to 12 billion miles (19 million kilometers) from home, and in its 36 years of voyaging has taught us a lot about the planets, their moons and other parts of space. Here are 10 of some of its most historic moments. Did we miss any? Let us know in the comments.

10. The launch: Aug. 20, 1977

Voyager 1 launches from the Kennedy Space Center on Sept. 5, 1977. Credit: NASA
Voyager 1 launches from the Kennedy Space Center on Sept. 5, 1977. Credit: NASA

Voyager 1 blasted off from Cape Canaveral on Sept. 5, 1977. Its twin, Voyager 2, departed Earth 16 days earlier. Each spacecraft carried various scientific instruments on board as well as a “Golden Record” that had sounds of Earth on it, as well as a diagram showing where Earth is in the universe.

9. Capturing the Earth and Moon together for the first time

On Sept. 18, 1977, Voyager 1 took three images of the Earth and Moon that were combined into this one image. The moon is artificially brightened to make it show up better. Credit: NASA
On Sept. 18, 1977, Voyager 1 took three images of the Earth and Moon that were combined into this one image. The moon is artificially brightened to make it show up better. Credit: NASA

About two weeks after launching, Voyager 1 turned back towards Earth and took three images, which were combined into this single view of the Earth and Moon together in space. This was the first time both bodies were pictured together, NASA said.

8. The ‘Pale Blue Dot’ image

Voyager 1 pale blue dot. Image credit: NASA/JPL
Voyager 1 pale blue dot. Image credit: NASA/JPL

On February 14, 1990, Voyager 1 was about 3.7 billion miles (6 billion kilometers) away from Earth. Scientists commanded the spacecraft to turn its face towards the solar system and snap some pictures of the planets. Among them was this famous image of Earth, which astronomer Carl Sagan called the Pale Blue Dot. “Look again at that dot. That’s here. That’s home. That’s us,” wrote Sagan in his 1997 book of the same name. In 2013, the spacecraft Cassini also took a picture of Earth, and NASA encouraged everyone to wave back.

7. Finding moons “shepherding” Saturn’s F ring

Prometheus, a small potato-shaped moon of Saturn, shown in this Voyager 1 picture interacting with the planet's F ring. Credit: NASA/JPL/SSI
Prometheus, a small potato-shaped moon of Saturn, shown in this Voyager 1 picture interacting with the planet’s F ring. Credit: NASA/JPL/SSI

Voyager 1 spotted Prometheus and Pandora, two moons of Saturn that keep the F ring separate from the rest of the debris, as well as Atlas, which “shepherds” the A ring. More recently, astronomers have found even more interesting things in Saturn’s rings — such as rain.

6. Spotting what appeared to be a LOT of water ice on Saturn’s moons

Encaladus, a moon of Saturn, as shown in this Voyager 1 image. Credit: NASA
Encaladus, a moon of Saturn, as shown in this Voyager 1 image. Credit: NASA

After many years of seeing Saturn’s moons as mere points of light, Voyager 1 buzzed several of them in its quick flyby through the system: Dione, Enceladus, Mimas, Rhea, Tethys and Titan among them. Many of these moons appeared to be icy, which was a surprising find since astronomers previously thought water was pretty rare in the Solar System. We know better now.

5. Imaging Titan’s orange haze

Saturn's moon Titan lies under a thick blanket of orange haze in this Voyager 1 picture. Credit: NASA
Saturn’s moon Titan lies under a thick blanket of orange haze in this Voyager 1 picture. Credit: NASA

Voyager 1 pictures such as this tortured astronomers for decades — what lies beneath this mysterious haze surrounding Titan, Saturn’s moon? That mystery, in fact, inspired the European Space Agency to send a lander to the moon, called Huygens, which successfully reached the surface in 2005.

4. Finding active volcanoes on Io

Io's blotchy volcanoes are clearly visible in this image from Voyager 1. Credit: NASA
Io’s blotchy volcanoes are clearly visible in this image from Voyager 1. Credit: NASA

Voyager 1 helped show us that the Solar System is full of very interesting moons. At Io — a moon of Jupiter — it turns out the moon flexes during its 42-hour orbit of massive Jupiter, which powers a lot of volcanic activity.

3. Voyager 1 becomes the most distant human object

A 2013 snapshot riding along with Voyager 1's looking back at the Sun and inner solar system. The positions of Voyager 2 and Pioneers 10 and 11 show within the viewport as well.
A 2013 computer-generated snapshot riding along with Voyager 1’s looking back at the Sun and inner solar system. The positions of Voyager 2 and Pioneers 10 and 11 show within the viewport as well.

On Feb. 17, 1998, Voyager 1’s distance surpassed that of another long-flying probe, Pioneer 10. This made Voyager 1 the farthest-flung human object in space.

2. Riding the “magnetic highway”

Artist concept of NASA’s Voyager 1 spacecraft exploring a new region in our solar system called the “magnetic highway.” Credit: NASA/JPL-Caltech
Artist concept of NASA’s Voyager 1 spacecraft exploring a new region in our solar system called the “magnetic highway.” Credit: NASA/JPL-Caltech

In December, NASA said Voyager 1 had reached an area (as of July 28, 2012) where high-energy magnetic particles were starting to bleed through the bubble of lower-energy particles from our sun. “Voyager’s discovered a new region of the heliosphere that we had not realized was there. It’s a magnetic highway where the magnetic field of the Sun is connected to the outside. So it’s like a highway, letting particles in and out,” said project scientist Ed Stone at the time. After that point, as more measurements were analyzed by different teams, there was a lot of debate as to whether Voyager had reached interstellar space.

1. Reaching interstellar space

This graphic shows the main evidence that Voyager 1 has reached interstellar space. The blue line shows particle density, which dropped as Voyager 1 moved away from the sun, and then jumped again after it crossed the "termination shock" that is where the sun's solar wind (particles streaming from the sun) slows down. Credit: NASA/JPL-Caltech
This graphic shows the main evidence that Voyager 1 has reached interstellar space. The blue line shows particle density, which dropped as Voyager 1 moved away from the sun, and then jumped again after it crossed the “termination shock” that is where the sun’s solar wind (particles streaming from the sun) slows down. Credit: NASA/JPL-Caltech

With Voyager 1 now known to be in interstellar space, we’re lucky enough to have a few years left to communicate with it before it runs out of power. All of the instruments will be turned off by 2025, and then engineering data will be available for about 10 years beyond that. The silent emissary from humanity will then come within 1.7 light years of an obscure star in the constellation Ursa Minor (the Little Bear) called AC+79 3888 in the year 40,272 AD and then orbit the center of the Milky Way for millions of years.

Astro Poetry: The First Starship

Artist's concept of NASA's Voyager spacecraft. Image credit: NASA/JPL-Caltech

Our favorite astro-poet, Stuart Atkinson, has written a wonderful ode to Voyager 1 in commemoration of the spacecraft reaching interstellar space. Stu has a knack for turning science into poetry!

The First Starship

I needed no nacelles to push me onwards;
No dilithium crystals crackled in my heart.
Yet I have left Sol so far behind me she is
Just a star now, a golden spark in a salt grain sea,
And I can feel her gentle breath on my cheek
No more.

In my ears now the whalesong of the universe
Drowns out the sounds of distant, troubled Earth.
Oh, the blissful peace!
Out here all I can hear
Is the fabled music of the spheres.
Each trembling tone rolling under me,
Every mellow note washing over me
Was sung somewhere Out There.
Melodies ripped from ravenous black holes’ throats,
Screamed from the broken hearts of dying stars
Swirl around me, multi-wavelength whispers
In the dark and endless night.

My head is full of memories…
Skimming Titan’s marmalade-haze atmosphere;
My first sight of Jove’s great bloodshot eye,
Staring back at me, into me, as I flew by;
Earth as Pale Blue Dot, a Sagan sequin
Dancing in a sunbeam…

Ahead now – the solar system’s Barrier Reef.
Terra will whip around Sol 300 times before
I reach the Oort’s icy inner harbour wall
And tens of thousands of times more before
I finally leave port, sailing on in serene silence
For forty millennia more before I venture anywhere
Near another star…

And in ten million years, when Earth’s proud citadels
And cities have crumbled and whatever evolves
In their dust to take Mankind’s place
Stares out into space with curious, alien eyes,
I will still be flying through the stars.
Your legacy. Proof that once you dared to dream
Noble, Camelot dreams
And reached out, through me, to explore eternity.

(c) Stuart Atkinson Sept 13th 2013

Written to commemorate and celebrate the Sept 12, 2013 announcement that Voyager 1 had entered interstellar space.

Read more of Stu’s poetry at this Astropoetry website and his other musings at Cumbrian Sky.

Why Does the Earth Spin?

Why Does the Earth Spin?

In a classic episode of this video series, I did the calculations for how fast the Earth is spinning.

We know the Earth is rotating, but why? Why is it spinning?

Why is everything in the Solar System spinning? And why is it mostly all spinning in the same direction?

It can’t be a coincidence. Look down on the Earth from above, and you’d see that it’s turning in a counter-clockwise direction. Same with the Sun, Mars and most of the planets.

4.54 billion years ago, our Solar System formed within a cloud of hydrogen not unlike the Orion Nebula, or the Eagle Nebula, with its awesome pillars of creation.

Then, it took some kick, like from the shockwave from a nearby supernova, and this set a region of the cold gas falling inward through its mutual gravity. As it collapsed, the cloud began to spin.

But why?

It’s the conservation of angular momentum.

Think about the individual atoms in the cloud of hydrogen. Each particle has its own momentum as it drifts through the void. As these atoms glom onto one another with gravity, they need to average out their momentum. It might be possible to average out perfectly to zero, but it’s really really unlikely.

Which means, there will be some left over. Like a figure skater pulling in her arms to spin more rapidly, the collapsing proto-Solar System with its averaged out particle momentum began to spin faster and faster.

This is the conservation of angular momentum at work.

As the Solar System spun more rapidly, it flattened out into a disk with a bulge in the middle. We see this same structure throughout the Universe: the shape of galaxies, around rapidly spinning black holes, and we even see it in pizza restaurants.

Solar nebulaThe Sun formed from the bulge at the center of this disk, and the planets formed further out. They inherited their rotation from the overall movement of the Solar System itself.

Over the course of a few hundred million years, all of the material in the Solar System gathered together into planets, asteroids, moons and comets. Then the powerful radiation and solar winds from the young Sun cleared out everything that was left over.

Without any unbalanced forces acting on them, the inertia of the Sun and the planets have kept them spinning for billions of years.

And they’ll continue to do so until they collide with some object, billions or even trillions of years in the future.

So are you still wondering, why does the Earth spin?

Western Hemisphere of EarthThe Earth spins because it formed in the accretion disk of a cloud of hydrogen that collapsed down from mutual gravity and needed to conserve its angular momentum. It continues to spin because of inertia.

The reason it’s all the same direction is because they all formed together in the same Solar Nebula, billions of years ago.

Messages To Voyager: Welcome to Interstellar Space

On the Voyager spacecraft are the famous Voyager Golden Records, which send messages from planet Earth to … whatever or whoever may find it in the future. In celebration of Voyager 1 making it into interstellar space (read all the details here) a few friends put together a video to congratulate the spacecraft and the team. Neil deGrasse Tyson, Wil Wheaton, Carl Sagan’s son and others shared their messages to the Voyager 1 spacecraft.

Feel free to leave your message to Voyager in the (new and improved) comment section.

Trying Out a New Commenting System

Wall of SPAM. Photo Freezelight/Flickr

Hi everyone, I’m just performing a little experiment with Universe Today. We were previously using Disqus for comments on Universe Today, but I got a lot of concerns from readers.

So, I’m trying out a new system called Comments Evolved. This integrates comments from Google+, Facebook, Disqus and even WordPress if we want. I’m just enabling the Google+ version, because… everyone’s got a Google account.

If you want, I can enable the Facebook, Disqus and WordPress versions as well once I know this is working.

So why am I doing this? Why am I continuously making your life difficult with all this technology switcheroo?

Because managing comments on a public blog is like working at a SPAM factory. Behind the scenes here, we spend a MASSIVE amount of time killing SPAM, banning spambots, etc, etc. Not only do Nancy and I have to do it, but we actually have a few readers of Universe Today who we’ve deputized to help kill SPAM. And lots gets through.

In fact… we had turned off comments for posts older than 14 days because it was completely impossible to stay on top of the SPAM for all 15,000 articles within Universe Today.

So, in theory, by switching to this system… all the comments will have to go through Google’s SPAM filters first. You as users can identify comments as SPAM, and get them removed from the site, and teach Google how to do this better.

If it doesn’t work, we’ll just hack it out and go back to something else.

Feel free to drop me an email at [email protected] if you notice any bugs or have any further suggestions.

Listen to the Sounds of Interstellar Space, Recorded by Voyager 1

This artist's concept shows the general locations of NASA's two Voyager spacecraft. Voyager 1 (top) has sailed beyond our solar bubble into interstellar space, the space between stars. Its environment still feels the solar influence. Voyager 2 (bottom) is still exploring the outer layer of the solar bubble. Image credit: NASA/JPL-Caltech

Voyager 1 was able to record the sounds of interstellar space. This helped the Voyager science team calculate the density of interstellar plasma. Read more about the announcement of Voyager crossing into interstellar space here.