New Molecules Detected in Io’s Atmosphere

An image of Io taken by the automated spacecraft: Galileo. Image Credit: NASA

Io – Jupiter’s innermost Galilean moon – is the most geologically active body in the Solar System. With over 400 active volcanic regions, plumes of sulfur can climb as high as 300 miles above the surface.  It is dotted with more than 100 mountains, some of which are taller than Mount Everest. In between the volcanoes and mountains there are extensive lava flows and floodplains of liquid rock.

Intense volcanic activity leads to a thin atmosphere consisting mainly of sulfur dioxide (SO2), with minor species including sulfur monoxide (SO), sodium chloride (NaCl), and atomic sulfur and oxygen. Despite Io’s close proximity to the Earth the composition of its atmosphere remains poorly constrained. Models predict a variety of other molecules that should be present but have not been observed yet.

Recently a team of astronomers from institutions across the United States, France, and Sweden, set out to better constrain Io’s atmosphere. They detected the second-most abundant isotope of sulfur (34-S) and tentatively detected potassium chloride (KCl). The latter is produced in volcanic plumes – suggesting that these plumes continuously contribute to Io’s atmosphere.

Expected yet undetected molecular species include potassium chloride (KCl), silicone monoxide (SiO), disulfur monoxide (S2O), and various isotopes of sulfur. Most of these elements emit in radio wavelengths.

“Depending on their geometry, some molecules emit at well known frequencies when they change rotational state,” Dr. Arielle Moullet, lead author on the study, told Universe Today. “These spectral features are called rotational lines and show up in the (sub)millimeter spectral range.”

These observations were therefore obtained at the Atacama Pathfinder Experiment (APEX) antenna – a radio telescope located 16,700 feet above sea level in northern Chile. The main dish has a diameter of 12 meters, and is a prototype antenna for the Atacama Large Millimeter Array (ALMA).

The Atacama Pathfinder (APEX) antenna. Image Credit: ESO
The Atacama Pathfinder (APEX) antenna. Image Credit: ESO

Following 16.5 hours of total observation time and months of data reduction and analysis, Moullet et al. made a tentative detection of potassium chloride (KCl). Io’s volcanic ejecta produce a large plasma torus around Jupiter, which inlcudes many molecular species including potassium.  This detection is therefore considered the “missing link” between Io and this plasma torus.

The team also made the first detection of one of Sulfur’s isotopes known as 34-S. Sulfur has 25 known isotopes – variants of sulfur that still have 16 protons but differ in their number of neutrons. 34-S is the second most abundant isotope with 18 neutrons.

Previously, the first-most abundant isotope of sulfur, 32-S with 16 neutrons, had been detected. Surprisingly the ratio between the two (34/32 S) is twice as high as the solar system reference, suggesting that there is an abundance of 34-S. A fraction this high has only been reported before in a distant quasar – an early galaxy consisting of an intensely luminous core powered by a huge black hole.

“This result tells us that there probably is some fractionation process that we haven’t yet identified, which is happening either in the magma, at the surface, or in the atmosphere itself,” explains Dr. Moullet.  Something somewhere is producing an unexplained abundance of this isotope.

Other expected yet undetected molecules including silicone monoxide and disulfur monoxide remain undetected. It is possible that these molecules are simply not present, but more likely that the observations are not sensitive enough to detect them.

“To perform a deeper spectral search with a better sensitivity, our group has been awarded observation time with the Atacama Large Millimeter Array, a cutting edge interferometric facility in Chile, which will eventually include more than fifty 12-meter wide dishes,” explains Dr. Moullet.  “We are in the process of analyzing our first dataset obtained with sixteen antennas, which is already much more sensitive than the APEX data.”

While Io is certainly an extreme example, it will likely help us characterize volcanism in general – providing a better understanding of volcanism here on Earth as well as outside the Solar System.

The paper has been accepted for publication in The Astrophysical Journal and is available for download here.

And the Winners Are … Amazing ‘Astronomy Photographer of the Year 2013’ Photos Revealed

The overall winner of Astronomy Photographer of the Year 2013 photo from Mark Gee, titled 'Guiding Light to the Stars.' Credit and copyright: Mark Gee.

Feast your eyes!! Every year of the “Astronomy Photographer of the Year” competition provides incredible images of our night sky — whether they are striking pictures of vast galaxies millions of light years away, or dramatic images of the night sky taken much closer to home — and this year is no different. The awards were just announced at a special presentation at the Royal Observatory in Greenwich, England for this fifth year of the competition, which is run by the Observatory in association with Sky at Night Magazine.

Above is the overall winner, from Mark Gee, which was the winner of the “Earth and Space” category, a gorgeous view of the Milky Way taken from Cape Palliser on the North Island of New Zealand.

Astronomy Photographer of the Year 2013 has four main categories: Earth and Space, Our Solar System, Deep Space, and Young Astronomy Photographer of the Year. There are also three special prizes: People and Space, Best Newcomer (with the prize newly named for Sir Patrick Moore), and the Robotic Scope category, for images taken by a computer-controlled telescope accessed over the internet.
All the winning images here are linked to the originals posted in the Astronomy Photographer of the Year Flickr stream, so feel free to click on the images to see larger versions on Flickr.

Special congrats to Adam Block of the Mount Lemmon Sky Center in Arizona for winning the “Deep Sky” category. Adam is a “regular” on Universe Today, as we frequently feature his beautiful images in the astrophotos we share.

Here are the rest of the winners!

The winner for the Deep Space category in Astronomy Photographer of the Year 2013 goes to Adam Block: Celestial Impasto. Credit and copyright: Adam Block/Mt. Lemmon Sky Center.
The winner for the Deep Space category in Astronomy Photographer of the Year 2013 goes to Adam Block: Celestial Impasto. Credit and copyright: Adam Block/Mt. Lemmon Sky Center.
The winner for the ‘Our Solar System’ category in Astronomy Photographer of the Year 2013 is Man-To Hui: ‘Corona Composite of 2012: Australian Totality’. Credit and copyright: Man-To Hui.
The winner for the ‘Our Solar System’ category in Astronomy Photographer of the Year 2013 is Man-To Hui: ‘Corona Composite of 2012: Australian Totality’. Credit and copyright: Man-To Hui.
The winner for the Young Astronomy Photographer of the Year 2013 is Jacob Marchio: The Milky Way Galaxy. Credit and copyright: Jacob Marchio.
The winner for the Young Astronomy Photographer of the Year 2013 is Jacob Marchio: The Milky Way Galaxy. Credit and copyright: Jacob Marchio.
The Sir Patrick Moore Prize for Best Newcomer in the Astronomy Photographer of the Year 2013 goes to Sam Christopher Cornwell  for his ‘Venus Transit, Foxhunter’s Grave, Welsh Highlands’. Credit and copyright: Sam Christopher Cornwell.
The Sir Patrick Moore Prize for Best Newcomer in the Astronomy Photographer of the Year 2013 goes to Sam Christopher Cornwell for his ‘Venus Transit, Foxhunter’s Grave, Welsh Highlands’. Credit and copyright: Sam Christopher Cornwell.
Winner of the best Robotic Scope Image for Astronomy Photographer of the Year 2013 is László Francsics: The Trapezium Cluster & Surrounding Nebulae. Credit and copyright: László Francsics
Winner of the best Robotic Scope Image for Astronomy Photographer of the Year 2013 is László Francsics: The Trapezium Cluster & Surrounding Nebulae. Credit and copyright: László Francsics
The winner for the People and Space Astronomy Photographer of the Year 2013 is Mark Gee: ‘Moon Silhouettes.’ Credit and copyright: Mark Gee.
The winner for the People and Space Astronomy Photographer of the Year 2013 is Mark Gee: ‘Moon Silhouettes.’ Credit and copyright: Mark Gee.

If you are impressed — or inspired — by these images, look to join in the competition for next year’s Astronomy Photographer of the Year competition! We’ll provide info on how to submit your photos when it becomes available (usually in January every year).

Goodbye Big Bang, Hello Black Hole? A New Theory Of The Universe’s Creation

Artist's conception of the event horizon of a black hole. Credit: Victor de Schwanberg/Science Photo Library
Artist's conception of the event horizon of a black hole. Credit: Victor de Schwanberg/Science Photo Library

Could the famed “Big Bang” theory need a revision? A group of theoretical physicists suppose the birth of the universe could have happened after a four-dimensional star collapsed into a black hole and ejected debris.

Before getting into their findings, let’s just preface this by saying nobody knows anything for sure. Humans obviously weren’t around at the time the universe began. The standard theory is that the universe grew from an infinitely dense point or singularity, but who knows what was there before?

“For all physicists know, dragons could have come flying out of the singularity,” stated Niayesh Afshordi, an astrophysicist with the Perimeter Institute for Theoretical Physics in Canada who co-authored the new study.

So what are the limitations of the Big Bang theory? The singularity is one of them. Also, it’s hard to predict why it would have produced a universe that has an almost uniform temperature, because the age of our universe (about 13.8 billion years) does not give enough time — as far as we can tell — to reach a temperature equilibrium.

Most cosmologists say the universe must have been expanding faster than the speed of light for this to happen, but Ashford says even that theory has problems: “The Big Bang was so chaotic, it’s not clear there would have been even a small homogenous patch for inflation to start working on.”

Representation of the timeline of the universe over 13.7 billion years, from the Big Bang, through the cosmic dark ages and formation of the first stars, to the expansion in the universe that followed. Credit: NASA/WMAP Science Team.
Representation of the timeline of the universe over 13.7 billion years, from the Big Bang, through the cosmic dark ages and formation of the first stars, to the expansion in the universe that followed. Credit: NASA/WMAP Science Team.

This is what the physicists propose:

  • The model they constructed has the three-dimensional universe floating as a membrane (or brane) in a “bulk universe” that has four dimensions. (Yes, this is making our heads hurt as well, so it might be easier to temporarily think of the brane as two-dimensional and the “bulk universe” as three-dimensional when trying to picture it.) You can read the more technical details in this 2000 paper on which the new theory is based.
  • So if this “bulk universe” has four-dimensional stars, these stars could go through the same life cycles as the three-dimensional ones we are familiar with. The most massive ones would explode as supernovae, shed their skin and have the innermost parts collapse as a black hole.
  • The 4-D black hole would have an “event horizon” just like the 3-D ones we are familiar with. The event horizon is the boundary between the inside and the outside of a black hole. There are a lot of theories of what goes on inside a black hole, although nothing has ever been observed.
  • In a 3-D universe, the event horizon appears as a two-dimensional surface. So in a 4-D universe, the event horizon would be a 3-D object called a hypersphere.
  • So basically, what the model says is when the 4-D star blows apart, the leftover material would create a 3-D brane surrounding a 3-D event horizon, and then expand.

The long and the short of it? To bring this back to things that we can see, it is clear from observations that the universe is expanding (and indeed is getting faster as it expands, possibly due to the mysterious dark energy). The new theory says that the expansion comes from this 3-D brane’s growth. But there  is at least one limitation.

This artist’s impression shows the surroundings of the supermassive black hole at the heart of the active galaxy NGC 3783 in the southern constellation of Centaurus (The Centaur). New observations using the Very Large Telescope Interferometer at ESO’s Paranal Observatory in Chile have revealed not only the torus of hot dust around the black hole but also a wind of cool material in the polar regions. Credit: ESO/M. Kornmesser
This artist’s impression shows the surroundings of the supermassive black hole at the heart of the active galaxy NGC 3783 in the southern constellation of Centaurus (The Centaur). New observations using the Very Large Telescope Interferometer at ESO’s Paranal Observatory in Chile have revealed not only the torus of hot dust around the black hole but also a wind of cool material in the polar regions. Credit: ESO/M. Kornmesser

While the model does explain why the universe has nearly uniform temperature (the 4-D universe preceding it would have existed it for much longer), a European Space Agency telescope called Planck recently mapped small temperature variations in the cosmic microwave background, which is believed to be leftovers of the universe’s beginnings. (Read more about the CMB here.)

The new model differs from these CMB readings by about four percent, so the researchers are looking to refine the model. They still feel the model has worth, however. Planck shows that inflation is happening, but doesn’t show why the inflation is happening.

“The study could help to show how inflation is triggered by the motion of the universe through a higher-dimensional reality,” the researchers stated.

You can read more about their research on this prepublished Arxiv paper. The Arxiv entry does not specify if the paper has been submitted to any peer-reviewed scientific journals for publication.

Source: Nature

Watch Live: Commercial Antares Rocket Launches to Space Station

he Orbital Sciences Corporation Antares rocket, with its Cygnus cargo spacecraft aboard, is seen during sunrise on the Mid-Atlantic Regional Spaceport (MARS) Pad-0A at the NASA Wallops Flight Facility, Tuesday, Sept. 17, 2013 in Virginia. NASA's commercial space partner, Orbital Sciences Corporation, is targeting a Sept. 18 launch for its demonstration cargo resupply mission to the International Space Station. Photo Credit: (NASA/Bill Ingalls)

UPDATE: Orbital Sciences successfully launched its Cygnus cargo spacecraft aboard its Antares rocket at 10:58 a.m. EDT Wednesday from the Mid-Atlantic Regional Spaceport Pad-0A at NASA’s Wallops Flight Facility in Virginia. This is the first time a spacecraft launched from Virginia is heading toward the International Space Station. Above is the launch video, and we’ll have a full re-cap article coming soon! The live NASA TV feed is below. (end of update)

Orbital Sciences’ Cygnus spacecraft is set to become the second private spacecraft to launch to the International Space Station. Today’s historic launch from NASA’s Wallops Flight Facility in Virginia has a launch window from 10:50 AM to 11:30 AM EDT, with launch likely to occur at 0:58 a.m. EDT (1458 GMT) from Pad 0A at the Mid-Atlantic Regional Spaceport. You can watch it live here on NASA TV’s Ustream feed.

As of this writing, the Wallops range is currently red due to low cloud conditions and something called “distance focus over pressure,” according to the Orbital Sciences Twitter feed. However, they expect it to clear later in count, and the rocket is being fueled.

Also, if you live along the US east coast near the Virginia area, you may be able to see the launch for yourself! It won’t be as visible as the recent nighttime launch of the LADEE mission, but should still be visible to a wide area, if the skies are clear. Read our complete guide to how to view the launch here.



Live streaming video by Ustream

Here’s a timelapse of the Antares rocket heading out the the launchpad:

Advanced Satellite Blasts Off from Cape Canaveral: Launch Gallery

A United Launch Alliancee Atlas V rocet lifts off with the US Air Force’s third Advanced EHF satellite. Credit and copyright: John O’Connor/nasatech.net.

Early this morning a United Launch Alliance Atlas V rocket blasted off from Cape Canaveral in a gorgeous pre-dawn launch, sending the third Advanced Extremely High Frequency (AEHF-3) satellite for the United States Air Force to orbit. The rocket lifted off from Launch Complex-41 at 4:10 am EDT (08:10 UTC) on Wednesday, September 18, 2013. Thanks to John O’Connor from nasatech.net for sharing his beautiful launch images with Universe Today.

This launch leads the way for a second launch today: the historic Orbital Sciences Antares commercial rocket carrying the first fully functional Cygnus commercial resupply vehicle to orbit from NASA’s Wallops Island Facility on a demonstration mission bound for the International Space Station.

The AEHF-3 will provide a state-of-the-art communications system for the US military and Department of Defense.

See more launches images below:

Awaiting its mission on Space Launch Complex 41, the Atlas 5 - 531/AEHF-3 stands ready as the weather slowly cleared. Credit and copyright: John O'Connor/nasatech.net,
Awaiting its mission on Space Launch Complex 41, the Atlas 5 – 531/AEHF-3 stands ready as the weather slowly cleared. Credit and copyright: John O’Connor/nasatech.net,
As the furious vibrations shake cascades of ice off of the liquid oxygen tank the Atlas 5-531 reaches for the sky and its supersynchronous transfer orbit. Credit and copyright: John O'Connor/nasatech.net.
As the furious vibrations shake cascades of ice off of the liquid oxygen tank the Atlas 5-531 reaches for the sky and its supersynchronous transfer orbit. Credit and copyright: John O’Connor/nasatech.net.
Halfway through the lightning wires, the Atlas 5 accelerates to its rendezvous with a supersynchronous transfer orbit. Credit and copyright: John O'Connor/nasatech.net.
Halfway through the lightning wires, the Atlas 5 accelerates to its rendezvous with a supersynchronous transfer orbit. Credit and copyright: John O’Connor/nasatech.net.
Through a cloud on its way to orbit, the Atlas 5 - 531 vehicle and it AEHF-3 payload dapple the clouds with light....  Credit and copyright: John O'Connor/nasatech.net.
Through a cloud on its way to orbit, the Atlas 5 – 531 vehicle and it AEHF-3 payload dapple the clouds with light…. Credit and copyright: John O’Connor/nasatech.net.
...and come out the top, amid the night, resplendent on a seething tower of dawn and thunder. Credit and copyright: John O'Connor/nasatech.net.
…and come out the top, amid the night, resplendent on a seething tower of dawn and thunder. Credit and copyright: John O’Connor/nasatech.net.

Tonight’s Harvest Moon Is For The Birds … Really!

The moon provides the perfect backdrop for watching birds migrate at night. Observers with spotting scopes and small telescopes can watch the show anytime the moon is at or near full. Photo illustration: Bob King

Tonight’s the Harvest Moon, the full Moon closest to the fall equinox. A perfect time to catch a big orange Moon on the horizon AND the annual fall bird migration. Every September and October anyone with a small telescope or spotting scope magnifying 30x can enjoy the sight of one bird after another flying over the cratered lunar landscape. It’s so easy.

Point your telescope at the Moon and watch for dark silhouettes to flutter across its face. Because the angle of the full Moon’s path to the horizon is very shallow in September and October, the time difference between successive moonrises is only about 20-30 minutes instead of the usual 50-60. That means you’ll catch both moonlight and bird flight on successive nights without having to stay up late.

The Harvest Moon rises over Lake Superior in Duluth, Minn. When you’re out enjoying this year’s full moon on Wednesday and Thursday nights, watch for the dark band you see in the photo. That’s the Earth’s shadow. It’s visible for about 15-20 after sunset and topped by the pink-tinged Belt of Venus, where the atmosphere is still reflecting reddened sunlight. Credit: Bob King
The Harvest Moon rises over Lake Superior in Duluth, Minn last September. When you’re out moon and birdwatching, look for the dark band below the rising moon. That’s the Earth’s shadow. It’s visible for about 15-20 after sunset and topped by the pink-tinged “Belt of Venus”, where the atmosphere is still reflecting reddened sunlight. Credit: Bob King

Many birds migrate at night both because it’s cooler and to avoid predators that could otherwise pick them off in a daylight run. Identifying the many warblers, blackbirds, sparrows, vireos, orioles and other species that fly across the moon while we sleep may be next to impossible for anyone but an expert, but seeing them is easy.  Two night ago for fun, I counted a dozen birds in the five-minute interval around 10 o’clock through my 10-inch telescope at low power (76x). Assuming they continued to fly by at a steady rate, I could potentially have spotted 144 birds in just an hour’s time.

Two of my favorite migrating birds: the winter wren (left) and chestnut-sided warbler. Credit: Bob King
Two of my favorite migrating birds: the winter wren (left) and chestnut-sided warbler. Credit: Bob King

As you might suspect, most of those birds crossed the Moon from north to south (about two-thirds) with the other third traveling either east to west or northeast to southwest. Only one little silhouette flapped back up north in the ‘wrong’ direction.

According to the Chipper Woods Bird Observatory, located in Indianapolis, most nighttime migrators begin their flight right after sunset and continue until about 2 a.m. Peak time is between 11 p.m. and 1 a.m. Bird typically migrate at altitudes ranging from 1,500 to 5,000 feet, but on some nights, altitudes may range from 6,000 and 9,000 feet. I could tell the high ones from the low ones by their size and sharpness. Nearby birds flew by out of focus, while distant ones were sharply defined and took longer to cross the moon.

Check out this animated wave of bird migration after sunset on Aug. 27, 2013 made with NEXRAD. Birds are visible funneling down both shores of Lake Superior and moving south of Duluth, Minn (city at center). Credit: NWS
Check out this animation showing a wave of bird migration after sunset on Aug. 27 made with NEXRAD. Birds are visible funneling down both shores of Lake Superior and moving south of Duluth, Minn (city at center). Credit: NWS

While birders may continue to use the moon night birding, they now have a new tool – NEXRAD or NEXt-generation of Weather RADar. About 150 NEXRAD sites were set up in the 1990s to track weather and storm systems across the U.S. When precipitation gets pinged by the radar’s pulse it reflects back a signal that identifies it as rain, snow or whatever. Included in the information is the material’s speed and direction of travel. NEXRAD works equally well on meteorite falls, birds and even insects. While storm activity typically shows up as familiar blotches of yellow, orange and red, birds appear as fine stipplings.  By compiling NEXRAD loops, during particularly heavy migration times, you can actually watch swarms of birds wing their way south. Click HERE for a map of all U.S. NEXRAD locations, each of which links to current radar maps.

On the less technological side, watching birds pass across the Moon in a small telescope is a very pleasant activity reminiscent of meteor shower watching. At first you see nothing, then blip! a bird (meteor) flies by. You wait another minute and then suddenly two more appear in tandem.  Both activities give you that delicious sense of anticipation of what the next moment might hold.

The best time to watch the nighttime avian exodus is around full Moon, when the big, round disk offers an ideal spotlight on the birds’ behavior, but anytime between waxing and waning gibbous phase will work. It’s an enchanting sight to see Earth’s creatures streak across an alien landscape, and another instance of how a distant celestial body “touches” Earth in unexpected ways.

Proof! – Frogs Jump at Chance to Board Rockets to Space from NASA Wallops during Antares booster Rollout

NASA Photographer discovers living proof that Frogs are leaping towards the on ramp for rocket ships bound for Earth orbit and beyond at NASA’s Wallops Island, VA, launch pads during rollout of the Antares rocket on Sept 13, 2013. Credit: Ken Kremer (kenkremer.com)

WALLOPS ISLAND, VA – Have you seen the NASA frog? The one that became famous worldwide last week following the historic Moon Shot of the LADEE mission from NASA Wallops Island in Virginia?

The one that the inexplicably appeared in a single photograph from a NASA Wallops remote camera when the pressure wave from the Minotaur rockets exhaust sent it hurtling skywards?

Perhaps you are an unbeliever? And think the frog photo was photoshopped?

Well after a thorough investigation, Universe Today has uncovered undeniable proof that NASA’s resident frogs are indeed jumping at the chance to make history again and leap aboard the next rocket headed to space from NASA Wallops on Sept 18.

How do I know this?

Well on Friday the 13th of September, I was on site at NASA Wallops for a photo shoot of the lengthy rollout of the Orbital Sciences Antares rocket to Launch Pad 0A – and the famous frog was a topic of endless conversation in between our gorgeous views of Antares moving along the road to the launch pad atop the Transporter Erector vehicle.

See my frog and rollout photo gallery herein.

Antares rocket arrives at on ramp to launch pad with cool new signs directing traffic to launch pads for trips to the Moon and the International Space Station. Credit: Ken Kremer (kenkremer.com)
Antares rocket arrives at on ramp to launch pad with cool new signs directing traffic to launch pads for trips to the Moon and the International Space Station. Credit: Ken Kremer (kenkremer.com)

Nary a frog was to be found anywhere all day and night along the 1 mile rollout route.

Finally, after much delay the Antares rocket was raised and erected firmly atop the launch mount.

And then at last the great frog discovery was made.

Close up of frog hiding near the Antares launch pad and apparently eager to jump aboard.    Credit: Ken Kremer (kenkremer.com)
Close up of frog hiding near the Antares launch pad and apparently eager to jump aboard. Credit: Ken Kremer (kenkremer.com)

And of course it took a woman, a NASA photographer named Jamie, to do a man’s job – finding and corralling that frog and fearlessly holding the critter in front of all the guys, including me.

Antares rocket begins rollout atop transporter erector to Launch Pad 0A at NASA Wallops Island Facility, VA., on Sept. 13, 2013.  Credit: Ken Kremer (kenkremer.com)
Antares rocket begins rollout atop transporter erector to Launch Pad 0A at NASA Wallops Island Facility, VA., on Sept. 13, 2013. Credit: Ken Kremer (kenkremer.com)

My photos are the proof that the mysterious origin of NASA’s apparently space loving resident frogs has been solved.

Jamie discovered the frog lurking inside a telescope dome used to protect NASA’s launch pad cameras during liftoff.

Antares rocket begins rollout atop transporter erector to Launch Pad 0A at NASA Wallops Island Facility, VA., on Sept. 13, 2013.  Credit: Ken Kremer (kenkremer.com)
Antares rocket begins rollout atop transporter erector to Launch Pad 0A at NASA Wallops Island Facility, VA., on Sept. 13, 2013. Credit: Ken Kremer (kenkremer.com)

She found the frog hiding inside the dome to evade the ever present security patrols on the lookout for intruders. Where is the NSA when you need them?

And quite clearly these are intelligent frogs – eager to blast off to the High Frontier in pursuit of science.

Why?

Because for the past few weeks these space loving frogs have been reading the new pair of signs installed by the launch pad gates right in front of the on ramps directing traffic to the Minotaur and Antares rockets headed to the Moon and the International Space Station.

They were just waiting for the right moment to hop aboard.

Antares rocket rolls up on on ramp at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)
Antares rocket rolls up on on ramp at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)

Everything remains on target for the Sept. 18 blastoff of Orbital Sciences Antares commercial rocket carrying the first fully functional Cygnus commercial resupply vehicle to orbit from NASA’s Wallops Island Facility on a demonstration mission bound for the International Space Station (ISS).

“The weather forecast remains at 75% chance of “GO” with favorable conditions,” said NASA Wallops test director Sarah Daugherty at a news media briefing at Wallops today.

“The launch could be widely visible along the East Coast from New York City to South Carolina.” – Weather permitting

Antares rocket raised at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)
Antares rocket raised at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)

Learn how and where to view the Antares launch by reading my “How to see the Antares Launch” story.

NASA Television coverage of the Antares launch will begin at 10:15 a.m. on Sept 18 – (www.nasa.gov/ntv).

Antares rocket raised at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)
Antares rocket raised at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)

Stay tuned to Universe Today for complete coverage of the Antares/Cygnus Orb-D1 mission to the ISS and my continuing Antares and LADEE mission reports from on site at NASA’s Wallops Launch Pads in sunny Virginia – reporting for Universe Today.

Ken Kremer

Antares rocket raised at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)
Antares rocket raised at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)

Antares rocket and Cygnus spacecraft after rollout to Launch Pad 0A at NASA Wallops Flight Facility Facility, VA.,on Sept. 13, 2013. Blastoff is slated for Sept. 18, 2013 at 10:50 a.m. EDT.  LADEE launch pad 0B stands adjacent to right of Antares.  Credit: Ken Kremer (kenkremer.com)
Antares rocket and Cygnus spacecraft after rollout to Launch Pad 0A at NASA Wallops Flight Facility Facility, VA.,on Sept. 13, 2013. Blastoff is slated for Sept. 18, 2013 at 10:50 a.m. EDT. LADEE launch pad 0B stands adjacent to right of Antares. Credit: Ken Kremer (kenkremer.com)

…………….

Learn more about Cygnus, Antares, LADEE, Curiosity, Mars rovers, MAVEN, Orion and more at Ken’s upcoming presentations

Sep 17/18: LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA

Oct 3: “Curiosity, MAVEN and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM

Oct 8: LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM

Seaside panoramic view of Antares rocket and Cygnus spacecraft after rollout to Launch Pad 0A at NASA Wallops at the Virginia Eastern Shore  on Sept. 13, 2013. Blastoff for the ISS is slated for Sept. 18, 2013 at 10:50 a.m. EDT Credit: Ken Kremer (kenkremer.com)
Seaside panoramic view of Antares rocket and Cygnus spacecraft after rollout to Launch Pad 0A at NASA Wallops at the Virginia Eastern Shore on Sept. 13, 2013. Blastoff for the ISS is slated for Sept. 18, 2013 at 10:50 a.m. EDT Credit: Ken Kremer (kenkremer.com)

Win a Copy of Homer Hickam’s “Crescent”

Crescent, by Homer Hickam.

Homer Hickam’s latest series of books depicts life on the Moon in the next century. But it’s not a utopia. “Crescent,” the second book in the trilogy, includes battles against bioengineered beings and the hard life of mining helium-3. This series is written for young adults, but adults will enjoy the engaging characters, too.

You can read our full review and interview with Homer Hickam here.

Universe Today has four copies of “Crescent” to give away.

In order to be entered into the giveaway drawing, just put your email address into the box at the bottom of this post (where it says “Enter the Giveaway”) before Friday, September 20, 2013. We’ll send you a confirmation email, so you’ll need to click that to be entered into the drawing.

Book Review: ‘Crescent’ By Homer Hickam

Crescent, by Homer Hickam.

You probably know Homer Hickam from his book “Rocket Boys” and the movie, “October Sky.” But Hickam’s repertoire of 15-plus books range from fiction to nonfiction, covering multiple topics beyond space flight and building rockets.

His most recent series – the Helium-3 trilogy of life on the Moon set 120 years into the future — is science fiction written for young adults. But adults with a penchant for science fiction seem just as taken with these books and their engaging characters.

Find out how to win a copy of “Crescent”

“I like to say I’m like Robert Heinlein, in that I write all my books for everybody!” Hickam told Universe Today by phone in a recent interview.

The idea of writing for a younger audience, he admits, wasn’t his own.

“I was asked to write a series for young adults,” he said, “and I had never had really written for that age group before. I figured it would be a challenge to write something that would be of interest to them, but I kind of took the easy way out by projecting the story 120 years into the future where I could make young adults think, feel and do pretty much what I wanted them to do! Hopefully I created characters that young adults will enjoy.”

Hickam has succeeded. The first book in the Helium-3 trilogy, “Crater” was published in 2012, and the newest, called “Crescent” was published this summer. Both books have been well received by young adult readers, and as mentioned, by adults, too.

The protagonists in the series are young adults themselves, which means there’s a lot of room for growth, discovery and coming of age.

Crater Trueblood is a 19-year-old miner of helium-3 on the Moon who has been forced to become a soldier in the ongoing war against the Crowhoppers. Crowhoppers are bio-engineered humans that are trained for battle and trained to kill. During a battle, Crater captures one of the Crowhoppers, a female named Crescent. Instead of killing her, as she expects and wants, Crater brings her to Moontown and finds he enjoys being with her.

Bring in Maria Medaris, the granddaughter of the richest man on the Moon, Colonel Medaris (a descendant of the character Jack Medaris from Hickam’s 1999 book, “Back to the Moon.” Maria and Crater have a history together, with a complicated relationship. But they end up defending Crescent when she’s falsely accused of murder; then Crater and Crescent escape into the lunar wilderness to avoid Crescent’s imprisonment and to survive must defend themselves from both the Moontowners and a band of Crowhoppers sent to capture or kill them. They must make hard decisions of what is worth fighting for.

Hickam says all his fiction books are character-driven, but he takes every chance he can to include scientifically accurate information.

“It’s very important to me to have scientifically accurate details,” Hickam said. “But where I put in technical details, it is primarily to advance the plot or for the character to grow – in other words, I’m not writing a textbook.”

But of course, there’s also speculation within the story, such as the gillie, a computer that is a synthetic, semi-sentient life-form.

“Nobody has created that yet,” Hickam said, “but it’s nothing I’ve invented out of whole cloth, as some scientists are looking to create a bio-computer.”

But that leads to contemplation of what do you do with a lifeform that is a computer.

Additionally, Hickam’s depiction of life on the Moon in the next century certainly isn’t of a utopia.

“I think that 100 years in the future we’ll probably be surprised about what is life is going to be like then,” Hickam said. “What I’ve done is take technology of today and imagine what it is going to be like 120 years in the future, with some bumps in the road. I don’t see any kind of nirvana or utopia coming –and we’d probably be all pretty bored if that happened! I think advances will come in biology and technology fields, and that is going to raise a host of moral questions for all of us.”

For example, Crescent is a genetically engineered human that is made to look ugly and fearsome as well as being a trained killer.

“So what do we do with humans that look scary, or that act even scarier?” Hickam pondered. “For those who haven’t read the book, think about what if you had someone who loved nothing more to help you, take care of you, cook for you, do everything for you. Everyone says, oh yes, that’s great. But you do know you are talking about wanting a slave. We are going to be able to create helpers, and when we do that, the moral questions for the human race is going to be huge.”

Of all the characters in this series, Hickam says he’s most intrigued by Maria.

“To me Maria is a fascinating character, and we’re still not sure about her and how she’s going to end up,” he said.

And how is the series going to play out? Hickam turned in his transcript for the third book in the trilogy in early September, but gave us no hints of what’s to come.

“The third one is supposed to wrap it all up,” he said with a laugh, “but really, there’s no way to wrap it all up!”

Tomorrow, we’ll talk more with Hickam about his journey from rocket scientist to writer and his views of the current state of space exploration.

Sleek GOCE Spacecraft Will Have Uncontrolled Re-entry into Earth’s Atmosphere

GOCE in orbit. Credit: ESA

The sleek and sexy-looking GOCE spacecraft has been mapping Earth’s gravity for over four years, but soon its xenon fuel will run out and the satellite will end up re-entering our atmosphere. But no one can say for sure when or where the 1-ton satellite will fall.

The Gravity field and steady-state Ocean Circulation Explorer has been orbiting Earth at super-low orbits, mapping out variations in Earth’s gravity with extreme detail. Launched in March 2009, the GOCE spacecraft was designed to fly low and has spent most of its mission roughly 500 km below most other Earth-observing missions, at an altitude of 255 km (158 miles), but has recently been at the lowest altitude of any research satellite at 224 km (139 miles).

With its sleek, aerodynamic design, some have called it the ‘Ferrari of space,’ but we’ve just called it sexy, like a satellite straight out of a James Bond movie.

And the satellite has delivered with unique results of Earth’s ‘geoid’ — precise measurements of ocean circulation, sea-level change and ice dynamics, greatly improving our knowledge and understanding of the Earth’s internal structure. The mission has also been studying air density and wind in space. Its data also produced the first global high-resolution map of the boundary between Earth’s crust and mantle, called the Mohorovicic, or “Moho” discontinuity.

Mission managers predict that in mid-October 2013 the spacecraft will run out of fuel and the satellite will begin its descent towards Earth. There will be no remaining fuel to guide its re-entry, and while most of GOCE is predicted to disintegrate in the atmosphere, several parts might reach Earth’s surface. Experts predict as much as 25% of the spacecraft will survive reentry, as many parts are made of advanced materials, such as carbon-carbon composites.

But when and where these parts might land cannot yet be predicted, ESA says.

As the re-entry time nears, better predictions will be made. Re-entry is expected to happen about three weeks after the fuel is depleted.

ESA says that taking into account that two thirds of Earth are covered by oceans and vast areas are thinly populated, the danger to life or property is very low.

Recently, other larger satellites have made uncontrolled re-entries, such as NASA’s 6-ton UARS spacecraft and Germany’s 2.4-ton ROSAT in 2011 and the 13-ton failed Russian Mars probe, Phobos-Grunt in 2012.

About 40 tons of human-made space debris reach the ground per year, but the spread and size mean the risk of an individual being struck is lower than being hit by a meteorite.

An international campaign will be monitoring the descent, involving the Inter-Agency Space Debris Coordination Committee. The situation is being continuously watched by ESA’s Space Debris Office, which will issue re-entry predictions and risk assessments.

ESA says they will keep the relevant safety authorities permanently updated.

Additional info: ESA, BBC