Some of the Moon's Craters are From Interstellar Impacts. Can We Tell Which?

Far Side of Moon Imaged by MoonKAM. This image of the lunar surface was taken by the MoonKAM system onboard NASA’s Ebb spacecraft on March 15, 2012. Credit: NASA/Caltech-JPL/MIT/SRS

By discovering two interstellar objects (ISOs), we know that asteroids and comets from other star systems pass through the Solar System from time to time. By inference, some of these must have crashed into the Moon, creating impact craters. If we could study the impact sites, we might be able to learn about the star systems that they came from.

A new paper suggests there could be a way to determine which lunar craters came from interstellar object impacts. The authors say that young, small craters with high-melt volume near the Moon’s equator are likely the best candidates for ISO-generated craters on the lunar surface.

Continue reading “Some of the Moon's Craters are From Interstellar Impacts. Can We Tell Which?”

Sometimes Compact Galaxies Hide Their Black Holes

Illustration of an active quasar. What role does its dark matter halo play in activating the quasar? Credit: ESO/M. Kornmesser
Illustration of an active quasar. New research shows that SMBHs eat rapidly enough to trigger them. Credit: ESO/M. Kornmesser

Quasars, short for quasi-stellar objects, are one of the most powerful and luminous classes of objects in our Universe. A subclass of active galactic nuclei (AGNs), quasars are extremely bright galactic cores that temporarily outshine all the stars in their disks. This is due to the supermassive black holes in the galactic cores that consume material from their accretion disks, a donut-shaped ring of gas and dust that orbit them. This matter is accelerated to close to the speed of light and slowly consumed, releasing energy across the entire electromagnetic spectrum.

Based on past observations, it is well known to astronomers that quasars are obscured by the accretion disk that surrounds them. As powerful radiation is released from the SMBH, it causes the dust and gas to glow brightly in visible light, X-rays, gamma-rays, and other wavelengths. However, according to a new study led by researchers from the Centre for Extragalactic Astronomy (CEA) at Durham University, quasars can also be obscured by the gas and dust of their entire host galaxies. Their findings could help astronomers better understand the link between SMBHs and galactic evolution.

Continue reading “Sometimes Compact Galaxies Hide Their Black Holes”

ESA Plans to Eliminate New Space Debris by 2030

This image from the ESA's MASTER (Meteoroid and Space Debris Terrestrial Environment Reference) risk-assessment tool shows the dangerous debris orbiting Earth. Image Credit: IRAS/TU Braunschweig

What can we do about space junk? We know how much debris is in orbit, and we know the problem is getting worse. It’s our fault.

Our Earth now has a halo of orbital debris, and the ESA has a plan to stop contributing to the problem.

Continue reading “ESA Plans to Eliminate New Space Debris by 2030”

ESA Has a Difficult Choice: Study Mars, Earth's Magnetosphere, or Gamma-Ray Bursts

The space science community has narrowed down the shortlist for ESA’s next ‘medium’ mission to three finalists: M-Matisse, Plasma Observatory and Theseus. Credit: ESA

The European Space Agency (ESA) is looking to the future and contemplating its next M-class (Medium) mission. These missions are crucial to the ESA Science Programme (part of the agency’s Science Directorate), which aims to provide the best tools to ensure Europe’s continued participation in space exploration and sustain its capabilities in space by fostering innovation, maintaining launch services, and spacecraft operations. The latest round began in December 2021, when the ESA called for proposals for the next M-class mission to launch in the mid-2030s.

In a statement issued yesterday (Wednesday, November 8th), the ESA announced that it had narrowed the list of candidates to three concepts. These include the twin M-MATISSE, the seven-spacecraft Plasma Observatory, and the THESEUS satellite. The final selection will assist ESA operations and research in space by studying the evolution and past habitability of Mars, exploring the plasma environment around Earth, or studying powerful transient events across the Universe. The final selection of one mission is expected to happen by mid-2026.

Continue reading “ESA Has a Difficult Choice: Study Mars, Earth's Magnetosphere, or Gamma-Ray Bursts”

Astronomers Find Dozens of Massive Stars Fleeing the Milky Way

This is Zeta Ophiuchi, a runaway star observed by Spitzer. The star is creating a bow shock as it travels through an interstellar dust cloud. A new study found dozens of new runaway stars in the Milky Way. Image Credit: NASA/JPL-Caltech

The Milky Way can’t hold onto all of its stars. Some of them get ejected into intergalactic space and spend their lives on an uncertain journey. A team of astronomers took a closer look at the most massive of these runaway stars to see what they could find out how they get ejected.

Continue reading “Astronomers Find Dozens of Massive Stars Fleeing the Milky Way”

What? Wow! That New Asteroid Image from Lucy Just Got Even More Interesting

Asteroid Dinkinesh and its satellite companions, the "kissing moons". These appear to be a contact binary. Courtesy NASA/JPL/SWRI
Asteroid Dinkinesh and its satellite companions, the "kissing moons" now named Selam. The moon is a contact binary. Courtesy NASA/JPL/SWRI

Lucy’s images of asteroid Dinkinesh are the gift that keeps on giving. First, it was the discovery of a smaller companion. Now, it turns out that the companion itself is a contact binary. That’s two smaller objects touching each other as they orbit with Dinkinesh. So, how did they get that way?

Continue reading “What? Wow! That New Asteroid Image from Lucy Just Got Even More Interesting”

What Can Slime Mold Teach Us About the Universe?

A simulation of the cosmic web, diffuse tendrils of gas that connect galaxies across the universe. Credit: Illustris Collaboration

What can slime molds tell us about the large-scale structure of the Universe and the evolution of galaxies? These things might seem incongruous, yet both are part of nature, and Earthly slime molds seem to have something to tell us about the Universe itself. Vast filaments of gas threading their way through the Universe have a lot in common with slime molds and their tubular networks.

Continue reading “What Can Slime Mold Teach Us About the Universe?”

Astronauts Could Wear a Device to Prevent Disorientation in Space

Image of the multi-axis rotation device (MARS) used for this study, which participants used to remain balanced for an Earth analog in the vertical roll plane (left) and a spaceflight analog in the horizontal roll plane (right). (Credit: Vimal et al. (2023))

A recent study published in Frontiers in Physiology examines how vibrating wearable devices, known as vibrotactors, can be used to help astronauts cope with spatial disorientation when in space, which results from the lack of gravitational cues, or natural sensory perceptions, they are accustomed to using when on Earth and despite the rigorous training the astronauts undergo to combat the symptoms of spatial disorientation. This study was conducted by a team of researchers at Brandeis University and holds the potential to help develop more efficient methods to combat spatial disorientation, especially with long-term missions to the Moon, and even Mars.

Continue reading “Astronauts Could Wear a Device to Prevent Disorientation in Space”

Curiosity has Seen its 4,000th Martian Sunrise

NASA’s Curiosity Mars rover captured this 360-degree panorama using its black-and-white navigation cameras, or Navcams, at a location where it collected a sample from a rock nicknamed “Sequoia.” The panorama was captured on Oct. 21 and 26, 2023. Credit: NASA/JPL-Caltech

Not to make anyone feel old, but it’s been over 11 years since NASA’s Curiosity Rover landed on Mars. The rover has now seen the sun rise on Mars over 4,000 times. During this time, the rover has driven almost 32 kilometers on Mars, making its way up the flanks of Mount Sharp while studying the ancient history of water on Mars.

The past 11 years have been quite the journey, but it hasn’t been all perfect. There have been a few computer glitches over the years, Curiosity’s wheels have gaping holes and gashes from driving over sharp rocks, and recently one of its camera filter wheels became stuck. But since the rover’s nominal mission was designed to last about two Earth years, Curiosity has proven to be a tough and enduring machine.

Continue reading “Curiosity has Seen its 4,000th Martian Sunrise”