An Astronaut Controls a Robotic Dog From Orbit

DLR's four-legged robot Bert explores and monitors the unfamiliar environment. The Surface Avatar Experiment rehearsed an important scenario for future exploration missions on the Moon and Mars. Bert is being developed at the DLR Institute of Robotics and Mechatronics and can walk, trot, gallop, perform a passing gait and even climb. This enables him to cover long distances and at the same time move around in rough terrain or small caves. Credit: DLR.

Swedish astronaut Marcus Wandt took control of a series of robots in Germany while on board the International Space Station, zipping around the Earth at 28,000 kilometers per hour (17,500 mph.) Researchers want to understand how time delays can affect the remote control of robots from an orbiting platform. Future astronauts could control rovers on the Moon’s or Mars’s surface from a spacecraft in orbit. Until now, only wheeled rovers have been part of the tests, but now they have added a dog-like robot called Bert.

Continue reading “An Astronaut Controls a Robotic Dog From Orbit”

Japan Moon Lander Sleeps After Sending Science — Will It Wake Up Again?

SLIM image of moon
This is the last scene of the moon taken by Japan's SLIM lander before the sun dropped beneath the lunar horizon. (JAXA Photo)

After a few days of wakefulness, Japan’s SLIM moon lander has gone dormant once more at the start of a 14-day-long lunar night. The upended robot sent back a stream of data and imagery while its solar cells were in position to soak up sunlight, and its handlers hope they can get SLIM to wake up again and resume its work after lunar sunrise in mid-February.

Continue reading “Japan Moon Lander Sleeps After Sending Science — Will It Wake Up Again?”

Space Junk is Going to be a Problem for Vera Rubin

The Vera Rubin Observatory is poised to begin observations next year. It could detect 130 Near Earth Objects each night. Image Credit: Rubin Observatory/NSF/AURA/B. Quint

The Vera Rubin Observatory (VRO) is different than other large telescopes, and that difference makes it more vulnerable to space junk. Other telescopes, like the Giant Magellan Telescope and the European Extremely Large Telescope, focus on distant objects. But the VRO’s job is to repeatedly image the entire available night sky for ten years, spotting transients and variable objects.

All that space junk can look like transient events, impairing the VRO’s vision and polluting its results.

Continue reading “Space Junk is Going to be a Problem for Vera Rubin”

Asteroid Ryugu Contained Bonus Comet Particles

Asteroid Ryugu, as imaged by the Hayabusa2 spacecraft. The red dot marks the sampling location. Image Credit: JAXA/Hayabusa2
Asteroid Ryugu, as imaged by the Hayabusa2 spacecraft. The red dot marks the sampling location. Image Credit: JAXA/Hayabusa2

On December 5th, 2020, Japan’s Hayabusa2 mission successfully returned samples it had collected from the Near-Earth Asteroid (NEA) 162173 Ryugu home. Since asteroids are basically leftover material from the formation of the Solar System, analysis of these samples will provide insight into what conditions were like back then. In particular, scientists are interested in determining how organic molecules were delivered throughout the Solar System shortly after its formation (ca. 4.6 billion years ago), possibly offering clues as to how (and where) life emerged.

The samples have already provided a wealth of information, including more than 20 amino acids, vitamin B3 (niacine), and interstellar dust. According to a recent study by a team of Earth scientists from Tohoku University, the Ryugu samples also showed evidence of micrometeoroid impacts that left patches of melted glass and minerals. According to their findings, these micrometeoroids likely came from other comets and contained carbonaceous materials similar to primitive organic matter typically found in ancient cometary dust.

Continue reading “Asteroid Ryugu Contained Bonus Comet Particles”

Giant Star Seen 150 Days Before it Exploded as a Supernova

Artist's impression of a supernova remnant. Credit: ESA/Hubble

Supernovae are relatively rare. It might not seem like it, but that’s because they’re so bright we can see them in other galaxies a great distance away. In fact, in 2022, astronomers spotted a supernova over 10 billion light-years away.

Any time astronomers spot a supernova, it’s an opportunity to learn more about these rare, cataclysmic explosions. It’s especially valuable if astronomers can get a good look at the progenitor star before it explodes.

Continue reading “Giant Star Seen 150 Days Before it Exploded as a Supernova”

Dark Matter Might Help Explain How Supermassive Black Holes Can Merge

A lopsided starburst galaxy known as NGC 1313. Credit: International Gemini Observatory

Although the exact nature of dark matter continues to elude astronomers, we have gained some understanding of its general physical properties. We know how it clusters around galaxies, how it makes up much of the matter in the Universe, and even how it can interact with itself. Now a new study looks at just how fast dark matter can move.

Continue reading “Dark Matter Might Help Explain How Supermassive Black Holes Can Merge”

The Extremely Large Telescope’s Dome is on the Move

A webcam image of the construction of the Extremely Large Telescope (ELT) located on Cerro Armazones in the Chilean Atacama Desert, on January 29, 2024. Credit: ESO.

Construction of the Extremely Large Telescope (ELT) reached a milestone, with the structure of the dome completed just enough where engineers were able to rotate the dome’s skeleton for the first time.

ESO released a timelapse video this week of the dome’s movement, sped up from the actual snail’s pace of 1 centimeter per second. When the telescope is completed – currently set for sometime in 2028 — the rotation of the dome will allow the telescope to track objects in the night sky over the Chilean Atacama desert. The final operating speed will be at pace of 5 kilometers per hour.

Take note of the size of the humans moving about on the video. They appear like tiny ants compared to the immense size of the aptly named ELT.

Continue reading “The Extremely Large Telescope’s Dome is on the Move”

Should We Send Humans to Mars?

Featured Image: True-color image of the Red Planet taken on October 10, 2014, by India’s Mars Orbiter mission from 76,000 kilometers (47,224 miles) away. (Credit: ISRO/ISSDC/Justin Cowart) (This file is licensed under the Creative Commons Attribution 2.0 Generic license.)

Universe Today has explored the potential for sending humans to Europa, Venus, Titan, and Pluto, all of which possess environmental conditions that are far too harsh for humans to survive. The insight gained from planetary scientists resulted in some informative discussions, and traveling to some of these far-off worlds might be possible, someday. In the final installment of this series, we will explore the potential for sending humans to a destination that has been the focus of scientific exploration and science folklore for more than 100 years: Mars aka the Red Planet.

Continue reading “Should We Send Humans to Mars?”

How Did Life Get Started on Earth? Atmospheric Haze Might Have Been the Key

Color-composite of Titan made from raw images acquired by Cassini on April 7, 2014. (NASA/JPL-Caltech/SSI/J. Major)

A recent study accepted to The Planetary Science Journal investigates how the organic hazes that existed on Earth between the planet’s initial formation and 500 million years afterwards, also known as Hadean geologic eon, could have contained the necessary building blocks for life, including nucleobases and amino acids. This study holds the potential to not only help scientists better understand the conditions on an early Earth, but also if these same conditions on Saturn’s largest moon, Titan, could produce the building blocks of life, as well.

Continue reading “How Did Life Get Started on Earth? Atmospheric Haze Might Have Been the Key”

Six Planets Found Orbiting an Extremely Young Star

Artist rendering of the TOI-1136 system and its young star flaring. Credit: Rae Holcomb/Paul Robertson/UCI

The field of exoplanet study continues to grow by leaps and bounds. As of the penning of this article, 5,572 extrasolar planets have been confirmed in 4,150 systems (with another 10,065 candidates awaiting confirmation. Well, buckle up because six more exoplanets have been confirmed around TOI-1136, a Sun-like star located roughly 276 light-years from Earth. This star is less than 700 million years old, making it relatively young compared to our own (4.6 billion years). This system will allow astronomers to observe how systems like our own have evolved with time.

Continue reading “Six Planets Found Orbiting an Extremely Young Star”