Need a little inspiration to go out and do some stargazing this weekend? Look no further than this gorgeous timelapse by Jack Fusco. There are awesome views of both sea and sky, the Milky Way, star trails, awesome cloud scenes and funky, directionally-challenged moving lights in the sky.
I’ve been working on a timelapse of the night sky over the New Jersey coastline,” Jack told us via email. “New Jersey definitely isn’t the best location for stargazing, but I think given the circumstances, many people will be surprised. I hope it inspires people to set some time aside to stargaze where they live even if they previously thought it wasn’t worth trying.”
Jack said he’s been working on this one for 10 months, and it’s definitely worth the hard work he’s put in.
Jack also gives a shout out to those affected by Hurricane Sandy last year. “A special thank you to all of those who have worked so hard to restore the homes of those lost during Sandy,” he writes on Vimeo. “Thank you to every volunteer that has spent time bringing the beauty back to our boardwalks and our beaches. The last year has been filled with heartbreak and devastation with much work still being done.”
Once again, we have gathered together the forces of space journalism to report on the big news stories of the week. And there were lots of big stories indeed, with the launch of NASA’s LADEE mission to the Moon, and the awesome fact that Voyager 1 has totally left the Solar System.
Host: Fraser Cain
Journalists: Amy Shira Teitel, Nicole Gugliucci, Matthew Francis, David Dickinson, Nancy Atkinson
We record the Weekly Space Hangout every Friday at 12 pm Pacific / 3 pm Eastern as a live Google+ Hangout on Air. You can watch the show from right here on Universe Today, or on our YouTube channel.
Yesterday, NASA announced that as of August 2012, Voyager 1 is in a new frontier to humanity: interstellar space. Our most distant spacecraft is now in a region where the plasma (really hot gas) environment comes more from between the stars than from the sun itself. (There’s still debate as to whether it’s in or out of the solar system, as this article explains.)
The plucky spacecraft is close to 12 billion miles (19 million kilometers) from home, and in its 36 years of voyaging has taught us a lot about the planets, their moons and other parts of space. Here are 10 of some of its most historic moments. Did we miss any? Let us know in the comments.
10. The launch: Aug. 20, 1977
Voyager 1 blasted off from Cape Canaveral on Sept. 5, 1977. Its twin, Voyager 2, departed Earth 16 days earlier. Each spacecraft carried various scientific instruments on board as well as a “Golden Record” that had sounds of Earth on it, as well as a diagram showing where Earth is in the universe.
9. Capturing the Earth and Moon together for the first time
About two weeks after launching, Voyager 1 turned back towards Earth and took three images, which were combined into this single view of the Earth and Moon together in space. This was the first time both bodies were pictured together, NASA said.
8. The ‘Pale Blue Dot’ image
On February 14, 1990, Voyager 1 was about 3.7 billion miles (6 billion kilometers) away from Earth. Scientists commanded the spacecraft to turn its face towards the solar system and snap some pictures of the planets. Among them was this famous image of Earth, which astronomer Carl Sagan called the Pale Blue Dot. “Look again at that dot. That’s here. That’s home. That’s us,” wrote Sagan in his 1997 book of the same name. In 2013, the spacecraft Cassini also took a picture of Earth, and NASA encouraged everyone to wave back.
7. Finding moons “shepherding” Saturn’s F ring
Voyager 1 spotted Prometheus and Pandora, two moons of Saturn that keep the F ring separate from the rest of the debris, as well as Atlas, which “shepherds” the A ring. More recently, astronomers have found even more interesting things in Saturn’s rings — such as rain.
6. Spotting what appeared to be a LOT of water ice on Saturn’s moons
After many years of seeing Saturn’s moons as mere points of light, Voyager 1 buzzed several of them in its quick flyby through the system: Dione, Enceladus, Mimas, Rhea, Tethys and Titan among them. Many of these moons appeared to be icy, which was a surprising find since astronomers previously thought water was pretty rare in the Solar System. We know better now.
5. Imaging Titan’s orange haze
Voyager 1 pictures such as this tortured astronomers for decades — what lies beneath this mysterious haze surrounding Titan, Saturn’s moon? That mystery, in fact, inspired the European Space Agency to send a lander to the moon, called Huygens, which successfully reached the surface in 2005.
4. Finding active volcanoes on Io
Voyager 1 helped show us that the Solar System is full of very interesting moons. At Io — a moon of Jupiter — it turns out the moon flexes during its 42-hour orbit of massive Jupiter, which powers a lot of volcanic activity.
3. Voyager 1 becomes the most distant human object
On Feb. 17, 1998, Voyager 1’s distance surpassed that of another long-flying probe, Pioneer 10. This made Voyager 1 the farthest-flung human object in space.
2. Riding the “magnetic highway”
In December, NASA said Voyager 1 had reached an area (as of July 28, 2012) where high-energy magnetic particles were starting to bleed through the bubble of lower-energy particles from our sun. “Voyager’s discovered a new region of the heliosphere that we had not realized was there. It’s a magnetic highway where the magnetic field of the Sun is connected to the outside. So it’s like a highway, letting particles in and out,” said project scientist Ed Stone at the time. After that point, as more measurements were analyzed by different teams, there was a lot of debate as to whether Voyager had reached interstellar space.
1. Reaching interstellar space
With Voyager 1 now known to be in interstellar space, we’re lucky enough to have a few years left to communicate with it before it runs out of power. All of the instruments will be turned off by 2025, and then engineering data will be available for about 10 years beyond that. The silent emissary from humanity will then come within 1.7 light years of an obscure star in the constellation Ursa Minor (the Little Bear) called AC+79 3888 in the year 40,272 AD and then orbit the center of the Milky Way for millions of years.
Our favorite astro-poet, Stuart Atkinson, has written a wonderful ode to Voyager 1 in commemoration of the spacecraft reaching interstellar space. Stu has a knack for turning science into poetry!
The First Starship
I needed no nacelles to push me onwards;
No dilithium crystals crackled in my heart.
Yet I have left Sol so far behind me she is
Just a star now, a golden spark in a salt grain sea,
And I can feel her gentle breath on my cheek
No more.
In my ears now the whalesong of the universe
Drowns out the sounds of distant, troubled Earth.
Oh, the blissful peace!
Out here all I can hear
Is the fabled music of the spheres.
Each trembling tone rolling under me,
Every mellow note washing over me
Was sung somewhere Out There.
Melodies ripped from ravenous black holes’ throats,
Screamed from the broken hearts of dying stars
Swirl around me, multi-wavelength whispers
In the dark and endless night.
My head is full of memories…
Skimming Titan’s marmalade-haze atmosphere;
My first sight of Jove’s great bloodshot eye,
Staring back at me, into me, as I flew by;
Earth as Pale Blue Dot, a Sagan sequin
Dancing in a sunbeam…
Ahead now – the solar system’s Barrier Reef.
Terra will whip around Sol 300 times before
I reach the Oort’s icy inner harbour wall
And tens of thousands of times more before
I finally leave port, sailing on in serene silence
For forty millennia more before I venture anywhere
Near another star…
And in ten million years, when Earth’s proud citadels
And cities have crumbled and whatever evolves
In their dust to take Mankind’s place
Stares out into space with curious, alien eyes,
I will still be flying through the stars.
Your legacy. Proof that once you dared to dream
Noble, Camelot dreams
And reached out, through me, to explore eternity.
(c) Stuart Atkinson Sept 13th 2013
Written to commemorate and celebrate the Sept 12, 2013 announcement that Voyager 1 had entered interstellar space.
In a classic episode of this video series, I did the calculations for how fast the Earth is spinning.
We know the Earth is rotating, but why? Why is it spinning?
Why is everything in the Solar System spinning? And why is it mostly all spinning in the same direction?
It can’t be a coincidence. Look down on the Earth from above, and you’d see that it’s turning in a counter-clockwise direction. Same with the Sun, Mars and most of the planets.
4.54 billion years ago, our Solar System formed within a cloud of hydrogen not unlike the Orion Nebula, or the Eagle Nebula, with its awesome pillars of creation.
Then, it took some kick, like from the shockwave from a nearby supernova, and this set a region of the cold gas falling inward through its mutual gravity. As it collapsed, the cloud began to spin.
But why?
It’s the conservation of angular momentum.
Think about the individual atoms in the cloud of hydrogen. Each particle has its own momentum as it drifts through the void. As these atoms glom onto one another with gravity, they need to average out their momentum. It might be possible to average out perfectly to zero, but it’s really really unlikely.
Which means, there will be some left over. Like a figure skater pulling in her arms to spin more rapidly, the collapsing proto-Solar System with its averaged out particle momentum began to spin faster and faster.
This is the conservation of angular momentum at work.
As the Solar System spun more rapidly, it flattened out into a disk with a bulge in the middle. We see this same structure throughout the Universe: the shape of galaxies, around rapidly spinning black holes, and we even see it in pizza restaurants.
The Sun formed from the bulge at the center of this disk, and the planets formed further out. They inherited their rotation from the overall movement of the Solar System itself.
Over the course of a few hundred million years, all of the material in the Solar System gathered together into planets, asteroids, moons and comets. Then the powerful radiation and solar winds from the young Sun cleared out everything that was left over.
Without any unbalanced forces acting on them, the inertia of the Sun and the planets have kept them spinning for billions of years.
And they’ll continue to do so until they collide with some object, billions or even trillions of years in the future.
So are you still wondering, why does the Earth spin?
The Earth spins because it formed in the accretion disk of a cloud of hydrogen that collapsed down from mutual gravity and needed to conserve its angular momentum. It continues to spin because of inertia.
The reason it’s all the same direction is because they all formed together in the same Solar Nebula, billions of years ago.
On the Voyager spacecraft are the famous Voyager Golden Records, which send messages from planet Earth to … whatever or whoever may find it in the future. In celebration of Voyager 1 making it into interstellar space (read all the details here) a few friends put together a video to congratulate the spacecraft and the team. Neil deGrasse Tyson, Wil Wheaton, Carl Sagan’s son and others shared their messages to the Voyager 1 spacecraft.
Feel free to leave your message to Voyager in the (new and improved) comment section.
Hi everyone, I’m just performing a little experiment with Universe Today. We were previously using Disqus for comments on Universe Today, but I got a lot of concerns from readers.
So, I’m trying out a new system called Comments Evolved. This integrates comments from Google+, Facebook, Disqus and even WordPress if we want. I’m just enabling the Google+ version, because… everyone’s got a Google account.
If you want, I can enable the Facebook, Disqus and WordPress versions as well once I know this is working.
So why am I doing this? Why am I continuously making your life difficult with all this technology switcheroo?
Because managing comments on a public blog is like working at a SPAM factory. Behind the scenes here, we spend a MASSIVE amount of time killing SPAM, banning spambots, etc, etc. Not only do Nancy and I have to do it, but we actually have a few readers of Universe Today who we’ve deputized to help kill SPAM. And lots gets through.
In fact… we had turned off comments for posts older than 14 days because it was completely impossible to stay on top of the SPAM for all 15,000 articles within Universe Today.
So, in theory, by switching to this system… all the comments will have to go through Google’s SPAM filters first. You as users can identify comments as SPAM, and get them removed from the site, and teach Google how to do this better.
If it doesn’t work, we’ll just hack it out and go back to something else.
Feel free to drop me an email at [email protected] if you notice any bugs or have any further suggestions.
In a cosmically historic announcement, NASA says the most distant human made object — the Voyager 1 spacecraft — is in interstellar space, the space between the stars. It actually made the transition about a year ago.
“We made it!” said a smiling Dr. Ed Stone, Voyager’s Project Scientist for over 40 years, speaking at a briefing today. “And we did it while we still had enough power to send back data from this new region of space.”
While there is a bit of an argument on the semantics of whether Voyager 1 is still inside or outside of our Solar System (it is not farther out than the Oort Cloud — it will take 300 more years reach the Oort cloud and the spacecraft is closer to our Sun than any other star) the plasma environment Voyager 1 now travels through has definitely changed from what comes from our Sun to the plasma that is present in the space between stars.
But Stone now says the evidence in clear: Voyager 1 has made the transition.
“This conclusion is possible from the space craft’s plasma wave instrument,” Stone said. “The 36-year old probe is now sailing through uncharted waters of a new cosmic sea and it has brought us along for the journey.”
Voyager 1’s 36-year, 13 billion mile journey began in 1977.
Scientists thought that when the spacecraft had crossed over into interstellar space, the magnetic field direction would change. However, it turned out that didn’t happen, and scientists determined they needed to look at the properties of the plasma instead.
The Sun’s heliosphere is filled with ionized plasma from the Sun. Outside that bubble, the plasma comes from the explosions of other stars millions of years ago. The main tell-tail difference is the interstellar plasma is denser.
Unfortunately, the real instrument that was designed to make the measurements on the plasma quit working in the 1980’s, so scientists needed a different way to measure the spacecraft’s plasma environment to make a definitive determination of its location.
Instead they used the plasma wave instrument, located on the 10-meter long antennas on Voyager 1 and an unexpected “gift” from the Sun, a massive Coronal Mass Ejection.
The antennas have radio receivers at the ends – “like the rabbit ears on old television sets,” said Don Gurnett, who led the plasma wave science team at the University of Iowa. The CME erupted from the Sun in March 2012, and eventually arrived at Voyager 1’s location 13 months later, in April 2013. Because of the CME, the plasma around the spacecraft began to vibrate like a violin string.
The pitch of the oscillations helped scientists determine the density of the plasma. Stone said the particular oscillations meant the spacecraft was bathed in plasma more than 40 times denser than what they had encountered in the outer layer of the heliosphere.
“Now that we have new, key data, we believe this is mankind’s historic leap into interstellar space,” said Stone, “The Voyager team needed time to analyze those observations and make sense of them. But we can now answer the question we’ve all been asking — ‘Are we there yet?’ Yes, we are.”
The plasma wave science team reviewed its data and found an earlier, fainter set of oscillations in October and November 2012 from other CMEs. Through extrapolation of measured plasma densities from both events, the team determined Voyager 1 first entered interstellar space in August 2012.
“We literally jumped out of our seats when we saw these oscillations in our data — they showed us the spacecraft was in an entirely new region, comparable to what was expected in interstellar space, and totally different than in the solar bubble,” Gurnett said. “Clearly we had passed through the heliopause, which is the long-hypothesized boundary between the solar plasma and the interstellar plasma.”
At that time, Stone said, “We are certainly in a new region at the edge of the solar system where things are changing rapidly. But we are not yet able to say that Voyager 1 has entered interstellar space,” adding that the data are changing in ways that the team didn’t expect, “but Voyager has always surprised us with new discoveries.”
Now, after further review, the Voyager team generally accepts the August 2012 date as the date of interstellar arrival. The charged particle and plasma changes were what would have been expected during a crossing of the heliopause. This reinforces that definitive science results don’t always come fast.
“The team’s hard work to build durable spacecraft and carefully manage the Voyager spacecraft’s limited resources paid off in another first for NASA and humanity,” said Suzanne Dodd, Voyager project manager, based at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. “We expect the fields and particles science instruments on Voyager will continue to send back data through at least 2020. We can’t wait to see what the Voyager instruments show us next about deep space.”
There has been some back and forth about whether Voyager 1 was in or out of the Solar System. As we said, it was first questioned in August of 2012, with more speculation in December 2012, then in March of 2013 a paper by William Webber and F.B. McDonald claimed Voyager 1 had exited the Solar System the previous December, but Stone insisted the data wasn’t positive yet. Then about a month ago a paper came out by Marc Swisdak from the University of Maryland saying Voyager 1 was out of the solar system, but at that point Ed Stone and the Voyager team put out a statement saying they were still making that determination.
Today, Gurnett revealed that the timing of all scientists being in “official” agreement was off due to the timing of the review process for scientific papers. “Our paper was submitted a month before theirs, they just got through the review cycle before ours,” he said. “But theirs was basically a theory paper.”
Voyager 1 and its twin, Voyager 2, were launched 16 days apart in 1977. A fortuitous planetary alignment that only happens every 176 years enabled the two spacecraft to join together to reach all the outer planets in a 12 year time period. Both spacecraft flew by Jupiter and Saturn. Voyager 2 also flew by Uranus and Neptune. Voyager 2, launched before Voyager 1, is the longest continuously operated spacecraft. It is about 9.5 billion miles (15 billion kilometers) away from our Sun.
Voyager mission controllers still talk to or receive data from Voyager 1 and Voyager 2 every day, though the emitted signals are currently very dim, at about 23 watts — the power of a refrigerator light bulb. By the time the signals get to Earth, they are a fraction of a billion-billionth of a watt. Data from Voyager 1’s instruments are transmitted to Earth typically at 160 bits per second, and captured by 34- and 70-meter NASA Deep Space Network stations. Traveling at the speed of light, a signal from Voyager 1 takes about 17 hours to travel to Earth. After the data are transmitted to JPL and processed by the science teams, Voyager data are made publicly available.
“Voyager has boldly gone where no probe has gone before, marking one of the most significant technological achievements in the annals of the history of science, and adding a new chapter in human scientific dreams and endeavors,” said John Grunsfeld, NASA’s associate administrator for science in Washington. “Perhaps some future deep space explorers will catch up with Voyager, our first interstellar envoy, and reflect on how this intrepid spacecraft helped enable their journey.”
Scientists do not know when Voyager 1 will reach the undisturbed part of interstellar space where there is no influence from our Sun. They also are not certain when Voyager 2 is expected to cross into interstellar space, but they believe it is not very far behind.
“In a sense this is only really the beginning. We’re now going into a completely alien environment and what Voyager is going to discover truly unknown,” said Gary Zank, from the Department of Space Sciences at the University of Alabama, Huntsville, speaking at today’s press conference.
While Voyager 1 will keep going, we will not always be able to communicate with it, as we do now. In 2025 all instruments will be turned off, and the science team will be able to operate the spacecraft for about 10 years after that to just get engineering data. Voyager 1 is aiming toward the constellation Ophiuchus. In the year 40,272 AD, Voyager 1 will come within 1.7 light years of an obscure star in the constellation Ursa Minor (the Little Bear or Little Dipper) called AC+79 3888. It will swing around the star and orbit about the center of the Milky Way, likely for millions of years.
We’ve featured the unique 3-D work of J-P Metsävainio previously, but it’s time to check in and see what he’s been working on lately. Metsävainio creates incredible 3-D animations from his own astronomical images, which he calls “3-D experiments” that are a mixture of science and an artistic impression. “I collect distance and other information before I do my 3-D conversion,” he told Universe Today via email earlier this year. “Usually there are known stars, coursing the ionization, so I can place them at right relative distance. If I know a distance to the nebula, I can fine tune distances of the stars so, that right amount of stars are front and behind of the object.”
Above is the animation of the Bubble Nebula, below is his extremely detailed image:
His observations and images are simply stunning, but he says his 3-D animations are “a personal vision about shapes and volumes, based on some scientific data and an artistic impression.”