A “Mini Jet” Juts from Saturn’s F Ring

A bright "mini-jet" spotted in Saturn's F ring

We all know that Saturn’s moon Enceladus has a whole arsenal of geysers jetting a constant spray of ice out into orbit (and if you didn’t know, learn about it here) but Enceladus isn’t the only place in the Saturnian system where jets can be found — there are some miniature versions hiding out in the thin F ring as well!

Watch the 50-mile-wide Prometheus dip into the F ring (CLICK TO PLAY) NASA/JPL/SSI. Animation by J. Major.
Watch the 50-mile-wide Prometheus dip into the F ring (CLICK TO PLAY) NASA/JPL/SSI. Animation by J. Major.

The image above, captured by the Cassini spacecraft on June 20, 2013, shows a segment of the thin, ropy F ring that encircles Saturn just beyond the A ring (visible at upper right). The bright barb near the center is what scientists call a mini jet, thought to be caused by small objects getting dragged through the ring material as a result of repeated passings by the shepherd moon Prometheus.

Coincidentally, it’s gravitational perturbations by Prometheus that help form the objects — half-mile-wide snowball-like clusters of icy ring particles — in the first place.

Unlike the dramatic jets on Enceladus, which are powered by tidal stresses that flex the moon’s crust, these mini jets are much more subtle and occur at the casual rate of 4 mph (2 meters/second)… about the speed of a brisk walk.

The reflective jets themselves can be anywhere from 25 to 112 miles (40 to 180 kilometers) long.

See more images of mini jets — also called “classic trails” — below:

Various images of mini jets captured by Cassini from 2005 to 2008.
Various images of mini jets captured by Cassini from 2005 to 2008.

Over 500 of these features have been imaged by Cassini since 2005. Read more about mini jets here.

(And don’t worry, Enceladus… these little jets are interesting but they have nothing on you!)

Source: Cassini Imaging Central Laboratory for OPerationS (CICLOPS)

Image credits: NASA/JPL-Caltech/SSI/QMUL. 

How to See the Historic Antares/Cygnus Launch to Space Station on Sept. 18

Top of the Rock - New York City. Antares rocket and Cygnus cargo spacecraft approximate launch trajectory view as should be seen from atop Rockefeller Center, NYC, on Sept. 18, 2013 at 10:50 a.m. EDT - weather permitting - after blastoff from NASA Wallops, VA. Credit: Orbital Sciences See more Antares launch trajectory viewing graphics below

Top of the Rock – New York City
Antares rocket and Cygnus cargo spacecraft approximate launch trajectory view as should be seen from atop Rockefeller Center, NYC, on Sept. 18, 2013 at 10:50 a.m. EDT – weather permitting – after blastoff from NASA Wallops, VA. Credit: Orbital Sciences
See more Antares launch trajectory viewing graphics below[/caption]

WALLOPS ISLAND, VA – “All Systems Are GO” for the Sept. 18 launch of Orbital Sciences Antares commercial rocket carrying the first ever fully functional Cygnus commercial resupply vehicle to orbit on the history making first flight blasting off from NASA’s Wallops Island Facility– along the eastern shore of Virginia and bound for the International Space Station (ISS).

Here’s our guide on “How to See the Antares/Cygnus Launch” – complete with viewing maps and trajectory graphics from a variety of prime viewing locations courtesy of Orbital Sciences, the private company that developed both the Antares rocket and Cygnus spaceship aimed at keeping the ISS fully operational for science research.

And although the launch is slated for late morning it should still be visible to millions of spectators along a lengthy swath of the US East Coast from North Carolina to Connecticut – weather permitting – who may have never before witnessed such a mighty rocket launch.

The daylight liftoff of the powerful two stage Antares rocket is scheduled for Wednesday, Sept 18 at 10:50 a.m. EDT from Launch Pad 0A at the Mid-Atlantic Regional Spaceport at NASA Wallops Island, Virginia. The launch window extends 15 minutes to 11:05 a.m.

Up top is the view as anticipated from “The Top of the Rock” or Rockefeller Center in New York City. See below the extraordinary image of LADEE’s launch from “Top of the Rock” by Ben Cooper to compare the day and night time sighting delights.

In anticipation of liftoff, the Antares rocket was rolled out to Pad 0A on Friday morning Sept. 13 and I was on hand for the entire event – see my rollout photos here and upcoming.

Seaside panoramic view of Antares rocket and Cygnus spacecraft after rollout to Launch Pad 0A at NASA Wallops at the Virginia Eastern Shore  on Sept. 13, 2013. Blastoff for the ISS is slated for Sept. 18, 2013 at 10:50 a.m. EDT Credit: Ken Kremer (kenkremer.com)
Seaside panoramic view of Antares rocket and Cygnus spacecraft after rollout to Launch Pad 0A at NASA Wallops at the Virginia Eastern Shore on Sept. 13, 2013. Blastoff for the ISS is slated for Sept. 18, 2013 at 10:50 a.m. EDT. LADEE launch pad 0B stands adjacent to right of Antares.
Credit: Ken Kremer (kenkremer.com)

Here’s a hi res version of the viewing map courtesy of NASA Wallops Flight Facility:

Antares/Cygnus Launch - Hi Res Visibility map The Antares/Cygnus daylight rocket launch on Sept. 18, 2013 at 10:50 a.m. EDT from NASA Wallops, VA.  will potentially be visible to millions of spectators along the Eastern US coast from Connecticut to North Carolina -weather permitting. This high resolution map shows the regions of visibility over time in the seconds after the rocket launch on a demonstration cargo resupply mission to the International Space Station.  Credit: NASA Wallops Flight Facility
Antares/Cygnus Launch – Hi Res Visibility map
The Antares/Cygnus daylight rocket launch on Sept. 18, 2013 at 10:50 a.m. EDT from NASA Wallops, VA. will potentially be visible to millions of spectators along the Eastern US coast from Connecticut to North Carolina -weather permitting. This high resolution map shows the regions of visibility over time in the seconds after the rocket launch on a demonstration cargo resupply mission to the International Space Station. Credit: NASA Wallops Flight Facility

The Antares launch follows closely on the heels of the spectacularly bright Sept. 6 nighttime Moon shot blastoff of the Minotaur V rocket that successfully injected NASA’s LADEE lunar orbiter into its translunar trajectory.

And just as was the case with the Minotaur V and LADEE, you don’t have to be watching locally to join in and experience all the fun and excitement. As with any NASA launch, you can also follow along with up to the minute play by play by watching the NASA TV webcast online or on smartphones, iPods or laptops.

Atlantic City
Atlantic City

It’s hard to say exactly how long and how bright the rockets flames and exhaust trail will be visible since it depends on the constantly changing lighting, prevailing clouds and overall weather conditions.

But one thing is for sure. If you don’t go outside and watch you’re giving up a great opportunity.

And keep in mind that Antares will be moving significantly slower than the Minotaur V.

Herein are a series of graphics showing the Antares trajectory and what you should see during firings of both stages from the perspective of standing on the ground or skyscrapers at a variety of popular destinations including Annapolis, the US Capitol, Lincoln Memorial, National Air and Space Museum, Atlantic City, NJ, New York City and more.

Capitol East-Front Steps
Capitol East-Front Steps
Goddard Space Flight Center - GSFC
Goddard Space Flight Center – GSFC
Antares rocket and Cygnus spacecraft after rollout to Launch Pad 0A at NASA Wallops Flight Facility Facility, VA.,on Sept. 13, 2013. Blastoff is slated for Sept. 18, 2013 at 10:50 a.m. EDT.  LADEE launch pad 0B stands adjacent to right of Antares.  Credit: Ken Kremer (kenkremer.com)
Antares rocket and Cygnus spacecraft after rollout to Launch Pad 0A at NASA Wallops Flight Facility Facility, VA.,on Sept. 13, 2013. Blastoff is slated for Sept. 18, 2013 at 10:50 a.m. EDT. LADEE launch pad 0B stands adjacent to right of Antares. Credit: Ken Kremer (kenkremer.com)

The goal of the mission is to demonstrate the safe and successful launch, rendezvous and docking of the privately developed Cygnus cargo carrier with the International Space Station (ISS) and delivery of 1300 pounds of essential supplies, food, clothing, spare parts and science gear to the six person resident human crews – currently Expedition 37.

Although it’s the 2nd launch of Antares following the maiden flight in April, this is the first flight of the Cygnus commercial delivery system. The demonstration and testing will be the same as what SpaceX accomplished in 2012 with their competing Falcon 9/Dragon architecture.

The mission is designated Orb-D1 and is funded with seed money by NASA’s COTS program to replace the cargo delivery duties of NASA’s now retired Space Shuttle orbiters.

Lincoln Memorial
Lincoln Memorial
Richmond
Richmond

For those who are traveling to witness the launch locally in the Chincoteague, Va., area, there will be two public viewing sites said Jeremy Eggers, NASA Wallops Public Affairs Officer in an interview with Universe Today.

“There will be are two local sites open to the public,” Eggers told me. “Folks can watch at either the NASA Wallops Flight facility Visitors Center (http://sites.wff.nasa.gov/wvc) or the beach at Assateague National Seashore (http://www.nps.gov/asis/index.htm).”

“There will be loudspeakers to follow the progress of the countdown, but no TV screens as done with the LADEE launch.”

National Air & Space Udvar-Hazy Museum
National Air & Space Udvar-Hazy Museum
Annapolis
Annapolis

So far the weather outlook is promising with a 75% chance of “GO” with favorable conditions at launch time.

NASA Television coverage of the Antares launch will begin at 10:15 a.m. on Sept 18 – (www.nasa.gov/ntv).

Be sure to watch for my continuing Antares and LADEE mission reports from on site at NASA’s Wallops Launch Pads in sunny Virginia – reporting for Universe Today.

Ken Kremer

…………….

Learn more about Cygnus, Antares, LADEE, Curiosity, Mars rovers, MAVEN, Orion and more at Ken’s upcoming presentations

Sep 17/18: LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA

Oct 3: “Curiosity, MAVEN and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM

Oct 8: LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM

This magnificent view of NASA’s LADEE lunar orbiter launched on Friday night Sept 6, on the maiden flight of the Minotaur V rocket from Virginia was captured by space photographer Ben Cooper perched atop Rockefeller Center in New York City. Credit: Ben Cooper/Launchphotography.com
This magnificent view of NASA’s LADEE lunar orbiter launched on Friday night Sept 6, on the maiden flight of the Minotaur V rocket from Virginia was captured by space photographer Ben Cooper perched atop Rockefeller Center in New York City. Compare this actual launch view to the graphic calculated for Antares (above) as seen from the exact same location atop Rockefeller Center. Credit: Ben Cooper/Launchphotography.com

Astrophoto: Full Solar Halo and a Dragonfly

A full solar halo -- plus a dragonfly -- seen above John Chumack's observatory dome on September 15, 2013. Credit and copyright: John Chumack/Galactic Images.

A beautiful atmospheric effect wasn’t the only thing hovering above John Chumack’s observatory dome this weekend. A dragonfly flits over John’s observatory in Dayton, Ohio, joining a spectacular solar halo, a ring around the Sun created by ice crystals in Earth’s atmosphere. John used a simple point & shoot Canon XS 160 camera to capture the scene.

See more of John’s work at his website, Galactic Images, or at his Flickr stream.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Best Custom Road Signs Ever at Wallops Island Launch Pad

Signs posted outside launch Pad-OA at the NASA Wallops Flight Facility. Credit: NASA/Bill Ingalls.

These custom road signs at NASA’s Wallops Flight Facility are, well, out of this world with awesomeness. They refer to the recent launch of the LADEE spacecraft to the Moon and the upcoming launch this week of the Orbital Sciences Corporation Antares rocket, with its Cygnus cargo spacecraft heading to the International Space Station for a demonstration cargo resupply mission. Launch is currently scheduled for Wednesday, September 18 during a window of 10:50-11:05 am EDT (14:50-15:05 UTC).

Endings and Beginnings – Magnetic Jets Shape Stellar Transformation

A jet of energetic particles (shown in magenta) is shaping the environment around the star IRAS 15445-5449. Infrared light from dusty material which the jet has already shaped into a symmetric form is shown in green. The star itself is hidden by dust in its environment. Credit: E. Lagadec/ESO/A. Pérez Sánchez)

The incredible visual appearance of planetary nebulae are some of the most studied and observed of deep space objects. However, these enigmatic clouds of gas have defied explanation as to their shapes and astronomers are seeking answers. Thanks to a new discovery made by an international team of scientists from Sweden, Germany and Austria, we have now observed a jet of high-energy particles in the process of being ejected from an expiring star.

When a sun-like star reaches the end of its life, it begins to shed itself of its outer layers. These layers blossom into space at speeds of a few kilometers per second, forming a variety of shapes and sizes – yet we know little about what causes their ultimate appearance. Now astronomers are taking a close look at a rather normal star that has reached the end of its life and is beginning to form a planetary nebula. Cataloged as IRAS 15445-5449, this stellar study resides 230,000 light years away in the constellation of Triangulum Australe (the Southern Triangle). Through the use of the CSIRO Australia Telescope Compact Array, a compliment of six 22-meter radio telescopes in New South Wales, Australia, researchers have found what may be the answer to this mystery… high-speed magnetic jets.

“In our data we found the clear signature of a narrow and extremely energetic jet of a type which has never been seen before in an old, Sun-like star,” says Andrés Pérez Sánchez, graduate student in astronomy at Bonn University, who led the study.

How does a radio telescope aid researchers in an optical study? In this case the radio waves emitted by the dying star are compatible with the trademark high-energy particles they are expected to produce. These “spouts” of particles travel at nearly the speed of light and coincident jets are also known to emanate from other astronomical objects that range from newborn stars to supermassive black holes.

“What we’re seeing is a powerful jet of particles spiraling through a strong magnetic field,” says Wouter Vlemmings, astronomer at Onsala Space Observatory, Chalmers. “Its brightness indicates that it’s in the process of creating a symmetric nebula around the star.”

Will these high-energy particles contained within the jet eventually craft the planetary nebula into an ethereal beauty? According to the astronomers, the current state of IRAS 15445-5449 is probably a short-lived phenomenon and nothing more than an intense and dramatic phase in its life… One we’re lucky to have observed.

“The radio signal from the jet varies in a way that means that it may only last a few decades. Over the course of just a few hundred years the jet can determine how the nebula will look when it finally gets lit up by the star,” says team member Jessica Chapman, astronomer at CSIRO in Sydney, Australia.

Will our Sun also follow suit? Right now the answer is unclear. There may be more to this radio picture than meets the ear. However, rest assured that this new information is being heard and might well become the target of additional radio studies. Considering the life of a planetary nebula is generally expected to last few tens of thousands of years, this is a unique opportunity for astronomers to observe what might be a transient occurrence.

“The star may have an unseen companion – another star or large planet — that helps create the jet. With the help of other front-line radio telescopes, like ALMA, and future facilities like the Square Kilometre Array (SKA), we’ll be able to find out just which stars create jets like this one, and how they do it,” says Andrés Pérez Sánchez.

Original Story Source: Royal Astronomical Society News Release.

The September Equinox: ‘Tis the Season to Spy the Zodiacal Light

The zodiacal light in the Nevada dawn. The plane of the ecliptic can be traced by Jupiter in Gemini & Mars in the Beehive cluster just below center. (Credit: Cory Schmitz, used with permission).

This week leading up to the September equinox offers you a fine chance to catch an elusive phenomenon in the pre-dawn sky.

We’re talking about the zodiacal light, the ghostly pyramid-shaped luminescence that heralds the approach of dawn. Zodiacal light can also be seen in the post-dusk sky, extending from the western horizon along the ecliptic.

September is a great time for northern hemisphere observers to try and sight this glow in the early dawn. This is because the ecliptic is currently at a high and favorable angle, pitching the zodiacal band out of the atmospheric murk low to the horizon. For southern hemisphere observers, September provides the best time to hunt for the zodiacal light after dusk. In March, the situation is reversed, with dusk being the best for northern hemisphere observers and dawn providing the best opportunity to catch this elusive phenomenon for southern observers.

The clash of the zodiacal light and the plane of our galaxy. (Credit: Cory Schmitz, used with permission).
The clash of the zodiacal light and the plane of our galaxy. (Credit: Cory Schmitz, used with permission).

Cory Schmitz’s recent outstanding photos taken from the Nevada desert brought to mind just how ephemeral a glimpse of the zodiacal light can be. The glow was a frequent sight for us from dark sky sites just outside of Tucson, Arizona—but a rarity now that we reside on the light-polluted east coast of the U.S.

In order to see the zodiacal light, you’ll need to start watching before astronomical twilight—the start of which is defined as when the rising Sun reaches 18 degrees below the local horizon—and observe from as dark a site as possible under a moonless sky.

The Bortle dark sky scale lists the zodiacal light as glimpse-able under Class 4 suburban-to-rural transition skies. Under a Class 3 rural sky, the zodiacal light may extend up to 60 degrees above the horizon, and under truly dark—and these days, almost mythical—Class 1 and 2 skies, the true nature of the zodiacal band extending across the ecliptic can become apparent.  The appearance and extent of the zodiacal light makes a great gauge of the sky conditions at that favorite secret dark sky site.

The source of the zodiacal light is tiny dust particles about 10 to 300 micrometres in size scattered across the plane of the solar system. The source of the material has long been debated, with the usual suspects cited as micrometeoroid collisions and cometary dust. A 2010 paper by Peter Jenniskens and David Nesvorny in the Astrophysical Journal cites the fragmentation of Jupiter-class comets. Their model satisfactorily explains the source of about 85% of the material. Dust in the zodiacal cloud must be periodically replenished, as the material is slowly spiraling inward via what is known as the Poynting-Robertson effect. None other than Brian May of the rock group Queen wrote his PhD thesis on Radial Velocities in the Zodiacal Dust Cloud.

But even if you can’t see the zodiacal light, you still just might be able to catch it. Photographing the zodiacal light is similar to catching the band of the Milky Way. In fact, you can see the two crossing paths in Cory’s images, as the bright winter lanes of the Orion Spur are visible piercing the constellation of the same name. Cory used a 14mm lens at f/3.2 for the darker image with a 20 second exposure at ISO 6400 and a 24mm lens at f/2.8 with a 15 second exposure at ISO 3200 for the brighter shot.

The orientation of the ecliptic & the zodiacal band as seen from latitude 30 deg north in September, about 1 hour before sunrise. (Created by the author in Stellarium).
The orientation of the ecliptic & the zodiacal band as seen from latitude 30 deg north in September, about 1 hour before sunrise. (Created by the author in Stellarium).

Under a truly dark site, the zodiacal light can compete with the Milky Way in brightness. The early Arab astronomers referred to it as the false dawn. In recent times, we’ve heard tales of urbanites mistaking the Milky Way for the glow of a fire on the horizon during blackouts, and we wouldn’t be surprised if the zodiacal light could evoke the same. We’ve often heard our friends who’ve deployed to Afghanistan remark how truly dark the skies are there, as military bases must often operate with night vision goggles in total darkness to avoid drawing sniper fire.

Another even tougher but related phenomenon to spot is known as the gegenschein. This counter glow sits at the anti-sunward point where said particles are approaching 100% illumination. This time of year, this point lies off in the constellation Pisces, well away from the star-cluttered galactic plane. OK, we’ve never seen it, either. A quick search of the web reveals more blurry pics of guys in ape suits purporting to be Bigfoot than good pictures of the gegenschein. Spotting this elusive glow is the hallmark of truly dark skies. The anti-sunward point and the gegenschein rides highest near local midnight.

And speaking of which, the September equinox occurs this weekend on the 22nd at 4:44 PM EDT/20:44 Universal Time. This marks the beginning of Fall for the northern hemisphere and the start of summer for the southern.

The Full Harvest Moon also occurs later this week, being the closest Full Moon to the equinox occurring on September 19th at 7:13AM EDT/11:13 UT. Said Moon will rise only ~30 minutes apart on successive evenings for mid-northern latitude observers, owing to the shallow angle of the ecliptic. Unfortunately, the Moon will then move into the morning sky, drowning out those attempts to spy the zodiacal light until late September.

Be sure to get out there on these coming mornings and check out the zodiacal light, and send in those pics in to Universe Today!

Humanoid Shape Spotted on Mercury

This elevated rise on Mercury resembles a vaguely humanoid shape

You’ve all heard of the “face on Mars” and the “man in the Moon” — well I guess this would be the “man on Mercury!” And I feel like I’ve seen him somewhere before…

"Oh, they've encased him in carbonite. He should be quite well protected."
“Oh, they’ve encased him in carbonite. He should be quite well protected.”

In yet another instance of the phenomenon known as pareidolia, it’s hard not to see the vaguely human shape in this image of Mercury’s surface, acquired by the MESSENGER spacecraft in July 2011. But what looks like a person with upraised arms (resembling, the team suggests, a certain carbonite-encased space smuggler) is really an ancient block of surface crust that juts from the floor of Mercury’s vast Caloris basin — likely the remnants of harder material predating the basin-forming impact 3.9 billion years ago. The low angle of sunlight from the west helps to highlight the surface shapes.

The image above shows an area 96 km (59.7 mi.) across.

If Jabba really wanted to keep his favorite wall decoration safe, perhaps he should have put it on Mercury…

Read more on the MESSENGER site here.

Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Ice Volcanoes Likely Alter Titan’s Surface Brightness: Study

Titan peeks from behind two of Saturn's rings. Another small moon Epimetheus, appears just above the rings. Credit: NASA/JPL/Space Science Institute

Icy volcanoes are likely responsible for changes in brightness on the surface of Titan, the largest moon of Saturn, according to a new study.

Images with the Cassini spacecraft’s visual and infrared mapping spectrometer revealed the brightness, or albedo, of two equatorial areas changing during the study period. Tui Regio (which got darker from 2005 to 2009) and Sotra Patera (which got brighter from 2005 to 2006).

The researchers also pointed to “volcanic-like features” in these areas as evidence that the potential cryovolcanoes, as these icy volcanoes are known, might be connected to an ocean on Titan.

Top: Sotra Patera, a cryovolcanic candidate on Titan that has a one-kilometer crater. (Credit: NASA/JPL Caltech/USGS/University of Arizona). Bottom: The Kirishima volcano in Japan, a terrestrial analogue (Credit: USGS).
Top: Sotra Patera, a cryovolcanic candidate on Titan that has a one-kilometer crater. (Credit: NASA/JPL Caltech/USGS/University of Arizona). Bottom: The Kirishima volcano in Japan, a terrestrial analogue (Credit: USGS).

“All of these features, plus a need for a methane reservoir and volcanic activity to replenish the methane in the atmosphere, is compatible with the theory of active cryovolcanism on Titan,” stated Anezina Solomonidou , a planetary geologist with the Paris Observatory as well as the National and Kapodistrian University of Athens.

“These results have important implications for Titan’s potential to support life, as these cryovolcanic areas might contain environments that could harbor conditions favorable for life,” Solomonidou added.

Of note, Titan also has a fresh-looking surface with few craters on it, indicating that something might be altering the surface. “Its landscape is remarkably Earth-like with dunes and lakes, erosion due to weathering and tectonic-like features,” a statement on the research added.

There’s been chatter about cryovolcanoes on Titan before. In 2010, researchers said a chain of peaks found on the moon could be evidence of this type of feature. However, a 2012 preliminary California Institute of Technology weather model of the moon explained many of its features without necessarily needing to rely on cryovolcanoes.

Source: European Planetary Science Congress

Curiosity Rolls into Intriguing ‘Darwin’ at ‘Waypoint 1’ on Long Trek to Mount Sharp

Curiosity’s views a rock outcrop after arriving for a short stay at ‘Waypoint 1’- dramatically back dropped by her primary destination, Mount Sharp. Front hazcam camera image from Sol 393 (Sept 13, 2013). Credit: NASA/JPL-Caltech

Curiosity’s views a rock outcrop at ‘Darwin’ after arriving for a short stay at ‘Waypoint 1’ on Sept 12 (Sol 392) – dramatically back dropped by her primary destination, Mount Sharp. Front hazcam camera image from Sol 393 (Sept 13, 2013). Credit: NASA/JPL-Caltech
Story updated – see close up mosaic views of Darwin outcrop below[/caption]

NASA’s Curiosity Mars rover has just rolled into an intriguing site called ‘Darwin’ at ‘Waypoint 1’- having quickly picked up the driving pace since embarking at last on her epic trek to mysterious Mount Sharp more than two months ago. Did life giving water once flow here on the Red Planet?

Because the long journey to Mount Sharp – the robots primary destination – was certain to last nearly a year, the science team carefully choose a few stopping points for study along the way to help characterize the local terrain. And Curiosity has just pulled into the first of these so called ‘Waypoints’ on Sept 12 (Sol 392), the lead scientist confirmed to Universe Today.

Curiosity has arrived at Waypoint 1,” project scientist John Grotzinger, of the California Institute of Technology in Pasadena, told Universe Today.

“Darwin is named after a geologic formation of rocks from Antarctica.”

She has now driven nearly 20% of the way towards the base of the giant layered Martian mountain she will eventually scale in search of life’s ingredients.

Altogether, the team selected five ‘Waypoints’ to investigate for a few days each as Curiosity travels in a southwestward direction on the road from the first major science destination in the ‘Glenelg’ area to the foothills of Mount Sharp, says Grotzinger.

“We’ll stay just a couple of sols at Waypoint 1 and then we hit the road again,” Grotzinger told me.

Curiosity's Progress on Rapid Transit Route from 'Glenelg' to Mount Sharp.  Triangles indicate geologic ‘Waypoint’ stopping points along the way.  Curiosity arrived at Waypoint 1 on Sol 392 (Sept 12, 2013). Credit: NASA
Curiosity’s Progress on Rapid Transit Route from ‘Glenelg’ (start at top) to Mount Sharp entry point (bottom). Triangles indicate geologic ‘Waypoint’ stopping points along the way. Curiosity arrived at Waypoint 1 on Sol 392 (Sept 12, 2013). Credit: NASA

‘Waypoint 1’ is an area of intriguing outcrops that was chosen based on high resolution orbital imagery taken by NASA’s Mars Reconnaissance Orbiter (MRO) circling some 200 miles overhead. See route map herein.

In fact the team is rather excited about ‘Waypoint 1’ that’s dominated by the tantalizing rocky outcrop discovered there nicknamed ‘Darwin’.

Although Curiosity will only stay a short time at each of the stops, the measurements collected at each ‘Waypoint’ will provide essential clues to the overall geologic and environmental history of the six wheeled rover’s touchdown zone.

“Waypoint 1 was chosen to help break up the drive,” Grotzinger explained to Universe Today.

“It’s a chance to study outcrops along the way.”

The images from MRO are invaluable in aiding the rover handlers planning activities, selecting Curiosity’s driving route and targeting of the most fruitful science forays during the long trek to Mount Sharp – besides being absolutely crucial for the selection of Gale Crater as the robots landing site in August 2012.

The ‘Darwin’ outcrop may provide more data on the flow of liquid water across the crater floor.

Evolving Excitement Over 'Darwin' Rock Outcrop at 'Waypoint 1'.   For at least a couple of days, the science team of NASA's Mars rover Curiosity is focused on a full-bore science campaign at a tantalizing, rocky site informally called "Darwin."   This view of Darwin was taken with the Mast Camera (Mastcam) on Sol 390 (Sept. 10, 2013). Credit: NASA/JPL-Caltech/Malin Space Science Systems
Evolving Excitement Over ‘Darwin’ Rock Outcrop at ‘Waypoint 1’. For at least a couple of days, the science team of NASA’s Mars rover Curiosity is focused on a full-bore science campaign at a tantalizing, rocky site informally called “Darwin.” This view of Darwin was taken with the Mast Camera (Mastcam) on Sol 390 (Sept. 10, 2013). Credit: NASA/JPL-Caltech/Malin Space Science Systems

The scientists goal is to compare the floor of Gale Crater to the sedimentary layers of 3 mile high (5 kilometer high) Mount Sharp.

Waypoint 1 is just over 1 mile along the approximately 5.3-mile (8.6-kilometer) route from ‘Glenelg’ to the entry point at the base of Mount Sharp.

Curiosity spent over six months investigating the ‘Yellowknife Bay’ area inside Glenelg before departing on July 4, 2013.

What’s the origin of Darwin’s name?

“Darwin comes from a list of 100 names the team put together to designate rocks in the Mawson Quadrangle – Mawson is the name of a geologist who studied Antarctic geology,” Grotzinger told me.

“Recently we left the Yellowknife Quadrangle, so instead of naming rocks after geological formations in Canada’s north, we now turn to formation names of rocks from Antarctica, and Darwin is one of them.

“That will be the theme until we cross into the next quad,” Grotzinger explained.

Curiosity investigates the ‘Darwin’ rock outcrop up close after arriving for a short stay at ‘Waypoint 1’ on Sept 12 (Sol 392). This photo mosaic was assembled from navcam images taken on Sept 12, 2013.   Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo
Curiosity investigates the ‘Darwin’ rock outcrop up close after arriving for a short stay at ‘Waypoint 1’ on Sept 12 (Sol 392). This photo mosaic was assembled from navcam images taken on Sept 12, 2013. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

Inside Yellowknife Bay, Curiosity conducted the historic first interplanetary drilling into Red Planet rocks and subsequent sample analysis with her duo of state of the art chemistry labs – SAM and CheMin.

At Yellowknife Bay, the 1 ton robot discovered a habitable environment containing the chemical ingredients that could sustain Martian microbes- thereby already accomplishing the primary goal of NASA’s flagship mission to Mars.

“We want to know how the rocks at Yellowknife Bay are related to what we’ll see at Mount Sharp,” Grotzinger elaborated in a NASA statement. “That’s what we intend to get from the waypoints between them. We’ll use them to stitch together a timeline — which layers are older, which are younger.”

On Sept. 5, Curiosity set a new one-day distance driving record for the longest drive yet by advancing 464 feet (141.5 meters) on her 13th month on the Red Planet.

As Curiosity neared Waypoint 1 she stopped at a rise called ‘Panorama Point’ on Sept. 7, spotted an outcrop of light toned streaks informally dubbed ‘Darwin and used her MastCam telephoto camera to collect high resolution imagery.

Curiosity will use her cameras, spectrometers and robotic arm for contact science and a “full bore science campaign” involving in-depth mineral and chemical composition analysis of Darwin and Waypoint 1 for the next few Sols, or Martian days, before resuming the trek to Mount Sharp that dominates the center of Gale Crater.

Curiosity Spies Mount Sharp - her primary destination. Curiosity will ascend mysterious Mount Sharp and investigate the sedimentary layers searching for clues to the history and habitability o the Red Planet of billions of years.  This mosaic was assembled from Mastcam camera images taken on Sol 352 (Aug 2, 2013. Credit: NASA/JPL-Caltech/MSSS/ Marco Di Lorenzo/Ken Kremer
Curiosity Spies Mount Sharp – her primary destination. Curiosity will ascend mysterious Mount Sharp and investigate the sedimentary layers searching for clues to the history and habitability o the Red Planet of billions of years. This mosaic was assembled from Mastcam camera images taken on Sol 352 (Aug 2, 2013). Credit: NASA/JPL-Caltech/MSSS/ Marco Di Lorenzo/Ken Kremer

She will not conduct any drilling here or at the other waypoints, several team members have told me, unless there is some truly remarkable ‘Mars-shattering’ discovery.

Why is Curiosity now able to drive longer than ever before?

“We have put some new software – called autonav, or autonomous navigation – on the vehicle right after the conjunction period back in March 2013,” Jim Erickson, Curiosity Project Manager of NASA’s Jet Propulsion Laboratory (JPL), told Universe Today.

“This will increase our ability to drive. But how much it helps really depends on the terrain.”

And so far the terrain has cooperated.

“We are on a general heading of southwest to Mount Sharp,” said Erickson. See the NASA JPL route map.

“We have been going through various options of different planned routes.”

As of today (Sol 394), Curiosity remains healthy, has traveled 2.9 kilometers and snapped over 82,000 images.

If all goes well Curiosity could reach the entry point to Mount Sharp sometime during Spring 2014, at her current driving pace.

Ken Kremer

…………….

Learn more about Curiosity, Mars rovers,LADEE, Cygnus, Antares, MAVEN, Orion and more at Ken’s upcoming presentations

Sep 17/18: LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA

Oct 3: “Curiosity, MAVEN and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM

Oct 8: LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM