Podcast: Climate Change

When it comes to carbon dioxide, just a little goes a long way to warming the planet. Unfortunately, we’ve been dumping vast amounts into the atmosphere, recently passing 400 parts per million. Let’s look at the science of the greenhouse effect, and how it’s impacting our global climate.

Click here to download the episode.

Or subscribe to: astronomycast.com/podcast.xml with your podcatching software.

“Climate Change” on the Astronomy Cast website, with shownotes and transcript.

And the podcast is also available as a video, as Fraser and Pamela now record Astronomy Cast as part of a Google+ Hangout (usually recorded every Monday at 3 pm Eastern Time):


The New Trailer for “Gravity” Depicts a Dizzying Disaster… in Orbit!

The newest trailer for "Gravity" shows the intensity of an accident in orbit. (©Warner Bros. Productions)

If you’ve ever been involved in one, you know that even a minor vehicle accident is a confusing and scary event. Trying to desperately regain control of your own movement as you’re suddenly subjected to forces beyond your control is stressful and terrifying… now imagine it happening at 17,500 mph and 230 miles up and you’ve got an idea of what the upcoming film “Gravity” is about.

Still can’t quite picture it? Check out the latest trailer below:

Directed and written by Alfonso Cuarón and co-written with his son Jonas, “Gravity” is the story of two astronauts (played by George Clooney and Sandra Bullock) whose shuttle is destroyed by a run-in with space junk during an EVA, stranding them both in orbit.

If that wasn’t bad enough, their oxygen is running out and they have lost communication with the ground. Cast adrift in orbit, they have to figure out how to survive and get back home.

It’s like “Open Water” in space. Without the sharks. (Let’s hope things turn out better for them!)

I enjoy sci-fi and I especially enjoy when they try to get the “sci” part right. How do things move in microgravity? (Hint: really fast.) What happens when stuff smashes together? What would happen to the human body in that situation? And, most importantly for any movie, how do the people involved handle the experience?

Above all, “Gravity” is still a movie so it has to take us on a two-hour, candy-munching, soda-slurping ride. Based on this latest trailer, I’m confident that they’ve done their homework on the mechanics of movement in orbit… now let’s see if Cuarón (Children of Men, Y Tu Mamá También, Harry Potter and the Prisoner of Azkaban)  has once again worked his storytelling magic to bring the characters to free-falling life.

A Warner Bros. Pictures production, “Gravity” will be released in IMAX 3D and 2D this October. See the official movie site here.

ADDED 7/25: Here’s a new clip, titled “I’ve Got You”:

Video ©2013 Warner Bros. Entertainment. All rights reserved.

Near-Earth Asteroid 2003 DZ15 to Pass Earth Monday Night

The currnet orbital position of asteroid 2003 DZ15. (Created by the author using JPL's Small-Body Database Browser).

The Earth will get another close shave Monday, when the 152 metre asteroid 2003 DZ15 makes a pass by our fair planet on the night of July 29th/30th at 3.5 million kilometres distant.  This is over 9 times the Earth-Moon distance and poses no threat to our world.

This is much smaller than 2.75 kilometre 1998 QE2, which sailed by (bad pun intended) our fair world at 5.8 million kilometres distant on May 31st, 2013. The Virtual Telescope Project will be presenting a free online event to monitor the passage of NEA 2003 DZ15 starting Monday night July 29th at 22:00 UT/6:00 PM EDT.

As of this writing, no efforts are currently known of by professional observatories to monitor its passage via radar, though Arecibo may attempt to ping 2003 DZ15 on Thursday.

An Apollo asteroid, 2003 DZ15 was confirmed by the Lowell Observatory and NEAT’s Mount Palomar telescope upon discovery in February 2003. This is its closest approach to the Earth for this century, although it will make a pass nearly as close to the Earth in 2057 on February 12th.

With a perihelion (closest approach to the Sun of) 0.63 A.U.s, 2003 DZ15 can also make close passes by the planet Venus as well, which it last did in 1988 and will do again on 2056.

Closest approach of 2003 DZ15 is set for 00:37 UT July 30th, or 8:37 PM EDT the evening of Monday, July 29th. Although it will only reach about +14th magnitude (based on an absolute magnitude of +22.2), and hence be out of range to all but the very largest Earthbound backyard telescopes, it’ll be fun to watch as it slowly drifts across the starry background live on the internet. Our own, “is worth tracking down from our own backyard” limit is an asteroid passing closer than our Moon, or is farther, but is brighter than +10th magnitude… such are the limitations of humid Florida skies!

Of course, an asteroid the size of 2003 DZ15 would spell a bad day for the Earth, were it headed our way. At an estimated 152 metres in size, 2003 DZ is over seven times the size of the Chelyabinsk meteor that exploded over Russia the day after Valentine ’s on February 15th of this year. While not in the class of an Extinction Level event, 2003 DZ15 would be in 60 to 190 metre size of range of the Tunguska impactor that struck Siberia in 1908.

All enough for us to take notice as 2003 DZ15 whizzes by, at a safe distance this time. NASA plans to launch a crewed mission sometime over the next decade to study an asteroid, and  perhaps retrieve a small NEA and place it in orbit about Earth’s Moon. Such efforts may go a long way in understanding and dealing with such potentially hazardous space rocks, when and if the “big one” is discovered heading our way. We’re the Earth’s first line of defense- and unlike the ill-fated dinosaurs, WE’VE got a space program and can do something about it!

Doctor Who? Astronauts Need To Figure Out Medical Procedures Before Leaving Earth

ESA astronaut Alexander Gerst practicing his medical skills on a mannequin. Credit: European Space Agency

Should an astronaut get sick on the International Space Station, that could be a bad scene given the nearest hospital requires a spaceship ride. That’s why every crew has at least two medical officers on board that can deal with some routine procedures, getting to items as complex as filling teeth, for example.

How to get that training done?

Here’s an example: above is Alexander Gerst, an astronaut with the European Space Agency, recently working with a mannequin at the Uniklinik Köln, a hospital in Cologne, Germany. The mannequin is at least as realistic as some baby dolls you can buy in stores: “it blinks, breathes and responds to injections”, ESA stated.

That’s in addition to three days Gerst spent in operating theatres, emergency and the intensive care unit at the hospital. He has about another year to do medical training before going to station for Expedition 40/41 in May 2014.

Chris Cassidy, an Expedition 36 flight engineer, tests his eyesight aboard the International Space Station. Credit: NASA
Chris Cassidy, an Expedition 36 flight engineer, tests his eyesight aboard the International Space Station. Credit: NASA

Mind you, help is also a phone call away to a ground control station, who has doctors on site. Also, there are a lot of medical doctors or similarly trained personnel that fly in space.

On board the International Space Station right now is a trained Navy SEAL, for example: Chris Cassidy. He would have been trained to treat injuries during combat. In May, he told Universe Today that he expects “muscle memory” would kick in during an emergency, whether medical or station-related:

“I think just the training that I got in the field, training in the early part of my Navy career, and during my time being an astronaut will all combine together,” he said.

“What I know from combat in the Navy, there’s a sort of calmness that comes over people who are well-trained and know what to do. Muscle memory kicks in, and it’s not until after the thing is over that you realize what you went through.”

While those who fly in space train for medical emergencies, they also serve as medical guinea pigs for ongoing experiments. Turns out microgravity simulates aging processes on Earth, so the research could have benefits on the ground in future decades. Here’s a couple of experiments happening right now on station:

  • Space Headaches: “Current, pre, in-flight and post-flight data via questionnaires to evaluate the prevalence and characteristics of crewmembers’ headaches in microgravity.”
  • Reaction Self Test:  “A portable 5-minute reaction time task that will allow the crewmembers to monitor the daily effects of fatigue on performance while on board the International Space Station.”

Looking at the medical aspect alone, it’s abundantly clear why astronauts spend years in training before flying to the station. Remember, though, this is on top of other science experiments they do there, not to mention repairs, maintenance and the occasional spacewalk or catching a supply spacecraft.

Watch Live: NASA’s Orion Parachute Test

Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) stack inside the transfer aisle of the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC) in Florida. Powerful quartet of LAS abort motors will fire in case of launch emergency to save astronauts lives. Credit: Ken Kremer/kenkremer.com

NASA is testing out the parachutes for the new Orion crew vehicle, and in a first, is broadcasting it live as a Google+ Hangout from the U.S. Army’s Yuma Proving Ground in Arizona. They are also going to make something bad happen, and will be happy if it works! Watch live above (from 10:30 to 11:30 a.m. EDT July 24) or watch the replay later as an Orion test capsule is dropped from a plane at 10,700 meters (35,000 feet) to evaluate its parachutes.

Engineers will simulate a failure of one of the spacecraft’s three main parachutes, releasing it before Orion has landed.

Update: Despite a bad video feed, the test was a success.

“The closer we can get to actual flight conditions, the more confidence we gain in the system,” said Chris Johnson after the test. Johnson is project manager for the Orion capsule parachute assembly system at NASA’s Johnson Space Center in Houston. “What we saw today — other than the failures we put in on purpose — is very similar to what Orion will look like coming back during Exploration Flight Test-1’s Earth entry next year.”

One of three massive main parachutes was cut away early on purpose, and so the spacecraft was left with just two parachutes. However, the capsule still landed safely. Wednesday’s test was the highest-altitude test of a human spacecraft parachute since NASA’s Apollo Program.

During previous tests for Orion’s parachutes, a mock capsule was dropped from a height of 25,000 feet and the parachutes deployed at no higher than 22,000 feet. The extra 10,000 feet of altitude at the beginning of Wednesday’s test made the demonstration the best so far of Orion’s parachute flight and landing.

This test was in preparation for the Exploration Flight Test-1, an uncrewed test of the spacecraft that will send Orion 5,800 km (3,600 miles) away from Earth, scheduled for September 2014. Orion’s parachutes are being tested to ensure they can slow the capsule for a safe landing in the Pacific Ocean as the spacecraft reenters Earth’s atmosphere from deep space missions at speeds of up to 32,000 km/h (20,000 mph.)

Comet ISON is Spewing Out Carbon Dioxide and Dust

These images from NASA's Spitzer Space Telescope of C/2012 S1 (Comet ISON) were taken on June 13, when ISON was 310 million miles (about 500 million kilometers) from the sun. Image credit: NASA/JPL-Caltech/JHUAPL/UCF

As part of the Comet ISON Observing Campaign, the Spitzer Space Telescope was used to “stare” at the comet for 24 hours on Jun 13, 2013. Images from Spitzer’s “ISON-a-thon” indicate that carbon dioxide and dust are spewing out of the comet at a fairly large rate.

“We estimate ISON is emitting about 2.2 million pounds (1 million kilograms) of what is most likely carbon dioxide gas and about 120 million pounds (54.4 million kilograms) of dust every day,” said Carey Lisse, leader of NASA’s Comet ISON Observation Campaign and a senior research scientist at the Johns Hopkins University Applied Physics Laboratory.

That amount of dust is about the mass of one aircraft carrier every two days or so, tweeted the Sungrazing Comets Twitter feed,, and the amount of carbon dioxide released per day would be enough for about 625 million cans of soda.

The images were taken by the Spitzer’s Infrared Array Camera showing the comet’s tail, which is about 186,400 miles (300,000 kilometers) long.

Comet ISON was about 312 million miles (502 million kilometers) from the Sun, 3.35 times farther than Earth, when the observations were made.

Comet ISON (C/2012 S1) is less than 3 miles (4.8 kilometers) in diameter (about the size of a small mountain) and weighs between 7 billion and 7 trillion pounds (3.2 billion and 3.2 trillion kilograms). However, its true size and density have not yet been accurately determined because of its distance from Earth. Like all comets, ISON is a dirty snowball made up of dust and frozen gases such as water, ammonia, methane and carbon dioxide. These are some of the fundamental building blocks, which scientists believe led to the formation of the planets 4.5 billion years ago.

“This observation gives us a good picture of part of the composition of ISON, and, by extension, of the proto-planetary disk from which the planets were formed,” said Lisse. “Much of the carbon in the comet appears to be locked up in carbon dioxide ice. We will know even more in late July and August, when the comet begins to warm up near the water-ice line outside of the orbit of Mars, and we can detect the most abundant frozen gas, which is water, as it boils away from the comet.”

The comet will pass within 724,000 miles (1.16 million kilometers) of the Sun on Nov. 28.

Astronomers are wondering if the comet will survive its close pass of the Sun, and also if it will live up to expectations of becoming bright enough to be seen in the daytime, as some have predicted.

Only time will tell … and we’ll be here to share the news.

Source: JPL

Could Cassini See You On “The Day The Earth Smiled?”

The face of Earth aimed toward Cassini during imaging on July 19, 2013

So along with the rest of the world, you smiled. You waved. You went outside on July 19, wherever you were, and looked upwards and out into the solar system knowing that our robotic representative Cassini would be capturing a few pixels’ worth of photons bouncing off our planet when they eventually reached Saturn, 900 million miles away. But did Cassini actually capture any photons coming from where you were? The image above will tell you.

Assembled by the Planetary Habitability Laboratory at the University of Puerto Rico at Arecibo (where the enormous 305-meter radio telescope is located) this image shows what side of Earth was facing Cassini when its “pale blue dot” images were obtained, at approximately 22:47 UTC (Cassini time.)

Didn’t make it into Cassini’s photo? That’s ok… maybe MESSENGER had already caught you earlier that very same day:

The view of Earth seen by MESSENGER from Mercury on July 19, 2013
The view of Earth seen by MESSENGER from Mercury on July 19, 2013

Before Cassini took its images — several hours before, in fact — the MESSENGER spacecraft was holding some photo shoots of its own from 61 million miles in the other direction!

The image above shows the side of Earth that was facing Mercury on the morning of July 19, 2013, when MESSENGER was acquiring images in our direction during a hunt for any possible satellites of the innermost planet.

Earth was as bright (-4.8 magnitude) as the maximum brightness of Venus at the moment the image was taken from Mercury.

Of course, in both series of images specific details of our planet can’t be made out — Earth was barely more than a pixel in size (regardless of any bloom caused by apparent brightness.) Clouds, countries, continents, oceans… the entire population of our world, reduced to a single point of light — a “mote of dust suspended in a sunbeam.”

For both portrayals, high-resolution black and white images from the GOES East and Meteosat meteorological satellites were combined with color information from NASA Visible Earth to generate true-color images of our planet as it would have looked to each respective imaging spacecraft… if they had the impossibly-precise optics to resolve Earth from such distances, of course.

But it’s ok that they don’t… we can still use our imaginations.

Read more here on the PHL’s news release.

Earth from the geostationary weather satellite GOES East on July 19, 2013 at 5 PM EST. This is approximately the view that Cassini would have had of Earth during imaging.
Earth from the geostationary weather satellite GOES East on July 19, 2013 at 5 PM EST. This is approximately the view that Cassini would have had of Earth during imaging.

Image credits: PHL @ UPR Arecibo, NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington, NERC Satellite Station, Dundee University, Scotland. Thanks to Prof. Abel Méndez (PHL/UCR) for the heads-up on these.

What Can You Do With a Cubesat?

Three small CubeSats are deployed from the International Space Station on October 4, 2012. Credit: NASA

We’ve had several articles recently cubesats — low-cost satellites that seem to be the wave of the future. As technology becomes miniaturized, this allows for inexpensive and quick-to-build satellites. Additionally, they can tag along on launches already scheduled for other things. All this enables students and smaller companies to send equipment and experiments into space.

But the people from DIY Space Exploration say don’t let the small size of a cubesat fool you. The types of missions Cubesats can perform may surprise you and they’re becoming the satellite of choice for anyone looking for a low cost quick response option.

If you visit the DIY Space Exploration website, they have tutorials on how you can put your own cubesat together, and lots of other information. They’ve also put together a great infograhic about what all you can do with a cubesat:

Why are We Driven to Explore?

Why do we explore? Is it the desire to break through boundaries, or to probe the perimeters of possibilities? With his lightning-fast mind, self-professed wonder junkie Jason Silva can quickly list all the great quotes about space exploration and why it is important for the human species to explore; and he does it in this new video from his “Shots of Awe” series on You Tube.

Strap in and enjoy the fast ride that is Jason Silva!
Continue reading “Why are We Driven to Explore?”

Space Debris: A Tale of Two Satellites

Artist's concept of a GOES spacecraft in orbit. (Credit: NOAA.gov).

It’s sometimes tough being a satellite in Earth orbit these days.

An interesting commentary came our way recently via NASA’s Orbital Debris Program Office’s Orbital Debris Quarterly News. The article, entitled High-Speed Particle Impacts Suspected in Two Spacecraft Anomalies, highlights a growing trend in the local space environment.

The tale begins with GOES 13 located in geostationary orbit over longitude 75° West. Launched on May 24th, 2006 atop a Delta IV rocket, GOES 13 is an integral part of the U.S. National Oceanic and Atmospheric Administration (NOAA’s) Geostationary Operational Environmental Satellite network.

The problems began when GOES-13 began to suffer an “attitude disturbance of unknown origin” on May 22nd of this year, causing it to drift about two degrees per hour off of its required nadir (the opposite of zenith) pointing.

The anomaly was similar to a problem encountered by the NOAA 17 spacecraft on November 20th, 2005. At the time, the anomaly was suspected to be due to a micrometeoroid impact. The Leonid meteors, which peak right around the middle of November, were a chief suspect. However, NOAA 17 suffered a second failure 18 days later, which was later traced down to a hydrazine leak from its errant thrusters.

GOES-13 has weathered hard times before.  Back in December of 2006, GOES-13’s Solar X-Ray Imager suffered damage after being struck by a solar flare shortly after initial deployment.   GOES-13 also began returning degraded imagery in September 2012, forcing it into backup status for Hurricane Sandy.

GOES-13 was restored to functionality last month. Current thinking is that the satellite was struck by a micrometeorite. No major meteor showers were active at the time.

Loss of a GOES satellite would place a definite strain on our weather monitoring and Earth observing capability. Begun with the launch of GOES-1 in 1975, currently six GOES satellites are in operation, including one used to relay data for PeaceSat (GOES-7) and one used as a communications relay for the South Pole research station (GOES-3).

The GOES program cost NOAA billions in cost overruns to execute. The next GOES launch is GOES-R scheduled in 2015.

But the universe seems to love coincidences.

NEE-01 Pegaso before deployment. (Credit:
NEE-01 Pegaso before deployment. (Credit: Wikimedia Commons image in the Public Domain).

Less than 26 hours after the GOES 13 anomaly, Ecuador’s first satellite, NEE-01 Pegaso began to have difficulties keeping a stable attitude. The event happened shortly after passage near an old Soviet rocket booster (NORAD designation 1986-058B) which launched Kosmos 1768 on August 2nd, 1986. The U.S. Joint Space Operations Center had warned the fledgling Ecuadorian Space Agency that conjunction was imminent, but of course, there’s not much that could’ve been done to save the tiny CubeSat.

Although the main mass passed Pegaso at a safe distance, current thinking is that the discarded booster may have left a cloud of debris in its wake. Researchers have tracked small “debris clouds” around objects it orbit before- the collision of Iridium 33 and the defunct Kosmos 2251 on February 10th, 2009 left a ring of debris in its wake, and the Chinese anti-satellite test carried out on January 11th, 2007 showered low-Earth orbit with debris for years to come.

The loss represents a blow to Ecuador and their first bid to become a space-faring nation. Launched less than a month prior atop a Long March 2D rocket, Pegaso was a small 10 centimetre nanosatellite equipped with solar panels and dual infrared and visible Earth imaging systems.

A translation from the Ecuadorian Space Agencies site states that;

 “The NEE-01 survived the crash and remains in orbit; however it has entered uncontrolled rotation due to the event.

 Due to this rotation, (the satellite) cannot point its antenna correctly and stably to the Earth station and although still transmitting and running, the signal cannot be decoded. The Ecuadorian Civilian Space Agency is working tirelessly to stabilize the NEE-01 and recover the use of their signal.

The PEGASUS aired for 7 days your signal to the world via EarthCam, millions could see the Earth seen from space in real time, many for the first time, the files in those 7 days have been published after transmission.”

Ecuador plans to launch another CubeSat, NEE 02 Krysaor later in 2013. A carrier has not yet been named.

While both events suffered by the GOES-13 and NEE-01 Pegaso satellites were unrelated, they underscore problems with space junk and space environmental hazards that are occurring with a higher frequency.

Gabbard diagram displaying a sample disintegration of a Long March 4 booster in 2000. (Credit: the NASA Orbital Debris Office).
Gabbard diagram displaying a sample disintegration of a Long March 4 booster in 2000. (Credit: the NASA Orbital Debris Office).

Such is the modern hazardous environment of low Earth orbit that new satellites must face. With a growing amount of debris, impact threats are becoming more common. The International Space Station must perform frequent debris avoidance maneuvers to avoid hazards, and more than once, the crew has waited out a pass in their Soyuz escape modules should immediate evacuation become necessary.  Punctures from micro-meteoroids or space junk have even been seen recently on the ISS solar panel arrays.

Plans are on the drawing board to deal with space junk, involving everything from “space nets” to lasers and even more exotic ideas. Probably the most immediate solution that can be implemented is to assure new payloads have a way to “self-terminate” via de-orbit at the end of their life span.  Solar sail technologies, such as NanoSailD2 launched in 2010 have already demonstrated this capability.

Expect reentries also pick up as we approach the peak of solar cycle #24 at the end of 2013 and the beginning of 2014. Increased solar activity energizes the upper atmosphere and creates increased drag on low Earth satellites.

It’s a brave new world “up there,” and hazards, both natural and man-made, are something that space faring nations will have to come to terms with.

-Read and subscribe to the latest edition of NASA’s Orbital Debris Quarterly News for free here.