Huge Asteroid 324 Bamberga Makes a Return Visit to Earth’s Neighborhood on Friday the 13th

Starry Night

This week offers a fine chance to catch sight of a unique asteroid.

324 Bamberga reaches opposition this week in the constellation Pisces on (friggatriskaidekaphobics take note) Friday the 13th at 7AM EDT/11:00 Universal Time.

About 230 kilometres in size, 324 Bamberga reaches 0.81 astronomical units from the Earth this week. No other asteroid so large gets so close.

Discovered on February 25th, 1892 by Johann Palisa, 324 Bamberga only reaches a favorable opposition once every 22 years.

Shining at magnitude +8.1, 324 Bamberga is also one of the highest numbered asteroids visible with binoculars. Earth-crossing asteroids 433 Eros, which made a close pass last year, and 4179 Toutatis are two of the very few asteroids that possess a larger number designations that can regularly reach +10th magnitude.

Stellarium
Look east in mid-September about an hour after sunset. The inset covers the region that 324 Bamberga is currently traversing in the introductory graphic. (Created by the author using Stellarium).

So, why did it take so long for 324 Bamberga to be uncovered? One factor is its high orbital eccentricity of 0.34. This means that most of the oppositions of the asteroid aren’t favorable. 324 Bamberga orbits the Sun once every 4.395 years and only comes around to an opposition that lands near perihelion once every 22 Earth years. Perihelion this year occurs only 45 days after opposition on October 27th.

The resonance between 324 Bamberga and Earth is nearly five Earth orbits for every one circuit of the Sun for the asteroid and is offset by only 9 days, meaning that the 22 year window to see the asteroid will actually become less favorable in centuries to come. 324 Bamberga made its last favorable appearance on September 15th, 1991 and won’t surpass +10th magnitude again until September 2035.

Orbit
The orbit of 324 Bamberga. (Created using the JPL Small-Body Database Browser).

Observing asteroids requires patience and the ability to pick out a slowly moving object amidst the starry background. 324 Bamberga spends September west of the circlet of Pisces, drifting two degrees a week, or just over 17’ a day, to cross over into the constellation Pegasus in early October.

324 Bamberga will be moving too slow to pick up any motion in real time, but you can spy it by either sketching the field on successive nights or photographing the region and noting if the asteroid can be seen changing position against the background of fixed stars. Start hunting for 324 Bamberga tonight, as the Full Harvest Moon will be visiting Pisces later next week on the 19th.

Starry Night
A closeup of the path of 324 Bamberga for the week of September 10-17th. Decimal points for comparison stars are omitted. (Created by the author using Starry Night Education software).

324 Bamberga is also unique as the brightest C-type asteroid that is ever visible from Earth. The runner up in this category is asteroid 10 Hygiea, which can shine a full magnitude fainter at opposition.

It’s also remarkable that Palisa actually managed to discover 324 Bamberga while it was at 12th magnitude! Palisa was one of the most prolific visual hunters of asteroids ever, discovering 121 asteroids from 1874 to 1923. He accomplished this feat first with the use of a 6” refractor while based at the Austrian Naval Observatory in Pola (now the Croatian town of Pula) and later using the Vienna observatory’s 27” inch refractor.

The Great Refractor of the University of Vienna used to discover asteroid 324 Bamberga. (Credit: Prof. Franz Kerschbaum, Wikimedia Commons image under an Attribution-Share Alike 3.0 Unported license).
The Great Refractor of the University of Vienna used to discover asteroid 324 Bamberga. (Credit: Prof. Franz Kerschbaum, Wikimedia Commons image under an Attribution-Share Alike 3.0 Unported license).

324 Bamberga itself takes its name from the town of Bamberg in Bavaria, the site of the 1896 meeting of the Astronomische Gesellschraft.

An occultation of a star by 324 Bamberga on December 8th, 1987 allowed astronomers to pin down its approximate size. Searches have also been carried out during occultations for any possible moons of this asteroid, though thus far, none have been discovered.

It’s interesting to note that 324 Bamberga will also actually occult the star 2UCAC 3361042 tonight in the early morning hours at 8:59-9:10 UT for observers spanning a path from Florida to Oregon. The magnitude drop will, however, be very slight, as the star is actually 3 full magnitudes fainter than the asteroid itself. Dave Gee caught a fine occultation of a 7.4 magnitude star in the constellation Corvus by 324 Bamberga in 2007.

There’s also something special about this time of year and the region that 324 Bamberga is crossing. More visual discoveries of asteroids have been historically made in the month of September than any other calendar month. In fact, 344 of the first 1,940 numbered asteroids were found in September, more than twice the average. Palisa’s own track record bears this out, though 324 Bamberga was discovered in February.

One of the primary reasons for a September surge in discoveries is viewing direction. Astronomers of yore typically hunted for asteroids approaching opposition in the anti-sunward direction, which in September lies in the relatively star poor fields of Pisces.  In December and June —the months with the lowest numbers of visual discoveries at only 75 and 65 for the “first 1,940” respectively —the anti-sunward point lies in the star-rich regions of Sagittarius and Gemini. And by the way, the meteor that exploded over the city of Chelyabinsk on February 15th was sneaking up on the Earth from the sunward direction.

Be sure to catch a glimpse of this unique asteroid through either binoculars or a telescope over the coming weeks. The next chance to observe 324 Bamberga won’t roll around again until September 2035… it’ll be great to compare notes of the 2013 apparition on that far off date!

Researchers Say ExoMars Could Detect Bacteria on Mars — Past or Present

An artist's conception of the European Space Agency's ExoMars rover, scheduled to launch in 2018. Credit: ESA

Signs of life on the Martian surface would still be visible even after bacteria were zapped with a potentially fatal dose of radiation, according to new research — if life ever existed there, of course.

Using “model” bacteria expected to resemble what microbes could look like on the Red Planet, the research team used a Raman spectrometer — an instrument type that the ExoMars rover will carry in 2018 — to see how the signal from the bacteria change as they get exposed to more and more radiation.

The bottom line is the study authors believe the European Space Agency rover’s instrument would be capable of seeing bacteria on Mars — from the past or the present — if the bacteria were there in the first place.

Readings from the NASA Mars Curiosity rover recently found that humans on the surface of Mars would have a higher risk of cancer due to the increased radiation level on the surface. Mars does not have a global magnetic field to deflect radiation from solar flares, nor a thick atmosphere to shelter the surface.

The new study still found the signature of life in these model microbes at 15,000 Gray of radiation, which is thousands of times higher than the radiation dose that would kill a human. At 10 times more, or 150,000 Gray, the signature is erased.

ExoMars 2016 Mission to the Red Planet.  It consists of two spacecraft -  the Trace Gas Orbiter (TGO) and the Entry, Descent and Landing Demonstrator Module (EDM) which will land.  Credit: ESA
ExoMars 2016 Mission to the Red Planet. It consists of two spacecraft – the Trace Gas Orbiter (TGO) and the Entry, Descent and Landing Demonstrator Module (EDM) which will land. Credit: ESA

“What we’ve been able to show is how the tell-tale signature of life is erased as the energetic radiation smashes up the cells’ molecules,” stated Lewis Dartnell, an astrobiology researcher at the University of Leicester who led the study.

Specifically, the spectrometer detected carotenoid molecules, which can be used to protect a microorganism against difficult conditions in the environment. The research teams stated that these cartenoids have been proposed as “good biosignatures of life” on Mars.

This image shows a river that sprang from a past glacier from an unnamed crater in Mars’ middle latitudes. Credit: NASA/JPL/MSSS
This image shows a river that sprang from a past glacier from an unnamed crater in Mars’ middle latitudes. Credit: NASA/JPL/MSSS

“In this study we’ve used a bacterium with unrivaled resistance to radiation as a model for the type of bacteria we might find signs of on Mars. What we want to explore now is how other signs of life might be distorted or degraded by irradiation,” Dartnell added. “This is crucial work for understanding what signs to look for to detect remnants of ancient life on Mars that has been exposed to the bombardment of cosmic radiation for very long periods of time.”

No one is sure if Mars has life right now on its surface, or ever did in the past. The Mars Curiosity rover is equipped to look at past environmental conditions on the planet, but is not designed to look for life itself.

Many scientists believe flowing water existed on the planet, though, based on rock findings from three NASA rovers and the appearance of channels, streams and perhaps even oceans as spotted by orbiting satellites. Some scientists say the atmosphere of Mars was much thicker in the past, but it then dissipated for reasons that are still being investigated. Water, however, does not necessarily point to life.

The research was presented at the European Planetary Science Congress on Monday. Universe Today has reached out to Dartnell to see if the work is peer-reviewed. His website lists several published research articles he wrote on similar topics.

Edit: Dartnell says that research was published in Analytical and Bioanalytical Chemistry in 2012, and you can read the paper here.

Source: European Planetary Science Congress

New Podcasts: Precession and Acceleration

Illustration explaining the precession of Earth's axis. Credit: Cornell University.

We’ve got two new podcasts from the Astronomy Cast team of Dr. Pamela Gay and Fraser Cain: Ep. 313: Precession, and Episode 314: Acceleration.

313: Precession

The Earth is wobbling on its axis like a top. You can’t feel it, but it’s happening. And over long periods of time, these wobbles shift our calendars around, move the stars from where they’re supposed to be, and maybe even mess with our climate. Thank you very much Precession.

Click here to download the episode.

Or subscribe to: astronomycast.com/podcast.xml with your podcatching software.

“Precession” on the Astronomy Cast website, with shownotes and transcript.

314: Acceleration

Put that pedal to the metal and accelerate! It’s not just velocity, but a change in velocity. Let’s take a look at acceleration, how you measure it, and how Einstein changed our understanding of this exciting activity.

Click here to download the episode.

Or subscribe to: astronomycast.com/podcast.xml with your podcatching software.

“Acceleration” on the Astronomy Cast website, with shownotes and transcript.

And the podcast is also available as a video, as Fraser and Pamela now record Astronomy Cast as part of a Google+ Hangout (usually recorded every Monday at 3 pm Eastern Time):

Carnival of Space #318

Carnival of Space. Image by Jason Major.
Carnival of Space. Image by Jason Major.

The tent is up! This week’s Carnival of Space is hosted by Pamela Hoffman at the Everyday Spacer blog.

Click here to read Carnival of Space #318.

And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.

LADEE Launch: Images and Videos from Our Readers

LADEE and the Milky Way: Launch of the LADEE Rocket from Wallops Flight Facility in Virginia. Credit and copyright: Jeff Berkes/Jeff Berkes Photography.

NASA’s newest mission to the Moon, LADEE, launched from Wallops Island in Virginia, lighting up the sky along the US East Coast, allowing millions to see the Minotaur V rocket’s brilliance with their own eyes. Some of our readers captured the views as they cheered on the Lunar Atmosphere and Dust Environment Explorer as it sailed safely to orbit.

See more images and video below, but first a quick update on how LADEE is doing: there was concern shortly after launch as during technical checkouts the LADEE spacecraft commanded itself to shut down the reaction wheels used to position and stabilize the spacecraft. According to the LADEE mission operations team at NASA’s Ames Research Center in Moffett Field, Calif., this was determined to be the result of fault protection limits put in place prior to launch to safeguard the reaction wheels. The limits that caused the powering off of the wheels soon after activation were disabled, and the reaction wheels were successfully brought back online.

“Our engineers will determine the appropriate means of managing the reaction wheel fault protection program. Answers will be developed over time and will not hold up checkout activities,” said Butler Hine, LADEE project manager.

Everything else is checking out fine so far, so enjoy these views:

This video was taken by Richard Drumm, part of the NASA Social LADEE launch event, so he and the group were about 2 miles from the launchpad:

LADEE launch over World War II bunker from Cape May, New Jersey. This is a 7-image composite. Credit and copyright: Jack Fusco.
LADEE launch over World War II bunker from Cape May, New Jersey. This is a 7-image composite. Credit and copyright: Jack Fusco.
LADEE first stage separation, as seen from Fenwick Island, Delaware, about 50 miles away from Wallops Island Launch Complex. ‘I was completely floored to see how bright and dramatic the launch was from 50 miles away!’ said the photographer.  Credit and copyright: Marion Haligowski.
LADEE first stage separation, as seen from Fenwick Island, Delaware, about 50 miles away from Wallops Island Launch Complex. ‘I was completely floored to see how bright and dramatic the launch was from 50 miles away!’ said the photographer. Credit and copyright: Marion Haligowski.
LADEE launch as seen from Chesapeake Bay, Maryland. Credit and copyright: Dan @awkwardrobots.
LADEE launch as seen from Chesapeake Bay, Maryland. Credit and copyright: Dan @awkwardrobots.
LADEE spacecraft launching to the moon, as see on the roadside by Mount Olive, New Jersey. Credit and copyright: Scott MacNeill.
LADEE spacecraft launching to the moon, as see on the roadside by Mount Olive, New Jersey. Credit and copyright: Scott MacNeill.

This timelapse of the launch is from Chris Moran:

Rocket to the Moon from Wallops Island, VA, as seen from Gaithersburg, Maryland. Credit and copyright: Zach Stern.
Rocket to the Moon from Wallops Island, VA, as seen from Gaithersburg, Maryland. Credit and copyright: Zach Stern.
LADEE launch as seen from Louisa, Virginia. Credit and copyright: David Murr.
LADEE launch as seen from Louisa, Virginia. Credit and copyright: David Murr.

Closeup view of launch via markyj on Instagram:

LADEE launch video , as seen from Bristol, Pennsylvania, courtesy of Ron Roberts:

If you missed the launch, here’s the “official” NASA video:

Photograph of LADEE's launch aboard a Minotaur V on Sept. 6, 2013. Image credit: NASA Wallops/Chris Perry
Photograph of LADEE’s launch aboard a Minotaur V on Sept. 6, 2013. Image credit: NASA Wallops/Chris Perry

Read more about the launch in our post-launch article here.

You can see more great images in NASA’s Flickr pool for the LADEE launch here.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

NASA Science Probe Blazes Spectacular Trail to the Moon from Virginia

This magnificent view of NASA’s LADEE lunar orbiter launched on Friday night Sept 6, on the maiden flight of the Minotaur V rocket from Virginia was captured by space photographer Ben Cooper perched atop Rockefeller Center in New York City. Credit: Ben Cooper/Launchphotography.com

This magnificent view of NASA’s LADEE lunar orbiter launched on Friday night Sept 6, on the maiden flight of the Minotaur V rocket from Virginia was captured by space photographer Ben Cooper perched atop Rockefeller Center in New York City. Credit: Ben Cooper/Launchphotography.com
Story updated[/caption]

WALLOPS ISLAND, VA – A NASA moon probe named LADEE thundered to space tonight, Sept. 6, blazing a spectacular trail to orbit from a beachside launch pad in Virginia that was easily visible to tens of millions of spectators along the eastern seaboard as a result of crystal clear skies and the night time liftoff – see magnificent photo shot from NYC above by Ben Cooper/Launchphotography.com.

The drama at the LADEE launch site on the eastern shore of Virginia at NASA’s Wallops Island facility was palpable due to the historic and experimental nature of the mission.

Hordes of tourists flooded into Virginia to be eyewitnesses to an unprecedented space spectacle that marked Americas ‘Return to the Moon’ and a chance to see the type of big and exciting rocket launches previously reserved for Florida and California.

Everyone I spoke too was absolutely overwhelmed with the amazing beauty of the Minotaur V blastoff carrying LADEE to orbit, whooping and hollering, far beyond our wildest expectations as the crackling fire pierced through the night and reverberated in our ears!

“It was a picture perfect launch,” said NASA Associate Administrator John Grunsfeld at a post launch media briefing at NASA Wallops.

“LADEE will help us unravel the mysteries of the lunar atmosphere.”

Blastoff of NASA’s dust exploring Lunar Atmosphere and Dust Environment Explorer (LADEE) Observatory marked the first space probe of any kind ever launched beyond Earth orbit from NASA Wallops, as well as being the first planetary science mission from Wallops.

LADEE's launch aboard a Minotaur V on Sept. 6, 2013. Credit: NASA Wallops/Chris Perry
LADEE’s launch aboard a Minotaur V on Sept. 6, 2013. Credit: NASA Wallops/Chris Perry

The Minotaur V rocket launched precisely on time at 11:27 p.m. EDT on the maiden flight of the powerful new Minotaur V rocket Launch Pad 0B on NASA’s Wallops Flight Facility.

“The spacecraft is healthy and power positive and separated from the fifth and last stage on time, approximately 23 minutes into the flight,” said Pete Worden to Universe Today after the liftoff. Worden is the Director of NASA’s Ames Research Center which designed and built LADEE using a revolutionary new design to reduce costs and increase science output.

Ignition of Minotaur V rocket launching NASA’s LADEE lunar orbiter on Sept. 6, at 11:27 p.m. EDT from NASA Wallops, Virginia, media viewing site 2 miles away. Credit: Ken Kremer/kenkremer.com
Ignition of Minotaur V rocket launching NASA’s LADEE lunar orbiter on Sept. 6, at 11:27 p.m. EDT from NASA Wallops, Virginia, media viewing site 2 miles away. Credit: Ken Kremer/kenkremer.com
Launch of NASA’s LADEE lunar orbiter on Friday night Sept. 6, at 11:27 p.m. EDT on the maiden flight of the Minotaur V rocket from NASA Wallops, Virginia, viewing site 2 miles away. Antares rocket launch pad at left.  Credit: Ken Kremer/kenkremer.com
Launch of NASA’s LADEE lunar orbiter on Friday night Sept. 6, at 11:27 p.m. EDT on the maiden flight of the Minotaur V rocket from NASA Wallops, Virginia, media viewing site 2 miles away. Antares rocket launch pad at left. Credit: Ken Kremer/kenkremer.com
Launch of NASA’s LADEE lunar orbiter on Friday night Sept. 6, at 11:27 p.m. EDT on the maiden flight of the Minotaur V rocket from NASA Wallops, Virginia, viewing site 2 miles away. Antares rocket launch pad at left.  Credit: Ken Kremer/kenkremer.com
Launch of NASA’s LADEE lunar orbiter on Friday night Sept. 6, at 11:27 p.m. EDT on the maiden flight of the Minotaur V rocket from NASA Wallops, Virginia, media viewing site 2 miles away. Antares rocket launch pad at left. Credit: Ken Kremer/kenkremer.com

The liftoff of LADEE (pronounced ‘laddie’ not ‘lady’) also marks the first launch of a five stage rocket and the first launch of a decommissioned Peacekeeper missile from Wallops. The Peacekeeper was a nuclear armed intercontinental ballistic missile ICBM built during the Cold War – now retired and refurbished by Orbital for peaceful uses.

The Minotaur V fifth stage boosted LADEE into a highly elliptical orbit. Over about the next 23 days, as LADEE orbits Earth 3.5 times, the Moon’s gravitational field will increase the apogee of its orbit. The spacecraft will fire its on-board braking thrusters to achieve lunar orbit.

Gantry doors open to expose Minotaur V rocket launching LADEE lunar orbiter to the Moon on Sept 6, 2013 from Launch Pad 0B at NASA Wallops Island.  Credit: Ken Kremer/kenkremer.com
Gantry doors open to expose Minotaur V rocket launching LADEE lunar orbiter to the Moon on Sept 6, 2013 from Launch Pad 0B at NASA Wallops Island. Credit: Ken Kremer/kenkremer.com

The mission will fly in a very low science orbit of about 50 kilometers altitude above the moon that will require considerable fuel to maintain. The science mission duration is approximately 100 days.

The 844 pound (383 kg) robot explorer is the size of a couch and was assembled at NASA’s Ames Research Center, Moffett Field, Calif., and is a cooperative project with NASA Goddard Spaceflight Center in Maryland.

It is equipped with a trio of science instruments whose purpose is to collect data that will inform scientists in unprecedented detail about the ultra thin lunar atmosphere, environmental influences on lunar dust and conditions near the surface.

The goal of the $280 Million mission is to gain a thorough understanding of long-standing unknowns about the tenuous atmosphere, dust and surface interactions that will help scientists understand other planetary bodies as well.

The LADEE satellite in lunar orbit.   The revolutionary modular science probe is equipped with a Lunar Laser Communication Demonstration (LLCD) that will attempt to show two-way laser communication beyond Earth is possible, expanding the possibility of transmitting huge amounts of data. This new ability could one day allow for 3-D High Definition video transmissions in deep space to become routine.  Credit: NASA
The LADEE satellite in lunar orbit. The revolutionary modular science probe is equipped with a Lunar Laser Communication Demonstration (LLCD) that will attempt to show two-way laser communication beyond Earth is possible, expanding the possibility of transmitting huge amounts of data. This new ability could one day allow for 3-D High Definition video transmissions in deep space to become routine. Credit: NASA

The couch sized probe is built on a revolutionary ‘modular common spacecraft bus’, or body, that could dramatically cut the cost of exploring space and also be utilized on space probes to explore a wide variety of inviting targets in the solar system. The overall mission cost is approximately $280 million.

“LADEE is the first in a new class of interplanetary exploration missions,” NASA Ames Director Worden told Universe Today. “It will study the pristine moon to study significant questions.”

“This is probably our last best chance to study the pristine Moon before there is a lot of human activity there changing things.”

The five stage Minotaur V rocket stands 80.6 feet (24.6 meters) tall, is 7.6 feet (2.3 m) in diameter and weighs 197,034 pounds (89,373 kilograms).

Gantry doors open to expose Minotaur V rocket launching LADEE lunar orbiter to the Moon on Sept 6, 2013 from Launch Pad 0B at NASA Wallops Island.  Credit: Ken Kremer/kenkremer.com
Gantry doors open to expose Minotaur V rocket launching LADEE lunar orbiter to the Moon on Sept 6, 2013 from Launch Pad 0B at NASA Wallops Island. Credit: Ken Kremer/kenkremer.com

The first three stages of the Minotaur V are based on the nuclear armed Peacekeeper ICBM intercontinental ballistic missile built during the Cold War – now retired and refurbished by Orbital Sciences for peaceful uses.

The upper 5th stage is a new addition and what makes this Minotaur a new rocket class. The additional thrust is what converts the Minotaur V into an interplanetary booster that enables shooting for the Moon.

“I dreamed all my life about launching a rocket to the moon. And now we are doing it,” Lou Amorosi, told Universe Today at the Minotuar launch pad. Amorosi is the Senior Vice President of Orbital’s Small Space Launch Vehicle business.

“This mission further demonstrates the capabilities of our well-established Minotaur rocket family and our commitment to providing reliable access to space,” Amorosi noted in a post launch statement.

Ken Kremer

…………….
Learn more about LADEE, Cygnus, Antares, MAVEN, Orion, Mars rovers and more at Ken’s upcoming presentations:

Sep 16/17: “LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA, 8 PM

Oct 3: “Curiosity, MAVEN and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM

Oct 8: “LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM

LADEE post launch news briefing at NASA Wallops, VA with  Air Force Col. Urban Gillespie, Minotaur mission director from the Space Development and Test Directorate, John Grunsfeld, Astronaut and    NASA Associate Administrator for Science, Pete Worden, Director of NASA’s Ames Research Center.   Credit: Ken Kremer/kenkremer.com
LADEE post launch news briefing at NASA Wallops, VA with Air Force Col. Urban Gillespie, Minotaur mission director from the Space Development and Test Directorate, John Grunsfeld, Astronaut and NASA Associate Administrator for Science, Pete Worden, Director of NASA’s Ames Research Center. Credit: Ken Kremer/kenkremer.com
Lou Amorosi, VP of Orbital Sciences Small Spacecraft Launch Vehicles and Ken Kremer of Universe Today with LADEE and Minotaur V rocket at Launch Pad.  Credit: Ken Kremer/kenkremer.com
Lou Amorosi, VP of Orbital Sciences Small Spacecraft Launch Vehicles and Ken Kremer of Universe Today with LADEE and Minotaur V rocket at Launch Pad 0B at NASA Wallops Island. Credit: Ken Kremer/kenkremer.com

LADEE_Poster_01

Watch LADEE Launch Live!

The LADEE spacecraft on board a Minotaur V rocket, ready for launch at the Wallops Island Flight Facility in Virginia. Credit: NASA,

NASA’s heading back to the Moon, and you can see the launch – either live with your own eyes if you live on the US Eastern Seaboard, or online here or on NASA TV. The mission is LADEE, the Lunar Atmosphere and Dust Environment Explorer. As of this writing, the spacecraft sits atop a Minotaur V rocket on Wallops Island, Virginia. Launch is scheduled for 11:27 p.m. EDT on September 6 (0327 UTC Sept. 7). If you live in a swath long the US East Coast that stretches from Naine to North Carolina, check out our detailed information here of how you can see the nighttime launch for yourself, weather permitting.

If you want to watch online, we’ve got NASA’s UStream feed below, and all the online action starts Friday night at 9:30 p.m. EDT (0130 GMT, early Saturday.

Of course, if you have NASA TV on your cable or satellite lineup, you can watch on your television. Another option is that The Planetary Society is also have a live show starting an hour before launch at their website. Also the NASA EDGE team also will have a webcast.




Live streaming video by Ustream

For those of you in the viewing area, if you get pictures of the launch, share them with us (and we may post them on UT!) on our Flickr page.

Read more about LADEE here.

LADEE Minotaur V Launch – Maximum Elevation Map  The LADEE nighttime launch will be visible to millions of spectators across a wide area of the Eastern US -weather permitting. This map shows the maximum elevation (degrees above the horizon) that the Minotaur V rocket will reach during the Sep. 6, 2013 launch depending on your location along the US east coast. Credit: Orbital Sciences
LADEE Minotaur V Launch – Maximum Elevation Map
The LADEE nighttime launch will be visible to millions of spectators across a wide area of the Eastern US -weather permitting. This map shows the maximum elevation (degrees above the horizon) that the Minotaur V rocket will reach during the Sep. 6, 2013 launch depending on your location along the US east coast. Credit: Orbital Sciences

Weekly Space Hangout – Sept. 6, 2013: LADEE Launch, Chris Kraft, Life From Mars, SpaceShipTwo and More

We missed a week, but now we’re back with the Weekly Space Hangout… back with a vengeance, with a full crew of 8 space journalists. We talked about the upcoming LADEE Launch, the test flight of SpaceShipTwo, an interview with Chris Kraft and much much more.

Host: Fraser Cain

Journalists: Alan Boyle, Amy Shira Teitel, Casey Dreier, Jason Major, Dr. Nicole Gugliucci, David Dickinson, and Eric Berger

LADEE Launch Set for Friday Night
Get Involved with LADEE
Chris Kraft on NASA
Did Life on Earth Come From Mars
Deep Impact… Dead?
Kepler Re-purposing Ideas
SpaceShipTwo Test
Europa Clipper Mission Update
M87 Jet Seen By Hubble
Black Hole Shuts Down Star Formation

We broadcast the Weekly Space Hangout as a live Google+ Hangout on Air every Friday at 12:00pm Pacific / 3:00pm Eastern. You can watch the show on Universe Today, or from the Cosmoquest Event when we post it.

Giveaway: The Shirtsleeve Invention by Gloria Beasley Lauston

I love all things space related. I’m excited by the jaw-dropping images from the Hubble, awed by the Kepler spacecraft’s discoveries, and to be honest, almost moved to tears by the successful landing of the Mars Science Laboratory. As a boy, the Space Shuttle program seemed like science fiction come to life. Behind these peak moments in discovery, there are a lot of people doing a lot of hard work, dedicating their whole lives to solving one problem. One such person is Robert Beasley, the man behind the Thermal Protection tiles used on the Space Shuttle. Robert Beasley was an American chemist who invented and developed the Thermal Protection system for the Space Shuttles which allowed them to re-enter Earth’s atmosphere without burning up.

Universe Today and Bohlsen Group are teaming up to give away 2 free copies of The Shirtsleeve Invention by Gloria Beasley Lausten. Here’s how:

In order to be entered into the giveaway drawing, just put your email address into the box at the bottom of this post (where it says “Enter the Giveaway”) before Friday, September 13, 2013. We’ll send you a confirmation email, so you’ll need to click that to be entered into the drawing.

 

The Shirtsleeve Invention is the story of Beasley and his idea. The book is a very detailed history of Beasley’s life and career; sometimes a little too detailed. The Shirtsleeve Invention is written by his widow, Gloria Beasley Lausten, who is not a professional writer. At times it is a deeply personal account of her husband. It contains the kind of detail that only a spouse would know, so along with being an account of Beasley’s career, and how his drive and determination helped lead to the development of the Space Shuttle, it also contains lots of detail about his personal life and struggles through childhood, college, and adult life. The book is so personal and full of insight, it’s quite touching at times.

Interviewed after the initial successful flight and re-entry of the Space Shuttle Columbia in 1981, when Beasley’s ceramic tile system did its job and protected Columbia from the 2400 degree heat of re-entry, Bob said to a reporter, “That’s the end of so many years of heartache you can’t imagine. All the heartaches, all the stress, it was worth it.”

The meat of The Shirtsleeve Invention is the account of his idea for the Space Shuttles, and how the idea grew. How he struggled to convince others that his idea was a sound one. It wasn’t always easy, but like things sometimes turn out, his idea proved to be the key for the development of the Space Shuttle and the things that followed. Without the Shuttle Program, there would be no International Space Station and no Hubble Space Telescope. Without Beasley and his creativity and perseverance, who knows where the state of space exploration would be?

This book is a little miscast as a science book. There’s science in there, but for me the book bogged down a little with too much detail about his personal life. There are lots of letters back and forth between him and his relatives and future wife detailing his struggles in school and early working life. The book is realistic; no doubt about that. Without Robert Beasley, and countless others like him, where would the state of human knowledge be? He’s certainly deserving of recognition.

I enjoyed the book, but I found myself skimming over some of the more detailed parts of his private life. Universe Today readers may have a similar experience reading it. But for those of you specifically interested in the lives of people behind the science of space exploration, The Shirtsleeve Invention is for you.

If you don’t want to wait for the win, you can buy a copy on Amazon.com

Ride Along With SpaceShipTwo: Tail Footage Video of Latest Test Flight

Virgin Galactic's SpaceShipTwo soars in a powered flight test on Sept. 5, 2013. Credit: MarsScientific.com and Clay Center Observatory

Yesterday, Virgin Galactic’s SpaceShipTwo successfully completed its second supersonic rocket-powered test flight. In our previous article, we were able to share a video view of the flight — as seen from the ground. But now Virgin Galactic has shared the flight footage from a camera mounted on the tail of the ship, allowing us all to ride along and see the views. I’m hoping for they’ll eventually show a cabin view video so that we can see what the ride inside will be like.

The ship went to 69,000 feet (21 km, 13 miles) but you can still see the blackness of space and the curvature of Earth in the video.

Virgin Galactic Founder Sir Richard Branson said yesterday that commercial flights with passengers should begin in 2014 … which is next year, meaning that perhaps space flight for the rest of us is not always 5-10 years off anymore.