Watch for the Delta Aquarid Meteors This Weekend

The Southern Delta Aquarid radiant, looking southeast at 2AM local from latitude 30 degrees north on the morning of July 30th. (Created by the author in Starry Night).

The meteor shower drought ends this weekend.

The northern summer hemisphere meteor season is almost upon us. In a few weeks’ time, the Perseids — the “Old Faithful” of meteor showers — will be gracing night skies worldwide.

But the Perseids have an “opening act”- a meteor shower optimized for southern hemisphere skies known as the Delta Aquarids.

This year offers a mixed bag for this shower. The Delta Aquarids are expected to peak on July 30th and we should start seeing some action from this shower starting this weekend.

The Moon, however, also reaches Last Quarter phase the day before the expected peak of the Delta Aquarids this year on July 29th at 1:43PM EDT/17:43 Universal Time (UT). This will diminish the visibility of all but the brightest meteors in the early morning hours of July 30th.

A cluster of meteor shower radiants also lies nearby. The Eta Aquarids emanate from a point near the asterism known as the “Water Jar” in the constellation Aquarius around May 5th. Another nearby but weaker shower known as the Alpha Capricornids are also currently active, with a zenithal hourly rate (ZHR) approaching the average hourly sporadic rate of 5. And speaking of which, the antihelion point, another source of sporadic meteors, is nearby in late July as well in eastern Capricornus.

The Delta Aquarids are caused by remnants of Comet 96P/Machholz colliding with Earth’s atmosphere. The short period comet was only discovered in 1986 by amateur astronomer Donald Machholz. Prior to this, the source of the Delta Aquarids was a mystery.

The Delta Aquarids have a moderate atmospheric entry velocity (for a meteor shower, that is) around an average of 41 kilometres a second. They also have one of the lowest r values of a major shower at 3.2, meaning that they produce a disproportionately higher number of fainter meteors, although occasional brighter fireballs are also associated with this shower.

Image of an early confirmed Delta Aquarid captured by the UK Fireball Network (@ on Twitter) captured by their Ash Vale North camera.
Image of an early confirmed Delta Aquarid by the UK Meteor Network (@UKMeteorNetwork on Twitter) captured by their Ash Vale North camera on July 17th, 2013. (Credit: Richard Kacerek & United Kingdom Meteor Observation Network, used with permission).

The Delta Aquarids are also one the very few showers with a southern hemisphere radiant. It’s somewhat of a mystery as to why meteor showers seem to favor the northern hemisphere. Of the 18 major annual meteor showers, only four occur below the ecliptic plane and three (the Alpha Capricornids, and the Eta and Delta Aquarids) approach the Earth from south of the equator. A statistical fluke, or just the product of the current epoch?

In fact, the Delta Aquarids have the most southern radiant of any major shower, with a radiant located just north of the bright star Fomalhaut in the constellation Piscis Austrinus near Right Ascension 339 degrees and Declination -17 degrees.  Researchers have even broken this shower down into two distinct northern and southern radiants, although it’s the southern radiant that is the more active during the July season.

Together, this loose grouping of meteor shower radiants in the vicinity is known as the Aquarid-Capricornid complex.  The Delta Aquarids are active from July 14th to August 18th, and unlike most showers, have a very broad peak. This is why you’ll see sites often quote the maximum for the shower at anywhere from July 28th to the 31st. In fact, you may just catch a stray Delta Aquarid while on vigil for the Perseids in a few weeks!

The shower was first identified by astronomer G.L. Tupman, who plotted 65 meteors associated with the stream in 1870. Observations of the Delta Aquarids were an off-and-on affair throughout the early 20th century, with many charts erroneously listing them as the “Beta Piscids”. The separate northern and southern radiants weren’t even untangled until 1950. The advent of radio astronomy made more refined observations of the Delta Aquarids possible. In 1949, Canadian astronomer D.W.R. McKinley based out of Ottawa, Canada identified both streams and pinned down the 41 km per second velocity that’s still quoted for the shower today.

Further radio studies of the shower were carried out at Jodrell Bank in the early 1950’s, and the shower gave strong returns in the early 1970’s for southern hemisphere observers even with the Moon above the horizon, with ZHRs approaching 40. The best return for the Southern Delta Aquarids in recent times is listed by the International Meteor Organization as a ZHR of about 40 on the morning of July 28th, 2009.

A study of the Delta Aquarids in 1963 by Fred Whipple and S.E. Hamid reveal striking similarities between the Delta Aquarids and the January Quadrantids & daytime Arietid stream active in June. They note that the orbital parameters of the streams were similar about 1,400 years ago, and the paths are thought to have diverged due to perturbations from the planet Jupiter.

Observing the Delta Aquarids can serve as a great “dry run” for the Perseids in a few weeks. You don’t need any specialized gear, simply find a dark site, block the Moon behind a building or hill, and watch.

Photographing meteors is similar to doing long exposures of star trails. Simply aim your tripod mounted DSLR camera at a section of sky and take a series of time exposures about 1-3 minutes long to reveal meteor streaks. Images of Delta Aquarids seem elusive, almost to the point of being mythical. An internet search turns up more blurry pictures of guys in ape suits purporting to be Bigfoot than Delta Aquarid images… perhaps we can document the “legendary Delta Aquarids” this year?

– Read more of the fascinating history of the Delta Aquarids here.

– Seen a meteor? Be sure to tweet it to #Meteorwatch.

– The IMO wants your meteor counts and observations!

 

Spacesuited Astronauts Climb Aboard Boeing CST-100 Commercial Crew Capsule for Key Tests

NASA astronaut Randy Bresnik prepares to enter the CST-100 spacecraft, which was built inside The Boeing Company's Houston Product Support Center. Credit: NASA/Robert Markowitz

A pair of NASA astronauts donned their spacesuits for key fit check evaluations inside a test version of the Boeing Company’s CST-100 commercial ‘space taxi’ which was unveiled this week for the world’s first glimpse of the cabin’s interior.

Boeing is among a trio of American aerospace firms, including SpaceX and Sierra Nevada Corp, seeking to restore America’s capability to fly humans to Earth orbit and the space station using seed money from NASA’s Commercial Crew Program (CCP).

Astronauts Serena Aunon and Randy Bresnik conducted a day long series of technical evaluations inside a fully outfitted, full scale mock up of the CST-100, while wearing NASA’s iconic orange launch-and-entry flight suits from the space shuttle era.

During the tests, Boeing technicians monitored the astronauts ergonomic ability to work in the seats and move around during hands on use of the capsules equipment, display consoles and storage compartments.

The purpose of the testing at Boeing’s Houston Product Support Center is to see what works well and what needs modifications before fixing the final capsule design for construction.

“It’s an upgrade,” said astronaut Serena Aunon at the evaluation. “It is an American vehicle, of course it is an upgrade.”

This is an interior view of The Boeing Company's CST-100 spacecraft, which features LED lighting and tablet technology.  Image Credit: NASA/Robert Markowitz
This is an interior view of The Boeing Company’s CST-100 spacecraft, which features LED lighting and tablet technology.
Image Credit: NASA/Robert Markowitz

Former NASA Astronaut Chris Ferguson, the commander of the final shuttle flight (STS-135) by Atlantis, is leading Boeing’s test effort as the director of Boeing’s Crew and Mission Operations.

“These are our customers. They’re the ones who will take our spacecraft into flight, and if we’re not building it the way they want it we’re doing something wrong,” said Ferguson.

“We’ll probably make one more go-around and make sure that everything is just the way they like it.”

The CST-100 is designed to carry a crew of up to 7 astronauts, or a mix of cargo and crew, on missions to low-Earth orbit (LEO) and the International Space Station (ISS) around the middle of this decade.

Although it resembles Boeing’s Apollo-era capsules from the outside, the interior employs state of the art modern technology including sky blue LED lighting and tablet technology.

Check out this video showing the astronauts and engineers during the CST-100 testing

Nevertheless Boeing’s design goal is to keep the flight technology as simple as possible.

“What you’re not going to find is 1,100 or 1,600 switches,” said Ferguson. “When these guys go up in this, they’re primary mission is not to fly this spacecraft, they’re primary mission is to go to the space station for six months. So we don’t want to burden them with an inordinate amount of training to fly this vehicle. We want it to be intuitive.”

The CST-100 crew transporter will fly to orbit atop the venerable Atlas V rocket built by United Launch Alliance (ULA) from Launch Complex 41 on Cape Canaveral Air Force Station in Florida.

The CST-100 crew capsule awaits liftoff aboard an Atlas V launch vehicle at Cape Canaveral in this artist’s concept. Credit: Boeing
The CST-100 crew capsule awaits liftoff aboard an Atlas V launch vehicle at Cape Canaveral in this artist’s concept. Credit: Boeing

Boeing is aiming for an initial three day manned orbital test flight of the CST-100 during 2016, says John Mulholland, Boeing vice president and program manger for Commercial Programs.

The 1st docking mission to the ISS would follow in 2017 – depending on the very uncertain funding that Congress approves for NASA.

The Atlas V was also chosen to launch one of Boeing’s commercial crew competitors, namely the Dream Chaser mini shuttle built by Sierra Nevada Corp.

Boeing CST-100 capsule mock-up, interior view. Credit: Ken Kremer – kenkremer.com
Boeing CST-100 capsule early mock-up, interior view. Credit: Ken Kremer – kenkremer.com

NASA’s CCP program is fostering the development of the CST-100 as well as the SpaceX Dragon and Sierra Nevada Dream Chaser to replace America’s capability to launch humans to space that was lost following the retirement of NASA’s space shuttle orbiters two years ago in July 2011.

Since 2011, every American astronaut has been 100% dependent on the Russians and their Soyuz capsule to hitch a ride to the ISS.

“We pay one of our [ISS] partners, the Russians, $71 million a seat to fly,” says Ed Mango, CCP’s program manager. “What we want to do is give that to an American company to fly our crews into space.”

Simultaneously NASA and its industry partners are designing and building the Orion crew capsule and SLS heavy lift booster to send humans to the Moon and deep space destinations including Near Earth Asteroids and Mars.

Ken Kremer

Interior view of Boeing CST-100 commercial crew capsule. Credit: NASA
Interior view of Boeing CST-100 commercial crew capsule. Credit: NASA

Timelapse: Super Moon Rising Over the Rocky Mountians

A series of photos combined to show the rise of the July 22, 2013 ‘super’ full moon over the Rocky Mountains, shot near Vail, Colorado, at 10,000ft above sea level in the White River National Forest. Moon images are approximately 200 seconds apart. Credit and copyright: Cory Schmitz

Astrophotographer Cory Schmitz braved a brown bear in order to capture some wonderful images of the full Moon rise on July 22, 2013. This composite shows a series of images of the moonrise, and below is a beautiful timelapse.

This perigee Moon, a.k.a “Super Moon” was the third and final of the big full Moons for 2013. However, as astrophysicist Neil DeGrasse Tyson mentioned on Twitter, it is “Okay to call tonight’s Full Moon “super” but only if you would call a 13-inch pizza “super” compared with a 12-inch pizza.”

You can catch more of Cory with Fraser on the Virtual Star Parties on Sunday nights. Below are a couple of more great scenes from Cory’s full Moon experience:

A bear sits right on the spot where Cory Schmitz wanted to set up his photography equipment. Image courtesy Cory Schmitz.
A bear sits right on the spot where Cory Schmitz wanted to set up his photography equipment. Image courtesy Cory Schmitz.
The full-moon illuminated landcape, overlooking Interstate 70, near Vail, Colorado. Credit and copyright: Cory Schmitz.
The full-moon illuminated landcape, overlooking Interstate 70, near Vail, Colorado. Credit and copyright: Cory Schmitz.

How Can We Stop An Asteroid?

“It’s like looking for a charcoal briquette in the dark,” says Bill Nye the Science Guy in this new video from AsapSCIENCE… except he’s talking about briquettes hundreds of meters wide whizzing past our planet upwards of 8, 9, 10, even 20 kilometers per second — and much, much denser than charcoal.

Near-Earth asteroids are out there (and on occasion they even come in here) and, as the planet’s only technologically advanced spacefaring species, you could say the onus is on us to prevent a major asteroid impact from occurring, if at all possible — whether to avoid damage in a populated area or the next mass extinction event. But how can we even find all these sooty space rocks and, once we do, what can be done to stop any headed our way?

Watch the video (and then when you’re done, go visit the B612 Foundation’s Sentinel page to learn more about an upcoming mission to bag some of those space briquettes.)

Kepler Team Has Some Success in Reaction Wheel Recovery Attempt

A diagram of the Kepler space telescope. Credit: NASA

In May of this year, the Kepler planet-hunting telescope lost its ability to precisely point toward stars, putting its exoplanet search in jeopardy. Two of the four reaction wheels failed, and Kepler scientists say the spacecraft needs at least three reaction wheels to be able to point precisely enough to continue the mission. In the latest update from Kepler, mission manager Roger Hunter says that the team has made a little headway and had initial success in testing the two failed reaction wheels. But the big test will come later to see how much friction the two wheels generate with continued use.

On Thursday, July 18, 2013 the team initiated recovery tests on the spacecraft’s two failed wheels in order to characterize how the two wheels (Reaction Wheels (RW) 4 and 2) operated and to determine if either could be returned to full use.

RW4 did not spin in the positive (or clockwise) direction but the wheel did spin in the negative (or counterclockwise) direction. Wheel 4 is thought to be the more seriously damaged of the two, Hunter said.

Then, on Monday, July 22 the team tested RW2, and that wheel responded positively to test commands and spun in both directions.

“Over the next two weeks, engineers will review the data from these tests and consider what steps to take next,” Hunter said. “Although both wheels have shown motion, the friction levels will be critical in future considerations. The details of the wheel friction are under analysis.”

Too much friction from the reaction wheels can cause vibration and impact the pointing precision of the telescope.

Kepler has found over 2,700 planetary candidates, with 130 confirmed planets, from the size of Earth’s moon to larger than Jupiter. There are two years of data that has yet to be combed through to detect the faint periodic dimming of distant starlight – the telltale sign of a planet transiting the face of its host star.

Still, the loss of Kepler would be a blow to the search for planets orbiting other stars. Earlier this year, Kepler team members said if the spacecraft could no longer do planet-hunting, there’s a chance it could do something else , such as asteroid hunting or other astronomical observations…just something that doesn’t need as precise ability for pointing.

Source: Kepler Mission Manager Update

Pretty Picture from Space: Thunderstorms Over Southern California

Early morning lightning storms, inland of LA and San Diego, on July 21, 2013, as seen from the International Space Station. Credit: NASA

Astronaut Karen Nyberg shared this image on her Twitter feed, showing the view from the International Space Station on July 21, 2013 with thunderstorms brewing over Los Angeles and San Diego, California. City lights are peering through the clouds, while lightning brightens the dark storm clouds. A solar array from a Russian spacecraft docked to the ISS appears at the bottom of the image.

Incredible view.

Russian Meteorite Bits Will Be Used In Some 2014 Olympic Medals

The two main smoke trails left by the Russian meteorite as it passed over the city of Chelyabinsk. Credit: AP Photo/Chelyabinsk.ru

Going for gold in the Sochi Winter Olympics could earn athletes some out-of-this-world rocks.

Athletes who top the podium on Feb. 15, 2014 will receive special medals with pieces of the Chelyabinsk meteor that broke up over the remote Russian community on that day in 2013, according to media reports.

“We will hand out our medals to all the athletes who will win gold on that day, because both the meteorite strike and the Olympic Games are the global events,” stated Chelyabinsk Region Culture Minister Alexei Betekhtin in a Ria Novosti report.

The reported sports that will receive these medals include:

  • Women’s 1,000 meter and men’s 1,500 meter short track;
  • Men’s skeleton;
  • Women’s cross-country skiing relay;
  • Men’s K-125 ski jump;
  • Men’s 1,500 meter speed skating;
  • Women’s super giant slalom.

The 55-foot (17-meter) meteor’s airburst in February damaged buildings, causing injuries and fright among those in the region. As astronomers have been collecting fragments and calculating the orbit of the fireball, the incident put renewed attention on the need to monitor space rocks that could threaten the Earth.

Check out this Universe Today collection of videos showing what the meteor looked like.

Podcast: Creating a Scienc-y Society

Our modern society depends on science. It impacts the way we eat, work, communicate and play. And yet, most people take our amazing scientific advancement for granted, and some are even hostile to it. What can we do to spread the love of science through education, outreach and media?

Click here to download the episode.

Or subscribe to: astronomycast.com/podcast.xml with your podcatching software.

“Creating a Scienc-y Society” on the Astronomy Cast website, with shownotes and transcript.

And the podcast is also available as a video, as Fraser and Pamela now record Astronomy Cast as part of a Google+ Hangout (usually recorded every Monday at 3 pm Eastern Time):

HiRISE Camera Spots Curiosity Rover (and tracks) on Mars

The view from the Mars Reconnaissance Orbiter's HiRISE camera showing the Curiosity Rover at the 'Shaler' outcrop in Gale Crater. Credit: NASA/JPL-Caltech/Univ. of Arizona.

I spy the Curiosity Rover! With the Sun over its shoulders, the High Resolution Imaging Science Experiment (HiRISE) camera on the Mars Reconnaissance Orbiter snapped this image of the Curiosity rover on June 27, 2013, when Curiosity was at an outcrop called “Shaler” in the “Glenelg” area of Gale Crater. The rover appears as a bluish dot near the lower right corner of this enhanced-color image, and also visible are the rover’s tracks.

“The rover tracks stand out clearly in this view,” wrote HiRISE principal investigator Alfred McEwen on the HiRISE website, “extending west to the landing site where two bright, relatively blue spots indicate where MSL’s landing jets cleared off the redder surface dust.”

McEwen explained how MRO was maneuvered to provide unique lighting, where the Sun was almost directly behind the camera, so that the Sun, MRO, and MSL on the surface were all aligned in nearly a straight line.

When HiRISE captured this view, the Mars Reconnaissance Orbiter was rolled for an eastward-looking angle rather than straight downward. The afternoon sun illuminated the scene from the western sky, so the lighting was nearly behind the camera. Specifically, the angle from sun to orbiter to rover was just 5.47 degrees.

McEwen said this geometry hides shadows and better reveals subtle color variations. “With enhanced colors, we can view the region around the landing site and Yellowknife Bay,” he said.

For scale, the two parallel lines of the wheel tracks are about 10 feet (3 meters) apart.

Curiosity has now moved on, and is now heading towards the large mound in Gale Crater (with long drives!) officially named Aeolis Mons (also called Mount Sharp.)

Submissions Needed for Saturn Mosaic Project

Guillermo Abramson from Argentina takes a picture of himself waving at Saturn on July 19, 2013 during 'The Day the Earth Smiled' event. Credit and copyright: Guillermo Abramson.

For all our astrophotographer friends out there: If you haven’t heard about the Saturn Mosaic Project, you’ll want to take note of this. In cooperation with Astronomers Without Borders, the special project for the recent Cassini image of planet Earth, called The Day The Earth Smiled (TDTES) is sponsoring a Saturn Mosaic project, where you can submit an image you’ve taken of Saturn. Those received will be compiled into a mosaic that will look like image that Cassini took on July 19, showing Earth just below Saturn’s rings (see below). But when you zoom in you’ll see all the pictures from Earth that the mosaic is made of.

I received a note from AWB President Mike Simmons saying they need more submissions, and the deadline for submitting a photo has been extended to July 29, 2013.

“I know a lot more people will want to be a part of this if they know about it,” Mike said via email. “It’s something to tide everyone over and keep the buzz going while we wait for the final mosaic from Cassini.”

But you don’t have to be a seasoned astrophotographer to take part in the Saturn Mosaic. The image you submit doesn’t have to be one taken with a large telescope – just take a picture of Saturn as a “star” in the sky with an ordinary camera, capturing your surroundings as well. Or it could be an image you took earlier this year.

“There are other kinds of photos that anyone can submit that don’t even requiring imaging the sky,” Simmons added. “We didn’t want to limit this to only those with the ability and weather to image Saturn itself.  Photos of outreach events or people waving at Saturn from JPL’s Wave at Saturn are good, too.  Or just a portrait taken with the Lord of the Rings — a live view projected from a telescope or even a photo.  Like a couple getting married at the time Cassini was taking their photo (and everyone else’s) posed with Saturn.  I took the easy way and took a shot of me and Saturn in my office.”

These can be taken any time, so people can still take a shot and get into the mosaic (the image does need to have been taken in 2013, however.)

“It’s all about sharing and commemorating the excitement of the moment when the photo was taken, and the anticipation of the release of Cassini’s historic photos,” Simmons said.  “Like all Astronomers Without Borders project, it’s open to everyone on Earth.  And beyond.”

For a slide show of some of the great shots people have submitted so far, visit the Saturn Mosaic Project page to see things like Saturn with a T-Rex, outreach in Iran, kids drawings of Saturn in Ghana, and more.

Simmons said The World at Night will create the final mosaic, which is expected to be online and ready to view and zoom in on by August 4 or earlier.

So take your best shot and be a part of the mosaic! Find out more on the Astronomers Without Borders website.

The Day the Earth Smiled: Sneak Preview. In this rare image taken on July 19, 2013, the wide-angle camera on NASA's Cassini spacecraft has captured Saturn's rings and our planet Earth and its moon in the same frame. Image Credit: NASA/JPL-Caltech/Space Science Institute
The Day the Earth Smiled: Sneak Preview. In this rare image taken on July 19, 2013, the wide-angle camera on NASA’s Cassini spacecraft has captured Saturn’s rings and our planet Earth and its moon in the same frame. Image Credit: NASA/JPL-Caltech/Space Science Institute