NASA Alters 1st Orion/SLS Flight – Bold Upgrade to Deep Space Asteroid Harbinger Planned

NASA Orion spacecraft blasts off atop 1st Space Launch System rocket in 2017 - attached to European provided service module – on an enhanced m mission to Deep Space where an asteroid could be relocated as early as 2021. Credit: NASA

NASA Orion spacecraft blasts off atop 1st Space Launch System rocket in 2017 – attached to European provided service module – on an ambitious mission to explore Deep Space some 40,000 miles beyond the Moon, where an asteroid could be relocated as early as 2021. Credit: NASA
Story updated with further details[/caption]

NASA managers have announced a bold new plan to significantly alter and upgrade the goals and complexity of the 1st mission of the integrated Orion/Space Launch System (SLS) human exploration architecture – planned for blastoff in late 2017.

The ambitious first flight, called Exploration Mission 1 (EM-1), would be targeted to send an unpiloted Orion spacecraft to a point more than 40,000 miles (70,000 kilometers) beyond the Moon as a forerunner supporting NASA’s new Asteroid Redirect Initiative – recently approved by the Obama Administration.

The EM-1 flight will now serve as an elaborate harbinger to NASA’s likewise enhanced EM-2 mission, which would dispatch a crew of astronauts for up close investigation of a small Near Earth Asteroid relocated to the Moon’s vicinity.

Orion crew module separates from Space Launch System (SLS) upper stage. Credit: NASA
Orion crew module separates from Space Launch System (SLS) upper stage. Credit: NASA

Until recently NASA’s plan had been to launch the first crewed Orion atop the 2nd SLS rocket in 2021 to a high orbit around the moon on the EM-2 mission, said NASA Associate Administrator Lori Garver in an prior interview with me at the Kennedy Space Center.

Concept of NASA spacecraft with Asteroid capture mechanism deployed to redirect a small space rock to a stable lunar orbit for later study by astronauts aboard Orion crew capsule. Credit: NASA.
Concept of NASA spacecraft with Asteroid capture mechanism deployed to redirect a small space rock to a stable lunar orbit for later study by astronauts aboard Orion crew capsule. Credit: NASA.

The enhanced EM-1 flight would involve launching an unmanned Orion, fully integrated with the Block 1 SLS to a Deep Retrograde Orbit (DRO) near the moon, a stable orbit in the Earth-moon system where an asteroid could be moved to as early as 2021.

Orion’s mission duration would be nearly tripled to 25 days from the original 10 days.

“The EM-1 mission with include approximately nine days outbound, three to six days in deep retrograde orbit and nine days back,” Brandi Dean, NASA Johnson Space Center spokeswoman told Universe Today exclusively.

The proposed much more technologically difficult EM-1 mission would allow for an exceptionally more vigorous work out and evaluation of the design of all flight systems for both Orion and SLS before risking a flight with humans aboard.

Asteroid Capture in Progress
Asteroid Capture in Progress

A slew of additional thruster firings would exercise the engines to change orbital parameters outbound, around the moon and inbound for reentry.

The current Deep Retrograde Orbit (DRO) plan includes several thruster firings from the Orion service module, including a powered lunar flyby, an insertion at DRO, an extraction maneuver from the DRO and a powered flyby on return to Earth.

Orion would be outfitted with sensors to collect a wide variety of measurements to evaluate its operation in the harsh space environment.

“EM-1 will have a compliment of both operational flight instrumentation and development flight instrumentation. This instrumentation suite gives us the ability to measure many attributes of system functionality and performance, including thermal, stress, displacement, acceleration, pressure and radiation,” Dean told me.

The EM-1 flight has many years of planning and development ahead and further revisions prior to the 2017 liftoff are likely.

“Final flight test objectives and the exact set of instrumentation required to meet those objectives is currently under development,” Dean explained.

Orion is NASA’s next generation manned space vehicle following the retirement of NASA’s trio of Space Shuttles in 2011.

The SLS launcher will be the most powerful and capable rocket ever built by humans – exceeding the liftoff thrust of the Apollo era Moon landing booster, the mighty Saturn V.

“We sent Apollo around the moon before we landed on it and tested the space shuttle’s landing performance before it ever returned from space.” said Dan Dumbacher, NASA’s deputy associate administrator for exploration systems development, in a statement.

“We’ve always planned for EM-1 to serve as the first test of SLS and Orion together and as a critical step in preparing for crewed flights. This change still gives us that opportunity and also gives us a chance to test operations planning ahead of our mission to a relocated asteroid.”

Both Orion and SLS are under active and accelerating development by NASA and its industrial partners.

The 1st Orion capsule is slated to blast off on the unpiloted EFT-1 test flight in September 2014 atop a Delta IV Heavy rocket on a two orbit test flight to an altitude of 3,600 miles above Earth’s surface.

Technicians work on mockups of the Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) to simulate critical assembly techniques inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center (KSC) in Florida for the EFT-1 mission due to liftoff in September 2014. Credit: Ken Kremer/kenkremer.com
Technicians work on mockups of the Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) to simulate critical assembly techniques inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center (KSC) in Florida for the EFT-1 mission due to liftoff in September 2014. Credit: Ken Kremer/kenkremer.com

It will then reenter Earth’s atmosphere at speeds of about 20,000 MPH (11 km/sec) and endure temperatures of 4,000 degrees Fahrenheit in a critical test designed to evaluate the performance of Orion’s heatshield and numerous spacecraft systems.

Orion EFT-1 is already under construction at the Kennedy Space Center (KSC) by prime contractor Lockheed Martin – read my earlier story here.

Integration and stacking tests with Orion’s emergency Launch Abort System are also in progress at KSC – details here.

NASA says the SLS is also in the midst of a extensive review process called the Preliminary Design Review (PDR) to ensure that all launch vehicle components and systems will achieve the specified performance targets and be completed in time to meet the 2017 launch date. The PDR will be completed later this summer.

NASA’s goal with Orion/SLS is to send humans to the Moon and other Deep Space destinations like Asteroids and Mars for the first time in over forty years since the final manned lunar landing by Apollo 17 back in 1972.

NASA Headquarters will make a final decision on upgrading the EM-1 mission after extensive technical reviews this summer.

Ken Kremer

Schematic of Orion components. Credit: NASA
Schematic of Orion components. Credit: NASA

Opening Sequence of Today’s ISS Spacewalk Highlight Video Will Knock Your Space Socks Off

Astronaut Karen Nyberg helps Chris Cassidy (left) and Luca Parmitano suit up for their spacewalk on July 9, 2013. Credit: NASA

Want a “you are there” view of today’s EVA that took place outside the International Space Station? Take a look at this great video of astronaut Chris Cassidy getting a ride on the station’s Canadarm-2 to make repairs and prepare for a new Russian laboratory. There are several great “over the shoulder” views during this short highlight video.

During their 6-hour and 7-minute spacewalk, Cassidy of NASA and Luca Parmitano of the European Space Agency worked on replacing a failed communications receiver, relocating grapple bars for future spacewalks and stringing cables for the when the Russian laboratory module arrives later this year.

The Ku-band communications receiver replaces one that failed last December. There was already a redundant backup system now in use, and this new one will become the backup.

The new Russian lab, called Nauka, will replace the Pirs airlock. It is scheduled to launch on a Proton rocket booster late this year, although the flight could be delayed a bit until early next year as because of assembly delays in Russia.

This spacewalk was the first of two in as many weeks for the duo. They will again venture outside the Quest airlock on July 16 for more upgrades and repairs. This was Parmitano’s first spacewalk, and he has now become the first Italian astronaut to walk in space. Old pro Cassidy has now been on five spacewalks, and this was the 170th spacewalk in support of space station assembly and maintenance.

60 Billion Habitable Planets in the Milky Way Alone? Astronomers say Yes!

An artist's conception of how common exoplanets are throughout the Milky Way Galaxy. Image Credit: Wikipedia

A new study suggests that the number of habitable exoplanets within the Milky Way alone may reach 60 billion.

Previous research performed by a team at Harvard University suggested that there is one Earth-sized planet in the habitable zone of each red dwarf star. But researchers at the University of Chicago and Northwestern University have now extended the habitable zone and doubled this estimate.

The research team, lead by Dr. Jun Yang considered one more variable in their calculations: cloud cover. Most exoplanets are tidally locked to their host stars – one hemisphere continually faces the star, while one continuously faces away. These tidally locked planets have a permanent dayside and a permanent nightside.

One would expect the temperature gradient between the two to be very high, as the dayside is continuously receiving stellar flux, while the nightside is always in darkness. Computer simulations that take into account cloud cover show that this is not the case.

The dayside is covered by clouds, which lead to a “stabilizing cloud feedback” on climate.  It has a higher cloud albedo (more light is reflected off the clouds) and a lower greenhouse effect. The presence of clouds actually causes the dayside to be much cooler than expected.

“Tidally locked planets have low enough surface temperatures to be habitable,” explains Jang in his recently published paper. Cloud cover is so effective it even extends the habitable zone to twice the stellar flux. Planets twice as close to their host star are still cool enough to be habitable.

But these new statistics do not apply to just a few stars. Red dwarfs “represent about ¾ of the stars in the galaxy, so it applies to a huge number of planets,” Dr. Abbot, co-author on the paper, told Universe Today. It doubles the number of planets previously thought habitable throughout the entire galaxy.

Not only is the habitable zone around red dwarfs much larger, red dwarfs also live for much longer periods of time. In fact, the Universe is not old enough for any of these long-living stars to have died yet. This gives life the amount of time necessary to form. After all, it took human beings 4.5 billions years to appear on Earth.

Another study we reported on earlier also revised and extrapolated the habitable zone around red dwarf stars.

Future observations will verify this model by measuring the cloud temperatures. On the dayside, we will only be able to see the high cool clouds. A planet resembling this model will therefore look very cold on the dayside. In fact, “a planet that does show the cloud feedback will look hotter on the nightside than the dayside,” explains Abbot.

This effect will be testable with the James Webb Space Telescope.  All in all, the Milky Way is likely to be teeming with life.

The results will be published in Astrophysical Journal Letters (preprint available here).

NASA Tanks: Not Just Heavy Metal Any More

Artist's conception of NASA's Space Launch System with Orion crewed deep space capsule. Credit: NASA

NASA’s future in fuels will see less heavy metal. Literally.

The agency just finished testing on a composite propellant tank that holds cryogenics, or super-chilled gases that are commonly used as rocket fuel (such as for the space shuttle). The agency brought the test tank down to -423 degrees Fahrenheit, put it through a few cycles and ramped up the internal pressure.

Composites are lighter material than the traditional metals that are used to hold these gases. NASA is excitedly throwing out descriptors such as “game-changing” when it talks about this, and has some reason to do so: composites are lighter than metals.

The light weight of composite tanks makes them lighter to lift off the ground. This reduces the costs of launch, which in turn reduces the overall cost of a mission. That will make penny-counters at the agency happier as the agency battles for funding dollars in fiscal 2014 and beyond.

The first of these tanks is likely to be used in the upper stage of NASA’s Space Launch System rocket, which is under development right now. That’s the rocket that’s supposed to send the Orion spacecraft (aiming for a 2014 test flight) into space in the latter years of this decade.

“The tank manufacturing process represents a number of industry breakthroughs, including automated fiber placement of oven-cured materials, fiber placement of an all-composite tank wall design that is leak-tight, and a tooling approach that eliminates heavy joints,” stated Dan Rivera, the Boeing cryogenic tank program manager at Marshall.

Boeing and NASA are now working on another composite tank that should be tested at Marshall later in 2013.

Source: NASA

Curiosity rover Embarks on Epic Trek To Mount Sharp

This photomosic shows NASA’s Curiosity departing at last for Mount Sharp- her main science destination. Note the wheel tracks on the Red Planet’s surface. The navcam camera images were taken on July 4, 2013 (Sol 324). Credit: NASA/JPL-Caltech/Ken Kremer (kenkremer.com)/Marco Di Lorenzo

NASA’s Curiosity rover has at last begun her epic trek to the layered slopes of mysterious Mount Sharp – the mission’s primary destination which looms supreme inside the Gale Crater landing site.

Scientists expect to discover signatures of the chemical ingredients that potentially are markers for a Martian habitable zone, while climbing up Mount Sharp.

On July 4 (Sol 324), the six wheeled robot started driving away from the Glenelg and Yellowknife Bay areas where she has worked more than half a year investigating the alien terrain and drilling into Martian rocks for the first time in history.

“We have started the long traverse to the base of Mt. Sharp (Aeolis Mons), the long-term goal of the mission!” announced science team member Ken Herkenhoff of the USGS.

So far the NASA rover already driven more than 190 feet (58 meters) over two excursions on July 4 and 7, away from her last science campaign at the Shaler outcrop of cross-bedded, sedimentary outcrops. Another drive is planned today.

Billions of years of Mars geologic history are preserved in the sedimentary layers of Mount Sharp- including the ancient time period when the Red Planet was far wetter and warmer than today, and thus more hospitable to the origin of life.

Billion-Pixel View From Curiosity at Rocknest, Raw Color.  This full-circle view combined nearly 900 images taken by NASA's Curiosity Mars rover, generating a panorama with 1.3 billion pixels in the full-resolution version. The view is centered toward the south, with north at both ends. It shows Curiosity at the "Rocknest" site where the rover scooped up samples of windblown dust and sand. Curiosity used three cameras to take the component images on several different days between Oct. 5 and Nov. 16, 2012. Credit: NASA/JPL-Caltech/MSSS
Billion-Pixel View From Curiosity at Rocknest, Raw Color. This full-circle view combined nearly 900 images taken by NASA’s Curiosity Mars rover, generating a panorama with 1.3 billion pixels in the full-resolution version. The view is centered toward the south, with north at both ends. It shows Curiosity at the “Rocknest” site where the rover scooped up samples of windblown dust and sand. Curiosity used three cameras to take the component images on several different days between Oct. 5 and Nov. 16, 2012. Credit: NASA/JPL-Caltech/MSSS

The huge mountain rises about 3.4 miles (5.5 km) from the center of Gale Crater. Its taller than Mount Ranier in Washington State.

The overland journey could take nearly a year or even longer into 2014 to arrive at the base of Mount Sharp, depending on what the 1 ton behemoth sees along the way.

And the scientists are eager to make as many discoveries as possible.

“The mission is discovery driven,” says John Grotznger of the California Institute of Technology in Pasadena, Calif., who leads NASA’s Curiosity Mars Science Laboratory mission. “We will go to where the science takes us.”

This is a cropped, reduced version of panorama from NASA's Mars rover Curiosity with 1.3 billion pixels in the full-resolution version see full panorama below. It shows Curiosity at the "Rocknest" site where the rover scooped up samples of windblown dust and sand. Curiosity used three cameras to take the component images on several different days between Oct. 5 and Nov. 16, 2012. Viewers can explore this image with pan and zoom controls at http://mars.nasa.gov/bp1/. Credit: NASA/JPL-Caltech/MSSS
This is a cropped, reduced version of panorama from NASA’s Mars rover Curiosity with 1.3 billion pixels in the full-resolution version see full panorama above. It shows Curiosity at the “Rocknest” site where the rover scooped up samples of windblown dust and sand. Curiosity used three cameras to take the component images on several different days between Oct. 5 and Nov. 16, 2012. Viewers can explore this image with pan and zoom controls at http://mars.nasa.gov/bp1/. Credit: NASA/JPL-Caltech/MSSS

NASA chose Gale Crater as the landing site specifically to dispatch Curiosity to investigate the sedimentary layers of Mount Sharp because in surveys from Mars orbit it exhibited signatures of clay minerals that form in neutral water and that could possibly support the origin and evolution of simple Martian life forms, past or present.

“We have a real desire to get to Mount Sharp because there we see variations in the mineralogy as we go up from the base to higher levels and a change in the record of the environment,” explained Joy Crisp of JPL, Curiosity’s deputy project scientist.

“If we pass something amazing and compelling we might turn around and drive back,” Crisp added.

“The challenge for the science team will be to identify the most important targets along the way, and to study them without delaying drive progress too much,” notes Herkenoff.

Mount Sharp lies about 5 miles (8 kilometers) distant – as the Martian crow flies.

And Curiosity must also pass through a potentially treacherous dune field to get there.

“We are looking for the best path though,” said Curiosity Project Manager Jim Erickson of NASA’s Jet Propulsion Laboratory, Pasadena, Calif. at a recent media briefing.

Fisheye view of Mount Sharp from the hazcam camera on July 6, 2013 (Sol 326).  Credit: NASA/JPL-Caltech
Fisheye view of Mount Sharp from the hazcam camera on July 6, 2013 (Sol 326). Credit: NASA/JPL-Caltech

11 months ago on Aug. 6 , 2012, Curiosity made an unprecedented pinpoint touchdown inside Gale Crater using the never before used Sky crane descent thrusters.

Long before even arriving at destination Mount Sharp, Curiosity has already successfully accomplished the key science objective of the mission when she discovered that liquid water flowed at this spot on Mars, it possesses the key chemical ingredients required for life and was habitable in the past.

Drill samples from the ‘John Klein’ outcrop at Yellowknife Bay analyzed by Curiosity’s pair of onboard chemistry labs – SAM & Chemin – revealed that this location contains clay minerals required to support microbial life forms.

“We have found a habitable environment [at John Klein] which is so benign and supportive of life that probably if this water was around, and you had been on the planet, you would have been able to drink it,” said Grotzinger.

Ken Kremer

Carnival of Space #309

This week’s Carnival of Space is hosted by Brie Allen at the Tranquility Base blog.

Click here to read Carnival of Space #309.

And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.

Podcast: The Spacecraft That Wouldn’t Die

The Solar Max Spacecraft. Credit: NASA.

In our previous episode, week we explored the various ways spacecraft can die. But this week, we explore the spacecraft (and the scientists) who never give up, snatching victory from the jaws of defeat. We’ll look at clever solutions to potential spacecraft catastrophes.

Click here to download the episode.

Or subscribe to: astronomycast.com/podcast.xml with your podcatching software.

“Death of a Spacecraft” on the Astronomy Cast website, with shownotes and transcript.

And the podcast is also available as a video, as Fraser and Pamela now record Astronomy Cast as part of a Google+ Hangout:

Conjunctions to Watch For in July

The waxing crescent Moon joins the evening sky early this week. (Photo by author).

The planets are slowly returning into view this month, bashfully peeking out from behind the Sun in the dawn & dusk sky. This month offers a bonanza of photogenic conjunctions, involving the Moon, planets and bright stars.

The action begins tonight on July 8th, as the waxing crescent Moon joins the planet Venus in the dusk sky. The razor thin Moon will be a challenge on Monday night, as it just passed New on the morning of the 8th at 3:14AM EDT/7:14 Universal Time (UT). The record for spotting the thin crescent with the naked eye currently stands at 15 hours and 32 minutes, completed by Stephen O’Meara on May 1990. Binoculars help considerably in this endeavor.  Wait until 15 minutes after local sunset, and then begin patiently sweeping the horizon.

Mr. Thierry Legault completed an ultimate photographic challenge earlier today, capturing the Moon at the precise moment of  New phase!

The Moon & Venus on the evening of July 9th from latitude 30 degrees north, about 30 minutes after sunset. (Created by the author using Stellarium).
The Moon & Venus on the evening of July 9th as seen from latitude 30 degrees north, about 30 minutes after sunset. (Created by the author using Stellarium).

This week  marks the start of lunation 1120. The Moon will be much easier to nab for observers worldwide on Tuesday night, July 9th for observers worldwide. The sighting of the waxing crescent Moon will also mark the start of the Muslim month of Ramadan for 2013. Due to the angle of the ecliptic in July, many northern hemisphere observers may not spot the Moon until Wednesday night on July 10th, about 6.7 degrees south west of -4.0 magnitude Venus.

Did you know? There are Guidelines for the Performance of Islamic Rites for Muslims aboard the International Space Station. It’s interesting to note that the timing of the rituals follows the point from which the astronaut originally embarked from the Earth, which is exclusively the Baikonur Cosmodrome in Kazakhstan for the foreseeable future of manned spaceflight.

Malaysia’s first astronaut, Sheikh Muszaphar Shukor observed Ramadan aboard the International Space Station in 2007.

From there, the crescent Moon fattens, meeting up with Saturn and Spica on the evenings of July 15th and 16th. The Moon will actually occult (pass in front of) the bright star Spica on the evening of July 15/16th at ~3:33UT/11:33PM EDT (on the 15th) for observers in Central America and western South America. The rest of us will see a near miss worldwide.

The waxing crescent Moon nearing Spica on the evening of the 15th at 10PM EDT. The Moon reaches 1st Quarter on the same evening at 11:18PM EDT. (Created by the author using Starry Night).
The waxing crescent Moon nearing Spica on the evening of the 15th at 10PM EDT. The Moon reaches 1st Quarter phase on the same evening at 11:18PM EDT. (Created by the author using Starry Night).

This is the 13th in a cycle of 18 occultations of Spica by our Moon spanning 2012-2013. Spica is one of four stars brighter than magnitude +1.4 that lie close enough to the ecliptic to be occulted by our Moon, the others being Antares, Regulus and Aldebaran. Saturn will lie 3 degrees from the Moon on the evening of July 16th.

Can you nab Spica and Saturn near the Moon with binoculars in the daytime around the 15th? It can be done, using the afternoon daytime Moon as a guide. Crystal clear skies (a rarity in the northern hemisphere summertime, I know) and physically blocking the Sun behind a building or hill helps.

The waxing gibbous Moon will also occult +2.8 Alpha Librae for South Africa on July 17th around 17:09UT & +4.4th magnitude Xi Ophiuchi for much of North America on the night of July 19th-20th.

And speaking of Regulus, the brightest star in the constellation Leo lies only a little over a degree (two Full Moon diameters) from Venus only the evenings of July 21st & the 22nd. 77.5 light years distant, Regulus is currently over 100 times fainter at magnitude +1.4. Can you squeeze both into the field of view of your telescope at low power? Venus’s mythical ‘moon’ Neith lives!

Venus can even occult Regulus on rare occasions, as last occurred on July 7th, 1959 and will happen next on October 1st, 2044.

But there’s morning action afoot as well. The planets Mars and Jupiter have emerged from solar conjunction on April 18th and June 19th, 2013 respectively, and can now be seen low in the dawn skies about 30 minutes before sunrise.

Mars and Jupiter in a close conjunction on the morning of July 22nd, about 30 minutes before sunrise as seen from latitude 30 degrees north. (Created by the author using Starry Night).
Mars and Jupiter in a close conjunction on the morning of July 22nd, about 30 minutes before sunrise as seen from latitude 30 degrees north. (Created by the author using Starry Night).

Mars approaches Jupiter in the dawn until the pair is only 0.79 degrees (about 48 arc minutes) apart on Monday, July 22nd. Mars shines at magnitude +1.6 and shows a tiny 3.9” disk, while Jupiter displays a 32.5” disk shining at magnitude -1.9 on this date. Conjunction occurs at about 7:00 UT/3:00 AM EDT, after which the two will begin to race apart. Mercury is visible beginning its morning apparition over 5 degrees to the lower right of the pair (see above).

Jupiter will reach opposition and reenter the evening sky on January 5th, 2014, while Mars won’t do the same until April 8th of next year. Weird factoid alert: neither Jupiter or Mars reach opposition in 2013! What effect does this have on terrestrial affairs? Absolutely none, well unless you’re a planetary imager/observer…

Mars also reaches its most northern declination of 2013 of 24 degrees in the constellation Gemini on July 16th at 7:00 AM EDT/11:00 UT.  Mars can wander as far as declination 27 degrees north, as last happened in 1993.

Finally, are you observing from southern Mexico this week and up for a true challenge? The asteroid 238 Hypatia occults a +7.4 magnitude star from 10:13-10:49 UT on July 10th in the constellation Pisces for up to 29 seconds. This event will be bright enough to watch with binoculars- check out our best prospects for asteroid occultations of stars in 2013 here and here.

Good luck, clear skies, and be sure to post those astro-pics in the Universe Today’s Flickr community!

Shuttle Atlantis Soars In New Exhibit, Two Years After Last Space Launch

The belly of space shuttle Atlantis in the new exhibit at the Kennedy Space Center. Credit: Steven Coates

Two years after space shuttle Atlantis launched into space, it’s still looking like it returned from a long journey. It “bears the scars, scorch marks and space dust of its last mission,” writes the Kennedy Space Center Visitors’ Center.

That’s deliberate, though. In late June, visitors to the Orlando-area attraction got the chance to get nose-to-nose with this orbiter in a new exhibit. Atlantis, unlike similar exhibits of other shuttles so far, is perched on a precise 43.21-degree angle to give a view previously afforded only to astronauts.

The $100 million, 90,000-square-foot exhibit also has an International Space Station gallery, a simulated shuttle launch ride, and training simulators for landing, space station docking and moving the robotic Canadarm.

Today (July 8) marked the two-year launch anniversary of STS-135, the last journey of both Atlantis and the shuttle program. Its main goal was to haul a huge load of supplies and spare parts to the space station. The event also generated a NASA Social, which many of the participants (including Universe Today‘s Jason Major) recalled today:

bittersweet_sts135

For those of us who couldn’t make the launch in person, luckily there’s plenty of multimedia material out there to experience it virtually. Universe Today‘s Ken Kremer was also at the final launch, and posted some photos on our website . NASA has a hub commemorating the last shuttle launch. NASA Kennedy published a mission tribute video, including some rarer footage.

And of course, you can watch the launch itself in many videos, including this official one from NASA below.

What are your favorite memories of Atlantis activities, either from attending launches or doing other things? Feel free to share in the comments.

How Will the World End?

How Will the World End?

There is almost nothing that could completely destroy the earth.

Follow your instincts and ignore anyone raising alarms about its imminent demise.

Oh sure, there’s a pile of events that could make life more difficult, and a laundry list of things that could wipe out all of humanity. Including: asteroid strikes, rising temperatures, or global plagues

In order to actually destroy the Earth, you would need significantly more energy, and there just happens to be enough, a short 150 million kilometers away: the Sun.

The Sun has been in the main sequence of its life for the last 4.5 billion years, converting hydrogen into helium. For stars this massive, that phase lasts for about 10 billion years, meaning we’re only halfway through.

When the Sun does finally run out of hydrogen to burn, it’ll begin fusing helium into carbon, expanding outward in the process. It will become a cooler, larger, red giant star, consuming the orbits of Mercury and Venus.

Scientists are still unsure if the red giant phase of the Sun will consume the Earth. If it does, the Earth’s story ends there. It’ll get caught up inside the Sun, and spiral inward to its demise.

Death by red giant in 5.5 billion years.

If the Sun doesn’t consume the Earth then we’ll have a long, cold future ahead of us. The Sun will shrink down to a white dwarf and begin cooling down to the background temperature of the Universe. The Earth and the rest of the surviving planets will continue orbiting the dying Sun for potentially trillions of years.

Planet orbiting a dead star. Credit: NASA
Planet orbiting a dead star. Credit: NASA
If we’re exceedingly lucky, the Sun will get too close to another star, and the gravitational interactions will capture Earth in orbit, giving our planet a second chance for life. If not, the Earth will continue following the dying Sun around and around the Milky Way for an incomprehensible amount of time.

At this point, the main risk to the planet is a collision. Or maybe it’ll spiral inward over vast periods of time to be destroyed by the Sun, or collide with another planet. Or perhaps the entire Solar System will slowly make its way into the supermassive black hole at the center of the Milky Way.

One last possibility. Physicists think that protons – the building blocks of atoms – might eventually decay, becoming smaller particles and pure energy. After an undecillion years – a 1 followed by 36 zeros – half of the Earth will have just melted away into energy.

But if protons don’t decay, the Earth could theoretically last forever.

The bottom line, the Earth was built to last.