It sure would be interesting to watch two stars run into each other — from a safe distance, of course. One can imagine there would be quite the titanic battle going on between their competing gravitational forces, throwing off gas and matter as they collide.
They also leave behind interesting echoes, at least according to new research. A European team looked at the leftovers of one collision and found a type of pulsating star that has never been seen before.
It’s common for stars to form in groups or to be paired up, since they form from immense gas clouds. Sometimes, a red giant star in a binary system gets so big that it will bump into a companion star orbiting nearby. This crash could shave 90% of the red giant star’s mass off, but astronomers are still trying to get their heads around what happens.
“Only a few stars that have recently emerged from a stellar collision are known, so it has been difficult to study the connection between stellar collisions and the various exotic stellar systems they produce,” Keele University, which led the research, stated.
Researchers who made the find were actually on the hunt for alien planets. They turned up what is called an “eclipsing” binary system, meaning that one of the stars passes in front of the other from the perspective of Earth.
The scientists then used a high-speed camera on the Very Large Telescope in Chile called ULTRACAM. The camera is capable of taking up to 500 pictures a second to track fast-moving astronomical events.
Observations revealed that “the remnant of the stripped red giant is a new type of pulsating star,” Keele stated.
“We have been able to find out a lot about these stars, such as how much they weigh, because they are in a binary system,” stated Pierre Maxted, an astrophysicist at Keele.
“This will really help us to interpret the pulsation signal and so figure out how these stars survived the collision and what will become of them over the next few billion years.”
The next step for the researchers will be to calculate when the star will begin cooling down and become a white dwarf, which is what is left behind after a star runs out of fuel to burn.
In Star Trek lore, money doesn’t exist in the 24th century. But sometime in the 21st century, when we (hopefully) can go to a Bigelow orbiting space hotel or spend a weekend at a colony on the Moon, how are we going to pay for it? Global e-commerce company PayPal has a plan. They’ve teamed up with SETI and other space folks to launch PayPal Galactic, an initiative that PayPal says will address the issues to help make universal space payments a reality.
While this doesn’t seem to be an immediate need, PayPal wants to be ready … I presume. But as of this writing, the PayPal Galactic website doesn’t seem to be up and running yet.
The launch of PayPal Galactic is in conjunction with PayPal’s 15th anniversary, as well as a new crowdfunding campaign for SETI, called Curiosity Movement.
“PayPal and the SETI Institute are well-matched to work on PayPal Galactic because together we can create a recipe for innovation,” said Jill Tarter, from the SETI Institute. “PayPal envisions exploring possibilities in space the way that we do, breaking boundaries to make real progress. When the SETI Institute succeeds in its exploration of the universe, and as we find our place among the stars, PayPal will be there to facilitate commerce, so people can get what they need, and want, to live outside of our planet.”
Apollo 11’s Buzz Aldrin even was part of a webcast to launch PayPal Galactic.
“Trips to Mars, the moon, even orbit will require we provide astronauts and astro-tourists with as many comforts from home as possible, including how to pay each other,” said astronaut and author Buzz Aldrin, who is on-board with PayPal’s plans. “Whether it’s paying a bill, or even helping a family member on Earth, we’ll need access to money. I think humans will reach Mars, and I would like to see it happen in my lifetime. When that happens I won’t be surprised if people use PayPal Galactic for the little things and the big ones.”
PayPal’s President David Marcus (no, not THAT David Marcus from Star Trek) says that as space travel opens to ‘the rest of us’, this drives questions about the commercialization of space.
“We are launching PayPal Galactic, in conjunction with leaders in the scientific community, to increase public awareness of the important questions that need to be addressed,” he said in a press release. “We may not answer these questions today or even this year, but one thing is clear, we won’t be using cash in space. PayPal has already pushed payments onto the Internet, onto mobile phones and across terrestrial borders. We now look forward to pushing payments from our world to the next, and beyond.”
These are the questions PayPal hopes to answer:
• What will our standard currency look like in a truly cash-free interplanetary society?
• How will the banking systems have to adapt?
• How will risk and fraud management systems need to evolve?
• What regulations will we have to conform with?
• How will our customer support need to develop?
PayPal says this system could even help astronauts on the International Space Station be able to pay their bills back on Earth or be able to pay for e-books or online music.
But check out SETI’s Curiosity Movement, which hopes to “unite with curious thinkers across the globe in helping to expand our research and continue the search for answers on Earth and beyond.”
That pale white dot up there? No. 10,000 in a list of near-Earth objects. This rock, 2013 MZ5, was discovered June 18. It is 1,000 feet (300 meters) across and will not come anywhere near to threatening Earth, NASA assures us.
But what else is out there? The agency still hasn’t found every asteroid or comet that could come by Earth. To be sure, however, it’s really trying. But is there more NASA and other agencies can do to search? Tell us in the comments.
A bit of history: the first of these objects was discovered in 1898, but in recent decades we’ve been more systematic about finding them. This means we’ve been picking up the pace on discoveries.
Congress asked NASA in 2005 to find and catalog 90 per cent of NEOs that are larger than 500 feet (140 meters) in size, about enough to level a city. The agency says it has also found most of the very largest NEOs, those that are at least six-tenths of a mile (1 kilometer) across (and none so far discovered are a threat.)
Still, NASA says once it achieves its latest goal (which it is supposed to be by 2020), “the risk of an unwarned future Earth impact will be reduced to a level of only one per cent when compared to pre-survey risk levels. This reduces the risk to human populations, because once an NEO threat is known well in advance, the object could be deflected with current space technologies.”
The major surveys for NEOs in the United States are the University of Arizona’s Catalina Sky Survey, the University of Hawaii’s Pan-STARRS survey and the Lincoln Near-Earth Asteroid Research (LINEAR) survey between the Massachusetts Institute of Technology, the Air Force and NASA. Worldwide, the current discovery rate is 1,000 per year.
EDIT: And NASA also recently issued an Asteroid Grand Challenge to private industry to seek solutions to find these space rocks. Check out more information here.
What more can be done to find and track threatening space rocks? Let us know below.
In 2008, astronomers discovered a star relatively nearby Earth went kablooie some 28,000 light-years away from us. Sharp-eyed astronomers, as they will do, trained their telescopes on it to snap pictures and take observations. Now, fresh observations from the orbiting Chandra X-ray Observatory suggest that supernova was actually a double-barrelled explosion.
This composite picture of G1.9+0.3, coupled with models by astronomers, suggest that this star had a “delayed detonation,” NASA stated.
“First, nuclear reactions occur in a slowly expanding wavefront, producing iron and similar elements. The energy from these reactions causes the star to expand, changing its density and allowing a much faster-moving detonation front of nuclear reactions to occur.”
To explain a bit better what’s going on with this star, there are two main types of supernovas:
– Type Ia: When a white dwarf merges with another white dwarf, or picks up matter from a close star companion. When enough mass accretes on the white dwarf, it reaches a critical density where carbon and oxygen fuse, then explodes.
– Type II: When a massive star reaches the end of its life, runs out of nuclear fuel and sees its iron core collapse.
NASA said this was a Type Ia supernova that “ejected stellar debris at high velocities, creating the supernova remnant that is seen today by Chandra and other telescopes.”
You can actually see the different energies from the explosion in this picture, with red low-energy X-rays, green intermediate energies and blue high-energies.
“The Chandra data show that most of the X-ray emission is “synchrotron radiation,” produced by extremely energetic electrons accelerated in the rapidly expanding blast wave of the supernova. This emission gives information about the origin of cosmic rays — energetic particles that constantly strike the Earth’s atmosphere — but not much information about Type Ia supernovas,” NASA stated.
Also, unusually, this is an assymetrical explosion. There could have been variations in how it expanded, but astronomers are looking to map this out with future observations with Chandra and the National Science Foundation’s Karl G. Jansky Very Large Array.
Check out more information about this supernova in the scientific paper led by North Carolina State University.
NASA’s Lunar Atmosphere and Dust Environment Explorer (LADEE) is slated to lift off from Wallops Island this September 5th in a spectacular night launch. LADEE will be the first mission departing Wallops to venture beyond low Earth orbit. A joint collaboration between NASA’s Goddard Spaceflight Center & the AMES Research Center, LADEE will study the lunar environment from orbit, including its tenuous exosphere.
Scientists hope to answer some long standing questions about the lunar environment with data provided by LADEE. How substantial is the wispy lunar atmosphere? How common are micro-meteoroid impacts? What was the source of the sky glow recorded by the Surveyor spacecraft and observed by Apollo astronauts before lunar sunrise and after lunar sunset while in orbit?
The micro-meteoroid issue is of crucial concern for any future long duration human habitation on the Moon. The Apollo missions were only days in length. No one has ever witnessed a lunar sunrise or sunset from the surface of the Moon, as all six landings occurred on the nearside of the Moon in daylight. (Sunrise to sunset on the Moon takes about two Earth weeks!)
And that’s where amateur astronomers come in. LADEE is teaming up with the Association of Lunar & Planetary Observers (ALPO) and their Lunar Meteoritic Impact Search Program in a call to watch for impacts on the Moon. These are recorded as brief flashes on the nighttime side of the Moon, which presents a favorable illumination after last quarter or leading up into first quarter phase.
We wrote recently about a +4th magnitude flash detected of the Moon on March 17th of this year. That explosion was thought to have been caused by a 35 centimetre impactor which may have been associated with the Eta Virginid meteor shower. The impact released an explosive equivalent of five tons of TNT and has set a possible new challenge for Moon Zoo volunteers to search for the resulting 6 metre crater.
We’ve also written about amateur efforts to document transient lunar phenomena and studies attempting to pinpoint a possible source of these spurious glows and flashes on the Moon observed over the years.
NASA’s Meteoroid Environment Office is looking for dedicated amateurs to take part in their Lunar Impact Monitoring campaign. Ideally, such an observing station should utilize a telescope with a minimum aperture of 8 inches (20cm) and be able to continuously monitor and track the Moon while it’s above the local horizon. Most micro-meteoroid flashes are too fast and faint to be seen with the naked eye, and thus video recording will be necessary. A typical video configuration for the project is described here. Note the high frame rate and the ability to embed a precise time stamp is required. I’ve actually run WWV radio signals using an AM short wave radio transmitting in the background to accomplish this during occultations.
Finally, you’ll need a program called LunarScan to analyze those videos for evidence of high speed flashes. LunarScan is pretty intuitive. We used the program to analyze video shot during the 2010 Total Lunar Eclipse for any surreptitious Geminid or Ursid meteors.
Brian Cudnik, coordinator of the Lunar Meteoritic Impact Search section of the ALPO, noted in a recent forum post that we’re approaching another optimal window to accomplish these sorts of observations this weekend, with the Moon headed towards last quarter on June 30th.
Interestingly, the June Boötids are currently active as well, with historical sporadic rates of anywhere from 10-100 per hour. In 1975, seismometers left by Apollo astronauts detected series of impacts on June 24th thought to have been caused by one of two Taurid meteor swarms the Earth passes through in late June, another reason to be vigilant this time of year.
Don’t have access to a large telescope or sophisticated video gear? You can still participate and make useful observations.
LADEE is also teaming up with JPL and the Lewis Center for Educational Research to allow students track the spacecraft en route to the Moon. Student groups will be able to remotely access the 34-metre radio telescopes based at Goldstone, California that form part of NASA’s Deep Space Communications Network. Students will be able to perform Doppler measurements during key mission milestones to monitor the position and status of the spacecraft during thruster firings.
And backyard observers can participate in another fashion, using nothing more than their eyes and patience. Meteor streams that are impacting the Moon affect the Earth as well. The International Meteor Organization is always looking for information from dedicated observers in the form of meteor counts. The Perseids, an “Old Faithful” of meteor showers, occurs this year around August 12th under optimal conditions, with the Moon only five days past New. This is also three weeks prior to the launch of LADEE.
Whichever way you choose to participate, be sure to follow the progress of LADEE and our next mission to study Earth’s Moon!
-Listen to Universe Today’s Nancy Atkinson and her interview with Brian Day of the NASA Lunar Science Institute.
-Also listen to the 365 Days of Astronomy interview with Brian Day and Andy Shaner from the Lunar Planetary institute on the upcoming LADEE mission.
While we recently posted a huge batch of images from the recent “Super Moon,” this new image from Sergio Garcia Rill in Houston is something special. It’s a composite photo of the Moonrise on June 22nd, and is a mosaic made from 37 separate images that show the Moon rising over the course of three hours, with the buildings of downtown Houston in the foreground.
“I stayed in place for over three hours,” Sergio explained on Flickr. “The hardest part was selecting which shots showed a sequential movement of the Moon, since I was altering shutter speeds between shots to compensate for changing light conditions.”
The full Moon of June 2013 was at perigee — or at its closest point in its orbit to Earth, and appeared up to 14% bigger and 30% brighter than other full Moons of 2013.
Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.
Ever have to take a call while stargazing, or do you use astronomical apps on your phone, only to have the white screen ruin your night vision? A new app called Sunset is a screen filter that essentially adds a dimmed red-color filter onto an Android device’s screen so you can use your smartphone during those extra dark moments and not lose your dark-adapted night-vision.
The app’s description says it best:
Sunset is a screen filter adds an additional layer of dimming color to help soothe your eyes during those extra dark hours. Perfect for astronomers/stargazers looking to preserve their night vision, late night smartphone users, and movie theater texters. Sunset goes darker than Android’s brightness settings to provide your eyes with that extra layer of comfort.
Sunset is easy to use, too. Just select a color theme, choose the maximum intensity, and hit start. The color themes are specifically designed to help your eyes in different environments, as there are several other color options.
The Sunset app is just 99 cents, USD, but the app’s creator Rohan Puri will send a refund to the first 20 Universe Today readers who buy this app. Just send your e-mail via Direct Message on Twitter to @RohanSPuri after your purchase, and you will receive a full refund.
More bad news on the exoplanet-hunting front: While the final fate of the Kepler spacecraft remains unknown, the CoRoT (Convection, Rotation and Planetary Transits) satellite has now been officially shut down. CoRoT suffered a computer failure on November, 2, 2012 and although the spacecraft is capable of receiving navigational commands, the French Space Agency CNES reports it can no longer retrieve data from its 30-centimeter telescope. After a valiant effort to try and restore the computer, CNES announced this week that the spacecraft has been retired. CoRoT’s journey will come to a fiery end as it will be deorbited and it will burn up on re-entry in Earth’s atmosphere.
While it’s always hard to see the end of successful mission, we can’t be too sad about CoRoT, however. The mission lasted twice as long as expected and it gathered a remarkable haul of exoplanets. CoRoT looked for planetary transits — a dimming in brightness of the host star as a planet crossed in front. CoRoT was the first mission to find a planet using the transit method.
In all, CoRoT has spotted 32 confirmed planets and at least 100 more are awaiting confirmation. The mission also allowed astronomers to study the stellar physics and the interior of stars.
This is not the first computer failure for the mission. CoRoT launched in December of 2006, and in 2009 the main computer failed and has since been running on the backup computer. When the second computer failed in November, engineering teams have tried to reboot both computers, with no success.
But space radiation is tough on spacecraft, and after enduring 6 years of intense bombardment by high-energy particles in space, both computers have been deemed unrecoverable.
CNES said a series of operations will be performed to lower CoRoT’s orbit and conduct some technology experiments before passivating and deorbiting the satellite. Its journey will end as it burns up on re-entry in Earth’s atmosphere.
CoRoT discovered a diverse array of planets, mostly gas giants. Some of the planets discovered, like CoRoT-7b, orbit their star in less than 24 hours and have a blistering hot surface, while others like CoRoT-9b have an orbital period of 95 days and is one of very few known “warm” transiting exoplanets.
CoRoT was also the first to obtain measurements of the radius of brown dwarves, intermediate objects between a planet and a star, and literally opened up a whole new field of study of temporal analysis of the micro-variability of stars by measuring the frequencies and amplitudes of stellar vibrations with unprecedented precision.
CNES did not provide a timetable for CoRoT’s demise, but we’ll keep you posted.
As Earthlings, we’re so used to thinking about planets being in simple orbits around a single star. But the Sun likely didn’t begin its life alone. It formed as part of a cluster of stars, all feeding from the same well of gas.
Could star clusters also host planets? Or do they have to wait for the little guys until the stars evolve and move further apart? Well, astronomers have actually just found planets — yes, two planets — orbiting Sun-like stars in a cluster 3,000 light-years from Earth.
These are the third and fourth star cluster planets yet discovered, but the first found “transiting” or passing across the face of their stars as seen from Earth. (The others were found through detecting gravitational wobbles in the star.)
This is no small feat for a planet to survive. In a telescope, a star cluster might look pretty benign, but up close it’s pretty darn harsh. A press release about the discovery used a lot of words like “strong radiation”, “harsh stellar winds” and “stripping planet-forming materials” in a description of what NGC 6811 would feel like.
“Old clusters represent a stellar environment much different than the birthplace of the Sun and other planet-hosting field stars,” stated lead author Soren Meibom of the Harvard-Smithsonian Center for Astrophysics.
“We thought maybe planets couldn’t easily form and survive in the stressful environments of dense clusters, in part because for a long time we couldn’t find them.”
The planets are known as Kepler-66b and Kepler-67b, and are both approaching the size of Neptune (which is four times the size of Earth). Their parent cluster, NGC 6811, is one billion years old. Astronomers are still puzzled as to how these little worlds survived for so long.
“Highly energetic phenomena including explosions, outflows and winds often associated with massive stars would have been common in the young cluster,” stated the journal paper in Nature.
“The degree to which the formation and evolution of planets is influenced by a such a dense and dynamically and radiatively hostile environment is not well understood, either observationally or theoretically.”
Check out the entire study in the latest edition of Nature.
Prolific astrophotographer and Australian astronomer Joseph Brimacombe captured this beautiful wide-field view of crepuscular rays from the Sun last week. You definitely want to click on this image to see a larger view on Flickr. This image is made of seven frames; three exposures each. Brimacombe was lucky to get this shot; just seven minutes later (see the view here), the spectacular curtain of rays were gone.
The word crepuscular means “relating to twilight,” and these rays occur when objects such as mountain peaks or clouds partially shadow the Sun’s rays, usually when the Sun is low on the horizon. These rays are visible only when the atmosphere contains enough haze or dust particles so that sunlight in unshadowed areas can be scattered toward the observer.
Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.