Astrophoto: Airglow Shining Like an Aurora

The Milky Way and airglow seen in the Dark Sky Alqueva Reserve in Portugal. Credit and copyright: Miguel Claro.

Look closely at this beautiful serene view taken by Miguel Claro from Portugal. Not only is it a stunning view of the skies over Lake Alqueva in the Dark Sky Alqueva Reserve in Portugal, but there are also several scientifically interesting features here. Of course, visible is the arc of the Milky Way, filled with colors and light. Seen here is the most central region of the Milky Way, located near the constellations of Scorpio and Sagittarius, where you might recognize many deep sky objects like the Lagoon Nebula (M8) and the Trifid Nebula (M20).

The “glow” seen here is not the aurora borealis, but instead it is airglow (atmospheric chemiluminescence), which is a photochemical reaction that occurs high in the atmosphere when various atoms get excited from the ultraviolet radiation from the Sun. Miguel explained via email that the yellow light is from emissions from sodium atoms in a layer at 92 km, and above it, is green light from oxygen atoms in a layer 90-100 km high. This emission layer is clearly visible from earth orbit, which we’ve seen in many images and videos taken from the ISS.

An annotated version of the Milky Way and airglow seen in the Dark Sky Alqueva Reserve in Portugal. Credit and copyright: Miguel Claro.
An annotated version of the Milky Way and airglow seen in the Dark Sky Alqueva Reserve in Portugal. Credit and copyright: Miguel Claro.

“Reflected in the peaceful lake and due to the polarization effect of water, we could clearly see the entire constellation of Scorpius with the real color of each star naturally saturated,” Miguel said via email, “due to this polarization and blurred effect, caused by the slowly movement of water during the long exposure. The orange color of the Red Supergiant Antares could be easily distinguished from the blue color of the Subgiant star, Shaula, in the end of tail.”

Miguel used a Canon 60Da – ISO 1600; 35mm lens at f/2; Exp. 15 secs. Mosaic of 23 images, taken on June 15, at 02:35 AM.

You can see another image on Miguel’s website taken on the same night and place, where airglow is visible with the Andromeda Galaxy (M31) and still another with the Big Dipper and gravity waves with the airglow.

NASA’s 2020 Mars Rover To Seek Signs of Past Life and Collect Samples for Earth Return

Artist's Concept of NASA’s Mars 2020 Rover envisions a basic structure that capitalizes on re-using the design and engineering work done for the NASA rover Curiosity, which landed on Mars in 2012, but with new science instruments for accomplishing different science objectives with the 2020 mission. Credit: NASA/JPL-Caltech

NASA’s next Mars rover set for liftoff in 2020 should focus on three primary objectives; seeking signs of past life, collecting a cache of carefully chosen samples for eventual return to Earth and developing technologies that will help enable future human missions to the Red Planet some two decades from now.

The 2020 goals were laid out publicly today (July 9) by a panel of scientists on the ‘Science Definition Team’ and charged by NASA with defining the key science objectives for the new mission.

The science objectives and how to accomplish them are outlined in considerable detail in a newly issued 154 page report handed over to the space agency and discussed at today’s NASA briefing for the media.

Looking for signs of ancient life and preserved biosignatures on Mars at a place that was once habitable is the top priority of the 2020 mission. The SDT report states that the landing site should be chosen specifically to “explore the geology of a once habitable site.”

“We need a highly mobile rover that can make ‘in situ’ science measurements,” said Jack Mustard, chairman of the Science Definition Team and a professor at the Geological Sciences at Brown University in Providence, R.I., at the briefing.

“The rover would use its own instruments on Mars for visual, mineralogical and chemical analysis down to a microscopic scale to identify candidate features that may have been formed by past life,” states the SDT report.

“We can’t do this now with Curiosity,” explained Mustard. “We need higher resolution.”

Looking for ‘extant’ life, that is life surviving on Mars today, would be a by-product of the search for organic molecules and preserved biosignatures of life – past or present.

The Mars 2020 ‘Science Definition Team’ (SDT) is comprised of 19 scientists and engineers from academia and industry. They were appointed by NASA in January 2013 to thoroughly and quickly evaluate a wide range of options to accomplish the highest priority planetary science objectives and achieve President Obama’s challenge to send humans to Mars in the 2030s.

Retrieving soil and rock samples from Mars for analysis back on Earth by research teams worldwide using all the most advanced analytical instruments available to humankind with unprecedented capability has been the ‘Holy Grail’ of Mars exploration for several decades.

But the enormous cost and technical complexity of a Mars Sample Return (MSR) mission has caused it to be repeatedly postponed.

Creating a Returnable Cache of Martian Samples is a major objective for NASA's Mars 2020 rover.  This prototype show  hardware to cache samples of cores drilled from Martian rocks for possible future return to Earth.  The 2020 rover would be to collect and package a carefully selected set of up to 31 samples in a cache that could be returned to Earth by a later mission.  The capabilities of laboratories on Earth for detailed examination of cores drilled from Martian rocks would far exceed the capabilities of any set of instruments that could feasibly be flown to Mars.  The exact hardware design for the 2020 mission is yet to be determined.  For scale, the diameter of the core sample shown in the image is 0.4 inch (1 centimeter).  Credit: NASA/JPL-Caltech
Creating a Returnable Cache of Martian Samples is a major objective for NASA’s Mars 2020 rover. This prototype show hardware to cache samples of cores drilled from Martian rocks for possible future return to Earth. The 2020 rover would be to collect and package a carefully selected set of up to 31 samples in a cache that could be returned to Earth by a later mission. The capabilities of laboratories on Earth for detailed examination of cores drilled from Martian rocks would far exceed the capabilities of any set of instruments that could feasibly be flown to Mars. The exact hardware design for the 2020 mission is yet to be determined. For scale, the diameter of the core sample shown in the image is 0.4 inch (1 centimeter). Credit: NASA/JPL-Caltech

The 2020 rover will be designed to make real progress on sample return for the first time. It will be capable of coring into rocks and storing 31 highly compelling Martian samples for return by a follow on mission to the Red Planet.

“But the timing on actually returning those samples to Earth is yet to be determined,” said John Grunsfeld, NASA’s associate administrator for science in Washington.

Everything NASA does is budget driven and the fiscal climate is rather gloomy right now.

“Crafting the science and exploration goals is a crucial milestone in preparing for our next major Mars mission,” said John Grunsfeld, NASA’s associate administrator for science in Washington, in a statement.

Work on the new rover must begin soon in order to achieve the mandatory 2020 launch deadline. Launch opportunities to Mars only open every 26 months and delays could balloon the costs by several hundred million dollars.

“The objectives determined by NASA with the input from this team will become the basis later this year for soliciting proposals to provide instruments to be part of the science payload on this exciting step in Mars exploration,” adds Grunsfeld.

“The 2020 rover will take a major step in ‘seeking signs of life” said Jim Green, director of NASA’s Planetary Science Division in Washington, at the briefing. “NASA will issue a call for science instruments this fall.”

The new mission would build upon the demonstrated science accomplishments of earlier missions like Curiosity, Spirit, Opportunity and Phoenix while vastly advancing the capabilities of the robots research instruments.

“Here’s the bottom line. Questions drive science,” explained Lindy Elkins-Tanton, SDT member and director of the Carnegie Institution for Science’s Department of Terrestrial Magnetism, Washington.

“We should be seeking to answer the very biggest questions. And one of the very biggest questions for all of humankind is – ‘Are we alone?’ And that is the question we’re hoping to make really big advances with on with this Mars 2020 mission.”

Grunsfeld explained that NASA has budgeted “for a mission cost of $1.5 Billion plus the cost of the launcher.”

The 2020 rover chassis, with some modifications, will be based on the blueprints of the highly successful Curiosity rover to keep down the cost and minimize risks. But the science instruments will be completely new and updated.

NASA’s 1 ton Curiosity rover touched down nearly a year ago and has already discovered that the Red Planet has the chemical ingredients and environmental conditions for a habitable zone that could have supported living Martian microbes.

The next logical step is to look for the ancient signs of life that would be preserved in the rock record on Mars.

Ken Kremer

This photomosic shows NASA’s Curiosity departing at last for Mount Sharp- her main science destination. Note the wheel tracks on the Red Planet’s surface. The navcam camera images were taken on July 4, 2013 (Sol 324). Credit: NASA/JPL-Caltech/Ken Kremer (kenkremer.com)/Marco Di Lorenzo
NASA’s 2020 Mars rover would be based on the Curiosity rover which touched down inside Gale Crater on Aug. 6, 2012 and discovered a habitable zone here. This photomosic shows NASA’s Curiosity departing Glenelg work site area at last for Mount Sharp- her main science destination, seen at top left. Note the wheel tracks on the Red Planet’s surface. The mosaic of navcam camera images was stitched from photos taken on July 4, 2013 (Sol 324). Credit: NASA/JPL-Caltech/Ken Kremer (kenkremer.com)/Marco Di Lorenzo

How to Wash Your (Long) Hair in Space

Those of us with long tresses have wondered, how do you wash that floating mass of hair in space? Astronaut and Expedition 36 crewmember Karen Nyberg provides a how-to video direct from the International Space Station. Obviously, Nyberg’s crewmate Luca Parmitano doesn’t have to go through this process.

But wash your hair today, have drinking water or coffee tomorrow!

NASA Alters 1st Orion/SLS Flight – Bold Upgrade to Deep Space Asteroid Harbinger Planned

NASA Orion spacecraft blasts off atop 1st Space Launch System rocket in 2017 - attached to European provided service module – on an enhanced m mission to Deep Space where an asteroid could be relocated as early as 2021. Credit: NASA

NASA Orion spacecraft blasts off atop 1st Space Launch System rocket in 2017 – attached to European provided service module – on an ambitious mission to explore Deep Space some 40,000 miles beyond the Moon, where an asteroid could be relocated as early as 2021. Credit: NASA
Story updated with further details[/caption]

NASA managers have announced a bold new plan to significantly alter and upgrade the goals and complexity of the 1st mission of the integrated Orion/Space Launch System (SLS) human exploration architecture – planned for blastoff in late 2017.

The ambitious first flight, called Exploration Mission 1 (EM-1), would be targeted to send an unpiloted Orion spacecraft to a point more than 40,000 miles (70,000 kilometers) beyond the Moon as a forerunner supporting NASA’s new Asteroid Redirect Initiative – recently approved by the Obama Administration.

The EM-1 flight will now serve as an elaborate harbinger to NASA’s likewise enhanced EM-2 mission, which would dispatch a crew of astronauts for up close investigation of a small Near Earth Asteroid relocated to the Moon’s vicinity.

Orion crew module separates from Space Launch System (SLS) upper stage. Credit: NASA
Orion crew module separates from Space Launch System (SLS) upper stage. Credit: NASA

Until recently NASA’s plan had been to launch the first crewed Orion atop the 2nd SLS rocket in 2021 to a high orbit around the moon on the EM-2 mission, said NASA Associate Administrator Lori Garver in an prior interview with me at the Kennedy Space Center.

Concept of NASA spacecraft with Asteroid capture mechanism deployed to redirect a small space rock to a stable lunar orbit for later study by astronauts aboard Orion crew capsule. Credit: NASA.
Concept of NASA spacecraft with Asteroid capture mechanism deployed to redirect a small space rock to a stable lunar orbit for later study by astronauts aboard Orion crew capsule. Credit: NASA.

The enhanced EM-1 flight would involve launching an unmanned Orion, fully integrated with the Block 1 SLS to a Deep Retrograde Orbit (DRO) near the moon, a stable orbit in the Earth-moon system where an asteroid could be moved to as early as 2021.

Orion’s mission duration would be nearly tripled to 25 days from the original 10 days.

“The EM-1 mission with include approximately nine days outbound, three to six days in deep retrograde orbit and nine days back,” Brandi Dean, NASA Johnson Space Center spokeswoman told Universe Today exclusively.

The proposed much more technologically difficult EM-1 mission would allow for an exceptionally more vigorous work out and evaluation of the design of all flight systems for both Orion and SLS before risking a flight with humans aboard.

Asteroid Capture in Progress
Asteroid Capture in Progress

A slew of additional thruster firings would exercise the engines to change orbital parameters outbound, around the moon and inbound for reentry.

The current Deep Retrograde Orbit (DRO) plan includes several thruster firings from the Orion service module, including a powered lunar flyby, an insertion at DRO, an extraction maneuver from the DRO and a powered flyby on return to Earth.

Orion would be outfitted with sensors to collect a wide variety of measurements to evaluate its operation in the harsh space environment.

“EM-1 will have a compliment of both operational flight instrumentation and development flight instrumentation. This instrumentation suite gives us the ability to measure many attributes of system functionality and performance, including thermal, stress, displacement, acceleration, pressure and radiation,” Dean told me.

The EM-1 flight has many years of planning and development ahead and further revisions prior to the 2017 liftoff are likely.

“Final flight test objectives and the exact set of instrumentation required to meet those objectives is currently under development,” Dean explained.

Orion is NASA’s next generation manned space vehicle following the retirement of NASA’s trio of Space Shuttles in 2011.

The SLS launcher will be the most powerful and capable rocket ever built by humans – exceeding the liftoff thrust of the Apollo era Moon landing booster, the mighty Saturn V.

“We sent Apollo around the moon before we landed on it and tested the space shuttle’s landing performance before it ever returned from space.” said Dan Dumbacher, NASA’s deputy associate administrator for exploration systems development, in a statement.

“We’ve always planned for EM-1 to serve as the first test of SLS and Orion together and as a critical step in preparing for crewed flights. This change still gives us that opportunity and also gives us a chance to test operations planning ahead of our mission to a relocated asteroid.”

Both Orion and SLS are under active and accelerating development by NASA and its industrial partners.

The 1st Orion capsule is slated to blast off on the unpiloted EFT-1 test flight in September 2014 atop a Delta IV Heavy rocket on a two orbit test flight to an altitude of 3,600 miles above Earth’s surface.

Technicians work on mockups of the Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) to simulate critical assembly techniques inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center (KSC) in Florida for the EFT-1 mission due to liftoff in September 2014. Credit: Ken Kremer/kenkremer.com
Technicians work on mockups of the Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) to simulate critical assembly techniques inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center (KSC) in Florida for the EFT-1 mission due to liftoff in September 2014. Credit: Ken Kremer/kenkremer.com

It will then reenter Earth’s atmosphere at speeds of about 20,000 MPH (11 km/sec) and endure temperatures of 4,000 degrees Fahrenheit in a critical test designed to evaluate the performance of Orion’s heatshield and numerous spacecraft systems.

Orion EFT-1 is already under construction at the Kennedy Space Center (KSC) by prime contractor Lockheed Martin – read my earlier story here.

Integration and stacking tests with Orion’s emergency Launch Abort System are also in progress at KSC – details here.

NASA says the SLS is also in the midst of a extensive review process called the Preliminary Design Review (PDR) to ensure that all launch vehicle components and systems will achieve the specified performance targets and be completed in time to meet the 2017 launch date. The PDR will be completed later this summer.

NASA’s goal with Orion/SLS is to send humans to the Moon and other Deep Space destinations like Asteroids and Mars for the first time in over forty years since the final manned lunar landing by Apollo 17 back in 1972.

NASA Headquarters will make a final decision on upgrading the EM-1 mission after extensive technical reviews this summer.

Ken Kremer

Schematic of Orion components. Credit: NASA
Schematic of Orion components. Credit: NASA

Opening Sequence of Today’s ISS Spacewalk Highlight Video Will Knock Your Space Socks Off

Astronaut Karen Nyberg helps Chris Cassidy (left) and Luca Parmitano suit up for their spacewalk on July 9, 2013. Credit: NASA

Want a “you are there” view of today’s EVA that took place outside the International Space Station? Take a look at this great video of astronaut Chris Cassidy getting a ride on the station’s Canadarm-2 to make repairs and prepare for a new Russian laboratory. There are several great “over the shoulder” views during this short highlight video.

During their 6-hour and 7-minute spacewalk, Cassidy of NASA and Luca Parmitano of the European Space Agency worked on replacing a failed communications receiver, relocating grapple bars for future spacewalks and stringing cables for the when the Russian laboratory module arrives later this year.

The Ku-band communications receiver replaces one that failed last December. There was already a redundant backup system now in use, and this new one will become the backup.

The new Russian lab, called Nauka, will replace the Pirs airlock. It is scheduled to launch on a Proton rocket booster late this year, although the flight could be delayed a bit until early next year as because of assembly delays in Russia.

This spacewalk was the first of two in as many weeks for the duo. They will again venture outside the Quest airlock on July 16 for more upgrades and repairs. This was Parmitano’s first spacewalk, and he has now become the first Italian astronaut to walk in space. Old pro Cassidy has now been on five spacewalks, and this was the 170th spacewalk in support of space station assembly and maintenance.

60 Billion Habitable Planets in the Milky Way Alone? Astronomers say Yes!

An artist's conception of how common exoplanets are throughout the Milky Way Galaxy. Image Credit: Wikipedia

A new study suggests that the number of habitable exoplanets within the Milky Way alone may reach 60 billion.

Previous research performed by a team at Harvard University suggested that there is one Earth-sized planet in the habitable zone of each red dwarf star. But researchers at the University of Chicago and Northwestern University have now extended the habitable zone and doubled this estimate.

The research team, lead by Dr. Jun Yang considered one more variable in their calculations: cloud cover. Most exoplanets are tidally locked to their host stars – one hemisphere continually faces the star, while one continuously faces away. These tidally locked planets have a permanent dayside and a permanent nightside.

One would expect the temperature gradient between the two to be very high, as the dayside is continuously receiving stellar flux, while the nightside is always in darkness. Computer simulations that take into account cloud cover show that this is not the case.

The dayside is covered by clouds, which lead to a “stabilizing cloud feedback” on climate.  It has a higher cloud albedo (more light is reflected off the clouds) and a lower greenhouse effect. The presence of clouds actually causes the dayside to be much cooler than expected.

“Tidally locked planets have low enough surface temperatures to be habitable,” explains Jang in his recently published paper. Cloud cover is so effective it even extends the habitable zone to twice the stellar flux. Planets twice as close to their host star are still cool enough to be habitable.

But these new statistics do not apply to just a few stars. Red dwarfs “represent about ¾ of the stars in the galaxy, so it applies to a huge number of planets,” Dr. Abbot, co-author on the paper, told Universe Today. It doubles the number of planets previously thought habitable throughout the entire galaxy.

Not only is the habitable zone around red dwarfs much larger, red dwarfs also live for much longer periods of time. In fact, the Universe is not old enough for any of these long-living stars to have died yet. This gives life the amount of time necessary to form. After all, it took human beings 4.5 billions years to appear on Earth.

Another study we reported on earlier also revised and extrapolated the habitable zone around red dwarf stars.

Future observations will verify this model by measuring the cloud temperatures. On the dayside, we will only be able to see the high cool clouds. A planet resembling this model will therefore look very cold on the dayside. In fact, “a planet that does show the cloud feedback will look hotter on the nightside than the dayside,” explains Abbot.

This effect will be testable with the James Webb Space Telescope.  All in all, the Milky Way is likely to be teeming with life.

The results will be published in Astrophysical Journal Letters (preprint available here).

NASA Tanks: Not Just Heavy Metal Any More

Artist's conception of NASA's Space Launch System with Orion crewed deep space capsule. Credit: NASA

NASA’s future in fuels will see less heavy metal. Literally.

The agency just finished testing on a composite propellant tank that holds cryogenics, or super-chilled gases that are commonly used as rocket fuel (such as for the space shuttle). The agency brought the test tank down to -423 degrees Fahrenheit, put it through a few cycles and ramped up the internal pressure.

Composites are lighter material than the traditional metals that are used to hold these gases. NASA is excitedly throwing out descriptors such as “game-changing” when it talks about this, and has some reason to do so: composites are lighter than metals.

The light weight of composite tanks makes them lighter to lift off the ground. This reduces the costs of launch, which in turn reduces the overall cost of a mission. That will make penny-counters at the agency happier as the agency battles for funding dollars in fiscal 2014 and beyond.

The first of these tanks is likely to be used in the upper stage of NASA’s Space Launch System rocket, which is under development right now. That’s the rocket that’s supposed to send the Orion spacecraft (aiming for a 2014 test flight) into space in the latter years of this decade.

“The tank manufacturing process represents a number of industry breakthroughs, including automated fiber placement of oven-cured materials, fiber placement of an all-composite tank wall design that is leak-tight, and a tooling approach that eliminates heavy joints,” stated Dan Rivera, the Boeing cryogenic tank program manager at Marshall.

Boeing and NASA are now working on another composite tank that should be tested at Marshall later in 2013.

Source: NASA

Curiosity rover Embarks on Epic Trek To Mount Sharp

This photomosic shows NASA’s Curiosity departing at last for Mount Sharp- her main science destination. Note the wheel tracks on the Red Planet’s surface. The navcam camera images were taken on July 4, 2013 (Sol 324). Credit: NASA/JPL-Caltech/Ken Kremer (kenkremer.com)/Marco Di Lorenzo

NASA’s Curiosity rover has at last begun her epic trek to the layered slopes of mysterious Mount Sharp – the mission’s primary destination which looms supreme inside the Gale Crater landing site.

Scientists expect to discover signatures of the chemical ingredients that potentially are markers for a Martian habitable zone, while climbing up Mount Sharp.

On July 4 (Sol 324), the six wheeled robot started driving away from the Glenelg and Yellowknife Bay areas where she has worked more than half a year investigating the alien terrain and drilling into Martian rocks for the first time in history.

“We have started the long traverse to the base of Mt. Sharp (Aeolis Mons), the long-term goal of the mission!” announced science team member Ken Herkenhoff of the USGS.

So far the NASA rover already driven more than 190 feet (58 meters) over two excursions on July 4 and 7, away from her last science campaign at the Shaler outcrop of cross-bedded, sedimentary outcrops. Another drive is planned today.

Billions of years of Mars geologic history are preserved in the sedimentary layers of Mount Sharp- including the ancient time period when the Red Planet was far wetter and warmer than today, and thus more hospitable to the origin of life.

Billion-Pixel View From Curiosity at Rocknest, Raw Color.  This full-circle view combined nearly 900 images taken by NASA's Curiosity Mars rover, generating a panorama with 1.3 billion pixels in the full-resolution version. The view is centered toward the south, with north at both ends. It shows Curiosity at the "Rocknest" site where the rover scooped up samples of windblown dust and sand. Curiosity used three cameras to take the component images on several different days between Oct. 5 and Nov. 16, 2012. Credit: NASA/JPL-Caltech/MSSS
Billion-Pixel View From Curiosity at Rocknest, Raw Color. This full-circle view combined nearly 900 images taken by NASA’s Curiosity Mars rover, generating a panorama with 1.3 billion pixels in the full-resolution version. The view is centered toward the south, with north at both ends. It shows Curiosity at the “Rocknest” site where the rover scooped up samples of windblown dust and sand. Curiosity used three cameras to take the component images on several different days between Oct. 5 and Nov. 16, 2012. Credit: NASA/JPL-Caltech/MSSS

The huge mountain rises about 3.4 miles (5.5 km) from the center of Gale Crater. Its taller than Mount Ranier in Washington State.

The overland journey could take nearly a year or even longer into 2014 to arrive at the base of Mount Sharp, depending on what the 1 ton behemoth sees along the way.

And the scientists are eager to make as many discoveries as possible.

“The mission is discovery driven,” says John Grotznger of the California Institute of Technology in Pasadena, Calif., who leads NASA’s Curiosity Mars Science Laboratory mission. “We will go to where the science takes us.”

This is a cropped, reduced version of panorama from NASA's Mars rover Curiosity with 1.3 billion pixels in the full-resolution version see full panorama below. It shows Curiosity at the "Rocknest" site where the rover scooped up samples of windblown dust and sand. Curiosity used three cameras to take the component images on several different days between Oct. 5 and Nov. 16, 2012. Viewers can explore this image with pan and zoom controls at http://mars.nasa.gov/bp1/. Credit: NASA/JPL-Caltech/MSSS
This is a cropped, reduced version of panorama from NASA’s Mars rover Curiosity with 1.3 billion pixels in the full-resolution version see full panorama above. It shows Curiosity at the “Rocknest” site where the rover scooped up samples of windblown dust and sand. Curiosity used three cameras to take the component images on several different days between Oct. 5 and Nov. 16, 2012. Viewers can explore this image with pan and zoom controls at http://mars.nasa.gov/bp1/. Credit: NASA/JPL-Caltech/MSSS

NASA chose Gale Crater as the landing site specifically to dispatch Curiosity to investigate the sedimentary layers of Mount Sharp because in surveys from Mars orbit it exhibited signatures of clay minerals that form in neutral water and that could possibly support the origin and evolution of simple Martian life forms, past or present.

“We have a real desire to get to Mount Sharp because there we see variations in the mineralogy as we go up from the base to higher levels and a change in the record of the environment,” explained Joy Crisp of JPL, Curiosity’s deputy project scientist.

“If we pass something amazing and compelling we might turn around and drive back,” Crisp added.

“The challenge for the science team will be to identify the most important targets along the way, and to study them without delaying drive progress too much,” notes Herkenoff.

Mount Sharp lies about 5 miles (8 kilometers) distant – as the Martian crow flies.

And Curiosity must also pass through a potentially treacherous dune field to get there.

“We are looking for the best path though,” said Curiosity Project Manager Jim Erickson of NASA’s Jet Propulsion Laboratory, Pasadena, Calif. at a recent media briefing.

Fisheye view of Mount Sharp from the hazcam camera on July 6, 2013 (Sol 326).  Credit: NASA/JPL-Caltech
Fisheye view of Mount Sharp from the hazcam camera on July 6, 2013 (Sol 326). Credit: NASA/JPL-Caltech

11 months ago on Aug. 6 , 2012, Curiosity made an unprecedented pinpoint touchdown inside Gale Crater using the never before used Sky crane descent thrusters.

Long before even arriving at destination Mount Sharp, Curiosity has already successfully accomplished the key science objective of the mission when she discovered that liquid water flowed at this spot on Mars, it possesses the key chemical ingredients required for life and was habitable in the past.

Drill samples from the ‘John Klein’ outcrop at Yellowknife Bay analyzed by Curiosity’s pair of onboard chemistry labs – SAM & Chemin – revealed that this location contains clay minerals required to support microbial life forms.

“We have found a habitable environment [at John Klein] which is so benign and supportive of life that probably if this water was around, and you had been on the planet, you would have been able to drink it,” said Grotzinger.

Ken Kremer

Carnival of Space #309

This week’s Carnival of Space is hosted by Brie Allen at the Tranquility Base blog.

Click here to read Carnival of Space #309.

And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.

Podcast: The Spacecraft That Wouldn’t Die

The Solar Max Spacecraft. Credit: NASA.

In our previous episode, week we explored the various ways spacecraft can die. But this week, we explore the spacecraft (and the scientists) who never give up, snatching victory from the jaws of defeat. We’ll look at clever solutions to potential spacecraft catastrophes.

Click here to download the episode.

Or subscribe to: astronomycast.com/podcast.xml with your podcatching software.

“Death of a Spacecraft” on the Astronomy Cast website, with shownotes and transcript.

And the podcast is also available as a video, as Fraser and Pamela now record Astronomy Cast as part of a Google+ Hangout: