Astrophoto: Beautiful View from the Top of Haleakala

The crescnet Moon and Venus are highlighted by crepuscular rays in this sunset view from on top of Haleakala, Maui in Hawaii. Credit and copyright: Henry Weiland.

As the Bad Astronomer has been known to say, “Holy Haleakala!” What an awesome view from the top of Haleakala, a massive shield volcano that forms more than 75% of the Hawaiian island of Maui. Astrophotographer Henry Weiland took this image on July 9, 2013 of his view from “on top of the world.” (He has a self portrait here.) He used a Canon EOS Rebel T3i with an 18-55mm lens.

We’re all jealous of your view, Henry!

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

New SpaceX Rocket Booster Completes ‘Full Mission Duration’ Firing Test

The Falcon 9-R during a 10-second test in June 2013. Credit: Elon Musk on Twitter

A new booster forming the heart of a next-generation SpaceX Falcon 9 rocket underwent a three-minute test this week ahead of another of its type launching the Canadian Cassiope satellite this fall.

“Just completed full mission duration firing of next gen Falcon 9 booster,” wrote CEO Elon Musk on Twitter on Monday. “V[ery] proud of the boost stage team for overcoming many tough issues.”

SpaceX declined to elaborate on what the issues were in a statement to Space News, saying that the testing program is preliminary. (The company rarely comments on what goes on during tests.)

The firm has been steadily ramping up testing experience on the booster, as well as the Merlin-1D engine that powers it. In early June, it ran a brief 10-second test, then increased that to a 112-second test a week later. Check out the foom factor from that test below.

We’re still waiting for SpaceX to post pictures or video from the latest full mission test, but we’ll put them up if they become available.

SpaceX uses the same engines in the Grasshopper, a 10-story Vertical Takeoff Vertical Landing (VTVL) vehicle.

One of Grasshopper’s goals is to help SpaceX figure out how to bring a rocket back to Earth, ready to lift off again. A single Merlin 1D engine is enough to power Grasshopper. The new Falcon 9-R (R means “reusable”) requires nine.

Falcon 9-R is slated to loft Cassiope, a Canadian satellite that will observe space weather, in September.

Water-Trapped Worlds Possible Around Red Dwarf Stars?

An artist's concept of a rocky world orbiting a red dwarf star. (Credit: NASA/D. Aguilar/Harvard-Smithsonian center for Astrophysics).

Hunters of alien life may have a new and unsuspected niche to scout out.

A recent paper submitted by Associate Professor of Astronomy at Columbia University Kristen Menou to the Astrophysical Journal suggests that tidally-locked planets in close orbits to M-class red dwarf stars may host a very unique hydrological cycle. And in some extreme cases, that cycle may cause a curious dichotomy, with ice collecting on the farside hemisphere of the world, leaving a parched sunward side. Life sprouting up in such conditions would be a challenge, experts say, but it is — enticingly — conceivable.

The possibility of life around red dwarf stars has tantalized researchers before. M-type dwarfs are only 0.075 to 0.6 times as massive as our Sun, and are much more common in the universe. The life span of these miserly stars can be measured in the trillions of years for the low end of the mass scale. For comparison, the Universe has only been around for 13.8 billion years. This is another plus in the game of giving biological life a chance to get underway. And while the habitable zone, or the “Goldilocks” region where water would remain liquid is closer in to a host star for a planet orbiting a red dwarf, it is also more extensive than what we inhabit in our own solar system.

Gliese 581- an example of a potential habitable zone around a red dwarf star contrasted with our own solar system. (Credit: ESO/Henrykus under a Wikimedia Creative Commons Attribution 3.0 Unported license).
Gliese 581- an example of a potential habitable zone around a red dwarf star contrasted with our own solar system. (Credit: ESO/Henrykus under a Wikimedia Creative Commons Attribution 3.0 Unported license).

But such a scenario isn’t without its drawbacks. Red dwarfs are turbulent stars, unleashing radiation storms that would render any nearby planets sterile for life as we know it.

But the model Professor Menou proposes paints a unique and compelling picture. While water on the permanent daytime side of a terrestrial-sized world tidally locked in orbit around an M-dwarf star would quickly evaporate, it would be transported by atmospheric convection and freeze out and accumulate on the permanent nighttime side. This ice would only slowly migrate back to the scorching daytime side and the process would continue.

Could these types of “water-locked worlds” be more common than our own?

The type of tidal locking referred to is the same as has occurred between the Earth and its Moon. The Moon keeps one face eternally turned towards the Earth, completing one revolution every 29.5 day synodic period. We also see this same phenomenon in the satellites for Jupiter and Saturn, and such behavior is most likely common in the realm of exoplanets closely orbiting their host stars.

The study used a dynamical model known as PlanetSimulator created at the University of Hamburg in Germany. The worlds modeled by the author suggest that planets with less than a quarter of the water present in the Earth’s oceans and subject to a similar insolation as Earth from its host star would eventually trap most of their water as ice on the planet’s night side.

Kepler data results suggest that planets in close orbits around M-dwarf stars may be relatively common. The author also notes that such an ice-trap on a water-deficient world orbiting an M-dwarf star would have a profound effect of the climate, dependent on the amount of volatiles available. This includes the possibility of impacts on the process of erosion, weathering, and CO2 cycling which are also crucial to life as we know it on Earth.

Thus far, there is yet to be a true “short list” of discovered exoplanets that may fit the bill. “Any planet in the habitable zone of an M-dwarf star is a potential water-trapped world, though probably not if we know the planet possesses a thick atmosphere.” Professor Menou told Universe Today. “But as more such planets are discovered, there should be many more potential candidates.”

Hard times in harsh climes-an artist's conception of the daytime side of a world orbiting a red dwarf star.
Hard times in harsh climes-an artist’s conception of the daytime side of a world orbiting a red dwarf star. (Credit: NASA/JPL-Caltech).

Being that red dwarf stars are relatively common, could this ice-trap scenario be widespread as well?

“In short, yes,” Professor Menou said to Universe Today. “It also depends on the frequency of planets around such stars (indications suggest it is high) and on the total amount of water at the surface of the planet, which some formation models suggest should indeed be small, which would make this scenario more likely/relevant. It could, in principle, be the norm rather than the exception, although it remains to be seen.”

Of course, life under such conditions would face the unique challenges. The daytime side of the world would be subject to the tempestuous whims of its red dwarf host sun in the form of frequent radiation storms. The cold nighttime side would offer some respite from this, but finding a reliable source of energy on the permanently shrouded night side of such as world would be difficult, perhaps relying on chemosynthesis instead of solar-powered photosynthesis.

On Earth, life situated near “black smokers” or volcanic vents deep on the ocean floor where the Sun never shines do just that. One could also perhaps imagine life that finds a niche in the twilight regions of such a world, feeding on the detritus that circulates by.

Some of the closest red dwarf stars to our own solar system include Promixa Centauri, Barnard’s Star and Luyten’s Flare Star. Barnard’s star has been the target of searches for exoplanets for over a century due to its high proper motion, which have so far turned up naught.

The closest M-dwarf star with exoplanets discovered thus far is Gliese 674, at 14.8 light years distant. The current tally of extrasolar worlds as per the Extrasolar Planet Encyclopedia stands at 919.

This hunt will also provide a challenge for TESS, the Transiting Exoplanet Survey Satellite and the successor to Kepler due to launch in 2017.

Searching for and identifying ice-trapped worlds may prove to be a challenge. Such planets would exhibit a contrast in albedo, or brightness from one hemisphere to the other, but we would always see the ice-covered nighttime side in darkness. Still, exoplanet-hunting scientists have been able to tease out an amazing amount of information from the data available before- perhaps we’ll soon know if such planetary oases exist far inside the “snowline” orbiting around red dwarf stars.

Read the paper on Water-Trapped Worlds at the following link.

Pulled Apart By Black Hole Heart

New observations from ESO’s Very Large Telescope show for the first time a gas cloud being ripped apart by the supermassive black hole at the centre of the galaxy. Shown here are VLT observations from 2006, 2010 and 2013, coloured blue, green and red respectively. Credit: ESO/S. Gillessen

If you thought all was reasonably quiet at the center of the Milky Way, you’d be wrong. Of course, you knew there was a black hole waiting… but did you know the ESO’s Very Large Telescope has seen a cloud of gas being ripped apart by its influence? Thanks to new observations, we’re able to see – in real time – a gaseous region so stretched that its leading edge has reached the event horizon and it’s retreating from the black hole at more than 10 million km/h while the trailing end is still falling inward!

Just two years ago, the VLT observed a gas cloud several times the mass of Earth making haste towards the Milky Way’s central black hole… an oblivion which dwarfs the cloud by about a trillion times. Right now the plucky cloud has reached its closest approach and “spaghettification” has began. The vaporous vagabond is being stretched out of proportion by the black hole’s gravitational field.

“The gas at the head of the cloud is now stretched over more than 160 billion kilometres around the closest point of the orbit to the black hole. And the closest approach is only a bit more than 25 billion kilometres from the black hole itself — barely escaping falling right in,” explains Stefan Gillessen (Max Planck Institute for Extraterrestrial Physics, Garching, Germany) who led the observing team. “The cloud is so stretched that the close approach is not a single event but rather a process that extends over a period of at least one year.”

At this point, the gas cloud is becoming so thin that its light is difficult to detect. However, by using the SINFONI instrument on the VLT, researchers took 20 hours of exposure time with the integral field spectrometer and were able to measure the velocity of various regions of the gas cloud as it blazes by the black hole.

“The most exciting thing we now see in the new observations is the head of the cloud coming back towards us at more than 10 million km/h along the orbit — about 1% of the speed of light,” adds Reinhard Genzel, leader of the research group that has been studied this region for nearly twenty years. “This means that the front end of the cloud has already made its closest approach to the black hole.”

Loading player…

Where the gas cloud originated is anyone’s guess – but there are suggestions. Possibilities include jets from the galactic center, or stellar winds from orbiting stars. There may have once been a star in the center of the cloud, and the gas may have been a product of its winds or even a protoplanetary disk. In any circumstance, these new observations help to sort out the variety of possibilities.

“Like an unfortunate astronaut in a science fiction film, we see that the cloud is now being stretched so much that it resembles spaghetti. This means that it probably doesn’t have a star in it,” concludes Gillessen. “At the moment we think that the gas probably came from the stars we see orbiting the black hole.”

It’s an exciting time to be an astronomer. Through the “eyes” of the VLT, researchers the world over are able to watch a very unique event as it happens and not after the fact. ” This intense observing campaign will provide a wealth of data, not only revealing more about the gas cloud, but also probing the regions close to the black hole that have not been previously studied and the effects of super-strong gravity.”

As this drama at the heart of the Milky Way unfolds, astronomers are able to witness its many changes – “from purely gravitational and tidal to complex, turbulent hydrodynamics.”

Original Story Source: ESO News Release.

Stars, Galaxies, and Comet ISON Grace a New Image from Hubble

Comet ISON seen against a background of stars and galaxies (Source: /hubblesite.org)

This image of the steadily-approaching Comet ISON, made from observations with the Hubble Space Telescope on April 30, show not only the comet itself but also a rich background of stars located within our own galaxy and even the distant spirals of entire galaxies much, much farther away — as Josh Sokol describes it on HubbleSite.org’s ISONblog it’s like the astronomy stickers you’d get for your kid’s bedroom, except you’d never get to see such a scene in real life “unless, of course, you had Hubble.”

Comet C/2012 S1 (ISON) is currently on its way into the inner Solar System on course for a close encounter with the Sun, zooming along at 77,250 km/h (48,000 miles per hour). It will make its closest pass by the Sun on November 28 (coming within just .012 AU) and will hopefully put on a pretty spectacular show in the night sky —  especially if it survives the trip.

The track of Comet ISON through the constellations Gemini, Cancer and Leo prior to perihelion. (Credit: NASA/GSFC/Axel Mellinger).
Comet ISON’s projected path through the night sky prior to perihelion. (Credit: NASA/GSFC/Axel Mellinger)

Watch: Comet ISON Timelapse Hubble Movie

The image above was created from multiple Hubble observations earlier this year, some geared toward capturing ISON and others calibrated more for distant, dimmer objects like galaxies and far-flung stars. By combining the results we get a view of a comet speeding through space with an almost too-perfect hyperrealism, courtesy of NASA’s hardest-working space telescope.

“The result is part science, part art. It’s a simulation of what our eyes, with their ability to dynamically adjust to brighter and fainter objects, would see if we could look up at the heavens with the resolution of Hubble. The result is a hodepodge of almost all the meat-and-potatoes subjects of astronomy – no glow-in-the-dark stickers required.”

– Josh Sokol, HubbleSite ISONblog

Learn about other ways NASA will be observing Comet ISON here.

Source: HubbleSite.org

A Heat Wave So Big You Can See It From Space

Image taken by NOAA's GOES East satellite at 12:45 p.m. EDT on July 15, 2013. (NOAA/NASA GOES Project)

Hot enough for ya? If you live anywhere on the eastern half of the United States (like me) you’ve probably been sweating it out over the past several days in what certainly feels like the warmest week yet for the season. The cause of the oppressive weather? A large mid-level ridge centered over the Ohio Valley — large enough to be easily visible from space.

The image above was taken by the GOES East satellite at 12:45 p.m. EDT on July 15. The clear area over Ohio shows the center of the system, which has been driving temperatures up into the 90s for much of the eastern U.S. and is expected to expand into the plains by mid-week. Along with increased humidity, heat index values will exceed 100 ºF and even approach 110 ºF on Friday.

From the NASA Image of the Day page:

A very anomalous weather pattern is in place over the U.S. for mid-July. Trapped between an upper level ridge centered over the Ohio Valley and the closed upper level low over the Texas/Oklahoma border, atypical hot, muggy air is stifling a broad swath of the eastern U.S. The closed low is expected to drift west toward New Mexico bringing heavy, localized rain to some areas and temperatures running 10-20 degrees below mid-July averages. Across the east, temperatures will warm well into the 90s and stay there through the week. (NOAA)

Rendering of a GOES satellite (NOAA)
Rendering of a GOES satellite (NOAA)

As of the time of this writing heat advisories are in place in many parts of Michigan, southern Minnesota, and southern New England, and excessive heat warnings are active in eastern Pennsylvania and west central New Jersey. (Source)

Click here for summer heat safety tips.

Meanwhile, a closed low — seen above as a large, moisture-laden spiraling cloud system — is moving west across Texas and New Mexico, and is expected to bring lower-than-average temperatures along with heavy rains and flash flooding.

Keep up to date with weather alerts for your area at the NOAA’s National Weather Service site here, and see the latest GOES satellite images here.

Image Credit: NOAA/NASA GOES Project

At an altitude of 22,336 miles, the geosynchronous GOES satellites continuously provide observations of 60 percent of the Earth including the continental United States, providing weather monitoring and forecast operations as well as a continuous and reliable stream of environmental information and severe weather warnings.

Astrophoto: The Gorgeous Colors of a Setting Quarter Moon

A mosaic of five different shots of the quarter Moon as it set over Marina di Pisa, Tuscany, Italy on July 15, 2013. Credit and copyright: Giuseppe Petricca.

When I looked out my south-facing window last night, I saw a gorgeous quarter Moon high in the sky. Giuseppe Petricca from Marina di Pisa, Tuscany, Italy took a longer look and created this beautiful composition of five different shots of the Moon on July 15, 2013, revealing how the appearance of the Moon changes as it sinks lower in the sky.

“These are the colours that our natural satellite assumes thanks to the Rayleigh Scattering in Earth’s atmosphere,” Guiseppe said via email. He noted that in his image, colors of the single shots are not digitally altered (except with a light Sharpness Mask to enhance the surface details.)

Guiseppe used a Nikon P90 bridge digital camera, at ISO 100, and used various but limited exposition times (trying to maintain a short medium exposition range in seconds, he said. His mosaic composed with Photoshop.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Seeing Red: Hunting Herschel’s Garnet Star

Mu Cephei (arrowed) in the constellation Cepheus the King. (Photo & graphic by author).

Quick, what’s the reddest star visible to the naked eye?

Depending on your sky conditions, your answer may well be this week’s astronomical highlight.

Mu Cephei, also known as Herschel’s Garnet Star, is a ruddy gem in the constellation Cepheus near the Cygnus/Lacerta border. A variable star ranging in brightness by a factor of about three-fold from magnitudes 5.0 to 3.7, Mu Cephei is low to the northeast for mid-northern latitude observers in July at dusk, and will be progressively higher as summer wears on. Continue reading “Seeing Red: Hunting Herschel’s Garnet Star”

Air-Breathing Rocket Engine Gets Funding Infusion

An artist's conception of Reaction Engines' Skylon spacecraft. Credit: Reaction Engines

Air-breathing rocket engine. Need we say more?

The technology, which sounds straight out of a science-fiction movie, has enough reality to it for the United Kingdom government to offer $90.62 million (£60 million), in stages, to a company looking to develop the engine.

The money will go to Oxfordshire-based Reaction Engines, which we’ve seen on Universe Today before. They’re also developing an unpiloted and reusable spacecraft called Skylon, which is intended for low Earth orbit after leaving the planet from a conventional runway.

Skylon isn’t flight-ready yet, but so far the project did pass a United Kingdom Space Agency technical assessment. If completed, the UK Space Agency says Skylon is just one of many vehicles that could use this engine, which is called Sabre.

“The unique engine is designed to extract the oxygen it needs for low atmosphere flight from the air itself, paving the way for a new generation of spaceplanes which would be lighter, reusable and able to take off and launch from conventional airport runways,” the agency stated.

The money, stated Reaction Engines founder Alan Bond, will fund  “the next phase in the development of its engine and heat management technology.” More specifically, this is what the company plans to use the funds for:

– Engine technical design work;

– Improving lightweight heat exchanger technology and manufacturing;

– Performing wind tunnel and flight testing of engine components;

– Doing a “ground demonstration” of the engine.

If all stays to schedule, Reaction Engines expects a Sabre prototype will be ready in 2017, with flight tests commencing in 2020.

A cutaway view of the proposed Sabre engine, which is being developed by Oxfordshire-based Reaction Engines. Credit: Reaction Engines
A cutaway view of the proposed Sabre engine, which is being developed by Oxfordshire-based Reaction Engines. Credit: Reaction Engines

The major goal of Sabre is to use hot air entering the engine to obtain the required oxygen for operations, rather than carrying the gas separately on board. The engine is supposed to switch to a “rocket mode” at 26,000 feet in altitude.

“This advantage enables a spaceplane to fly lighter from the outset and to make a single leap to orbit, rather than using and dumping propellant stages on the ascent – as is the case with current expendable rockets,” the UK Space Agency stated.

Reaction Engines promises Skylon would give “reliable access to space” through carrying payloads of up to 15 tonnes, but at only 2% of the cost of more conventional launch vehicles — namely, rockets. It remains to be seen if they will achieve that cost goal, but the funding is welcome news nonetheless for the company.

Source: UK Space Agency

Spacesuit Water Leak Aborts Space Station EVA

ISS Astronauts had to scramble to get Luca Parmitano out of his spacesuit after water leaked inside the suit, covering his face. Via NASA TV.

Today’s spacewalk at the International Space Station was cut short due to a water leak inside astronaut Luca Parmitano’s spacesuit. At one point, there was so much water inside Parmitano’s ears and around his face that he couldn’t hear or speak to communicate with the other astronauts. “Squeeze my hand if you’re fine,” fellow EVA member Chris Cassidy said to Parmitano.

What was supposed to be a 6-7 hour spacewalk lasted only 1 hour and 32 minutes after the leak occurred.

If you don’t think a little water could be a problem inside a spacesuit, recall how Chris Hadfield showed how water clung to his eyes in a simulated “cry,” or continued to cling to a washcloth even though it was being wrung out (see video below). The water inside Parmitano’s helmet literally surrounded and clung to his face and head.

“He looks miserable, but is OK,” the crew told Mission Control after they quickly removed Parmitano’s helmet and toweled off his face and head.

NASA TV said the cause of the leak in the helmet was “not readily identifiable,” but Parmitano appeared to be examining the drink bag that was inside his helmet shortly after the two astronauts got inside and were removed from their suits. However, just a short time later, Cassidy told Mission Control that Parmitano said the “water tasted really funny,” so it was likely not from the drink bag, and was perhaps the iodinated water from the crew’s liquid-cooled undergarments. But Cassidy also said Parmitano’s torso was essentially dry, and that the source of water seemed to be around the back of his head.

Close-up look inside the 'EMU' spacesuit worn on spacewalks showing the area where Luca Parmitano first felt the water leak. Via astronaut Doug Wheelock (@Astro_Wheels) on Twitter
Close-up look inside the ‘EMU’ spacesuit worn on spacewalks showing the area where Luca Parmitano first felt the water leak. Via astronaut Doug Wheelock (@Astro_Wheels) on Twitter

NASA is still investigating the source of the leak, and will have followup discussions and medical conferences with the astronauts to find out more and to make sure Parmitano is OK.

The two astronauts were going to continue tasks from last week’s EVA: routing power and data cables for a new Russian laboratory module scheduled to be launched to the ISS late this year or early 2014. They also were going to reposition a wireless camera antenna on the station’s power truss and replace a camera on the external deck of the Japanese Kibo lab module.

But the spacewalkers only completed one task before the leak became a problem. This was the second shortest spacewalk on record; on June 24, 2004, pressure problem in Mike Fincke’s spacesuit prompted an abbreviated 14-minute EVA.

ISS Astronauts gather in the Quest airlock  after water leaked inside Luca Parmitano's spacesuit. Via NASA TV.
ISS Astronauts gather in the Quest airlock after water leaked inside Luca Parmitano’s spacesuit. Via NASA TV.

The @SpaceShuttleAlmanac Twitter feed may have provided the best analogy of what Parmitano was experiencing during the leak: “Imagine having a fishbowl on your head with a half a litre of water sticking to your face, ears and nose. Then imagine you can’t take the fishbowl off your head for a minimum of 20 minutes, feel the panic?”

This was the 171st EVA for station construction and maintenance. NASA said nothing critical to station will be affected as a result of cutting the space walk short. Likely another EVA will be scheduled for the tasks.

NASA will be holding a news conference later today to provide more information.