Curiosity rover Embarks on Epic Trek To Mount Sharp

This photomosic shows NASA’s Curiosity departing at last for Mount Sharp- her main science destination. Note the wheel tracks on the Red Planet’s surface. The navcam camera images were taken on July 4, 2013 (Sol 324). Credit: NASA/JPL-Caltech/Ken Kremer (kenkremer.com)/Marco Di Lorenzo

NASA’s Curiosity rover has at last begun her epic trek to the layered slopes of mysterious Mount Sharp – the mission’s primary destination which looms supreme inside the Gale Crater landing site.

Scientists expect to discover signatures of the chemical ingredients that potentially are markers for a Martian habitable zone, while climbing up Mount Sharp.

On July 4 (Sol 324), the six wheeled robot started driving away from the Glenelg and Yellowknife Bay areas where she has worked more than half a year investigating the alien terrain and drilling into Martian rocks for the first time in history.

“We have started the long traverse to the base of Mt. Sharp (Aeolis Mons), the long-term goal of the mission!” announced science team member Ken Herkenhoff of the USGS.

So far the NASA rover already driven more than 190 feet (58 meters) over two excursions on July 4 and 7, away from her last science campaign at the Shaler outcrop of cross-bedded, sedimentary outcrops. Another drive is planned today.

Billions of years of Mars geologic history are preserved in the sedimentary layers of Mount Sharp- including the ancient time period when the Red Planet was far wetter and warmer than today, and thus more hospitable to the origin of life.

Billion-Pixel View From Curiosity at Rocknest, Raw Color.  This full-circle view combined nearly 900 images taken by NASA's Curiosity Mars rover, generating a panorama with 1.3 billion pixels in the full-resolution version. The view is centered toward the south, with north at both ends. It shows Curiosity at the "Rocknest" site where the rover scooped up samples of windblown dust and sand. Curiosity used three cameras to take the component images on several different days between Oct. 5 and Nov. 16, 2012. Credit: NASA/JPL-Caltech/MSSS
Billion-Pixel View From Curiosity at Rocknest, Raw Color. This full-circle view combined nearly 900 images taken by NASA’s Curiosity Mars rover, generating a panorama with 1.3 billion pixels in the full-resolution version. The view is centered toward the south, with north at both ends. It shows Curiosity at the “Rocknest” site where the rover scooped up samples of windblown dust and sand. Curiosity used three cameras to take the component images on several different days between Oct. 5 and Nov. 16, 2012. Credit: NASA/JPL-Caltech/MSSS

The huge mountain rises about 3.4 miles (5.5 km) from the center of Gale Crater. Its taller than Mount Ranier in Washington State.

The overland journey could take nearly a year or even longer into 2014 to arrive at the base of Mount Sharp, depending on what the 1 ton behemoth sees along the way.

And the scientists are eager to make as many discoveries as possible.

“The mission is discovery driven,” says John Grotznger of the California Institute of Technology in Pasadena, Calif., who leads NASA’s Curiosity Mars Science Laboratory mission. “We will go to where the science takes us.”

This is a cropped, reduced version of panorama from NASA's Mars rover Curiosity with 1.3 billion pixels in the full-resolution version see full panorama below. It shows Curiosity at the "Rocknest" site where the rover scooped up samples of windblown dust and sand. Curiosity used three cameras to take the component images on several different days between Oct. 5 and Nov. 16, 2012. Viewers can explore this image with pan and zoom controls at http://mars.nasa.gov/bp1/. Credit: NASA/JPL-Caltech/MSSS
This is a cropped, reduced version of panorama from NASA’s Mars rover Curiosity with 1.3 billion pixels in the full-resolution version see full panorama above. It shows Curiosity at the “Rocknest” site where the rover scooped up samples of windblown dust and sand. Curiosity used three cameras to take the component images on several different days between Oct. 5 and Nov. 16, 2012. Viewers can explore this image with pan and zoom controls at http://mars.nasa.gov/bp1/. Credit: NASA/JPL-Caltech/MSSS

NASA chose Gale Crater as the landing site specifically to dispatch Curiosity to investigate the sedimentary layers of Mount Sharp because in surveys from Mars orbit it exhibited signatures of clay minerals that form in neutral water and that could possibly support the origin and evolution of simple Martian life forms, past or present.

“We have a real desire to get to Mount Sharp because there we see variations in the mineralogy as we go up from the base to higher levels and a change in the record of the environment,” explained Joy Crisp of JPL, Curiosity’s deputy project scientist.

“If we pass something amazing and compelling we might turn around and drive back,” Crisp added.

“The challenge for the science team will be to identify the most important targets along the way, and to study them without delaying drive progress too much,” notes Herkenoff.

Mount Sharp lies about 5 miles (8 kilometers) distant – as the Martian crow flies.

And Curiosity must also pass through a potentially treacherous dune field to get there.

“We are looking for the best path though,” said Curiosity Project Manager Jim Erickson of NASA’s Jet Propulsion Laboratory, Pasadena, Calif. at a recent media briefing.

Fisheye view of Mount Sharp from the hazcam camera on July 6, 2013 (Sol 326).  Credit: NASA/JPL-Caltech
Fisheye view of Mount Sharp from the hazcam camera on July 6, 2013 (Sol 326). Credit: NASA/JPL-Caltech

11 months ago on Aug. 6 , 2012, Curiosity made an unprecedented pinpoint touchdown inside Gale Crater using the never before used Sky crane descent thrusters.

Long before even arriving at destination Mount Sharp, Curiosity has already successfully accomplished the key science objective of the mission when she discovered that liquid water flowed at this spot on Mars, it possesses the key chemical ingredients required for life and was habitable in the past.

Drill samples from the ‘John Klein’ outcrop at Yellowknife Bay analyzed by Curiosity’s pair of onboard chemistry labs – SAM & Chemin – revealed that this location contains clay minerals required to support microbial life forms.

“We have found a habitable environment [at John Klein] which is so benign and supportive of life that probably if this water was around, and you had been on the planet, you would have been able to drink it,” said Grotzinger.

Ken Kremer

Carnival of Space #309

This week’s Carnival of Space is hosted by Brie Allen at the Tranquility Base blog.

Click here to read Carnival of Space #309.

And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.

Podcast: The Spacecraft That Wouldn’t Die

The Solar Max Spacecraft. Credit: NASA.

In our previous episode, week we explored the various ways spacecraft can die. But this week, we explore the spacecraft (and the scientists) who never give up, snatching victory from the jaws of defeat. We’ll look at clever solutions to potential spacecraft catastrophes.

Click here to download the episode.

Or subscribe to: astronomycast.com/podcast.xml with your podcatching software.

“Death of a Spacecraft” on the Astronomy Cast website, with shownotes and transcript.

And the podcast is also available as a video, as Fraser and Pamela now record Astronomy Cast as part of a Google+ Hangout:

Conjunctions to Watch For in July

The waxing crescent Moon joins the evening sky early this week. (Photo by author).

The planets are slowly returning into view this month, bashfully peeking out from behind the Sun in the dawn & dusk sky. This month offers a bonanza of photogenic conjunctions, involving the Moon, planets and bright stars.

The action begins tonight on July 8th, as the waxing crescent Moon joins the planet Venus in the dusk sky. The razor thin Moon will be a challenge on Monday night, as it just passed New on the morning of the 8th at 3:14AM EDT/7:14 Universal Time (UT). The record for spotting the thin crescent with the naked eye currently stands at 15 hours and 32 minutes, completed by Stephen O’Meara on May 1990. Binoculars help considerably in this endeavor.  Wait until 15 minutes after local sunset, and then begin patiently sweeping the horizon.

Mr. Thierry Legault completed an ultimate photographic challenge earlier today, capturing the Moon at the precise moment of  New phase!

The Moon & Venus on the evening of July 9th from latitude 30 degrees north, about 30 minutes after sunset. (Created by the author using Stellarium).
The Moon & Venus on the evening of July 9th as seen from latitude 30 degrees north, about 30 minutes after sunset. (Created by the author using Stellarium).

This week  marks the start of lunation 1120. The Moon will be much easier to nab for observers worldwide on Tuesday night, July 9th for observers worldwide. The sighting of the waxing crescent Moon will also mark the start of the Muslim month of Ramadan for 2013. Due to the angle of the ecliptic in July, many northern hemisphere observers may not spot the Moon until Wednesday night on July 10th, about 6.7 degrees south west of -4.0 magnitude Venus.

Did you know? There are Guidelines for the Performance of Islamic Rites for Muslims aboard the International Space Station. It’s interesting to note that the timing of the rituals follows the point from which the astronaut originally embarked from the Earth, which is exclusively the Baikonur Cosmodrome in Kazakhstan for the foreseeable future of manned spaceflight.

Malaysia’s first astronaut, Sheikh Muszaphar Shukor observed Ramadan aboard the International Space Station in 2007.

From there, the crescent Moon fattens, meeting up with Saturn and Spica on the evenings of July 15th and 16th. The Moon will actually occult (pass in front of) the bright star Spica on the evening of July 15/16th at ~3:33UT/11:33PM EDT (on the 15th) for observers in Central America and western South America. The rest of us will see a near miss worldwide.

The waxing crescent Moon nearing Spica on the evening of the 15th at 10PM EDT. The Moon reaches 1st Quarter on the same evening at 11:18PM EDT. (Created by the author using Starry Night).
The waxing crescent Moon nearing Spica on the evening of the 15th at 10PM EDT. The Moon reaches 1st Quarter phase on the same evening at 11:18PM EDT. (Created by the author using Starry Night).

This is the 13th in a cycle of 18 occultations of Spica by our Moon spanning 2012-2013. Spica is one of four stars brighter than magnitude +1.4 that lie close enough to the ecliptic to be occulted by our Moon, the others being Antares, Regulus and Aldebaran. Saturn will lie 3 degrees from the Moon on the evening of July 16th.

Can you nab Spica and Saturn near the Moon with binoculars in the daytime around the 15th? It can be done, using the afternoon daytime Moon as a guide. Crystal clear skies (a rarity in the northern hemisphere summertime, I know) and physically blocking the Sun behind a building or hill helps.

The waxing gibbous Moon will also occult +2.8 Alpha Librae for South Africa on July 17th around 17:09UT & +4.4th magnitude Xi Ophiuchi for much of North America on the night of July 19th-20th.

And speaking of Regulus, the brightest star in the constellation Leo lies only a little over a degree (two Full Moon diameters) from Venus only the evenings of July 21st & the 22nd. 77.5 light years distant, Regulus is currently over 100 times fainter at magnitude +1.4. Can you squeeze both into the field of view of your telescope at low power? Venus’s mythical ‘moon’ Neith lives!

Venus can even occult Regulus on rare occasions, as last occurred on July 7th, 1959 and will happen next on October 1st, 2044.

But there’s morning action afoot as well. The planets Mars and Jupiter have emerged from solar conjunction on April 18th and June 19th, 2013 respectively, and can now be seen low in the dawn skies about 30 minutes before sunrise.

Mars and Jupiter in a close conjunction on the morning of July 22nd, about 30 minutes before sunrise as seen from latitude 30 degrees north. (Created by the author using Starry Night).
Mars and Jupiter in a close conjunction on the morning of July 22nd, about 30 minutes before sunrise as seen from latitude 30 degrees north. (Created by the author using Starry Night).

Mars approaches Jupiter in the dawn until the pair is only 0.79 degrees (about 48 arc minutes) apart on Monday, July 22nd. Mars shines at magnitude +1.6 and shows a tiny 3.9” disk, while Jupiter displays a 32.5” disk shining at magnitude -1.9 on this date. Conjunction occurs at about 7:00 UT/3:00 AM EDT, after which the two will begin to race apart. Mercury is visible beginning its morning apparition over 5 degrees to the lower right of the pair (see above).

Jupiter will reach opposition and reenter the evening sky on January 5th, 2014, while Mars won’t do the same until April 8th of next year. Weird factoid alert: neither Jupiter or Mars reach opposition in 2013! What effect does this have on terrestrial affairs? Absolutely none, well unless you’re a planetary imager/observer…

Mars also reaches its most northern declination of 2013 of 24 degrees in the constellation Gemini on July 16th at 7:00 AM EDT/11:00 UT.  Mars can wander as far as declination 27 degrees north, as last happened in 1993.

Finally, are you observing from southern Mexico this week and up for a true challenge? The asteroid 238 Hypatia occults a +7.4 magnitude star from 10:13-10:49 UT on July 10th in the constellation Pisces for up to 29 seconds. This event will be bright enough to watch with binoculars- check out our best prospects for asteroid occultations of stars in 2013 here and here.

Good luck, clear skies, and be sure to post those astro-pics in the Universe Today’s Flickr community!

Shuttle Atlantis Soars In New Exhibit, Two Years After Last Space Launch

The belly of space shuttle Atlantis in the new exhibit at the Kennedy Space Center. Credit: Steven Coates

Two years after space shuttle Atlantis launched into space, it’s still looking like it returned from a long journey. It “bears the scars, scorch marks and space dust of its last mission,” writes the Kennedy Space Center Visitors’ Center.

That’s deliberate, though. In late June, visitors to the Orlando-area attraction got the chance to get nose-to-nose with this orbiter in a new exhibit. Atlantis, unlike similar exhibits of other shuttles so far, is perched on a precise 43.21-degree angle to give a view previously afforded only to astronauts.

The $100 million, 90,000-square-foot exhibit also has an International Space Station gallery, a simulated shuttle launch ride, and training simulators for landing, space station docking and moving the robotic Canadarm.

Today (July 8) marked the two-year launch anniversary of STS-135, the last journey of both Atlantis and the shuttle program. Its main goal was to haul a huge load of supplies and spare parts to the space station. The event also generated a NASA Social, which many of the participants (including Universe Today‘s Jason Major) recalled today:

bittersweet_sts135

For those of us who couldn’t make the launch in person, luckily there’s plenty of multimedia material out there to experience it virtually. Universe Today‘s Ken Kremer was also at the final launch, and posted some photos on our website . NASA has a hub commemorating the last shuttle launch. NASA Kennedy published a mission tribute video, including some rarer footage.

And of course, you can watch the launch itself in many videos, including this official one from NASA below.

What are your favorite memories of Atlantis activities, either from attending launches or doing other things? Feel free to share in the comments.

How Will the World End?

How Will the World End?

There is almost nothing that could completely destroy the earth.

Follow your instincts and ignore anyone raising alarms about its imminent demise.

Oh sure, there’s a pile of events that could make life more difficult, and a laundry list of things that could wipe out all of humanity. Including: asteroid strikes, rising temperatures, or global plagues

In order to actually destroy the Earth, you would need significantly more energy, and there just happens to be enough, a short 150 million kilometers away: the Sun.

The Sun has been in the main sequence of its life for the last 4.5 billion years, converting hydrogen into helium. For stars this massive, that phase lasts for about 10 billion years, meaning we’re only halfway through.

When the Sun does finally run out of hydrogen to burn, it’ll begin fusing helium into carbon, expanding outward in the process. It will become a cooler, larger, red giant star, consuming the orbits of Mercury and Venus.

Scientists are still unsure if the red giant phase of the Sun will consume the Earth. If it does, the Earth’s story ends there. It’ll get caught up inside the Sun, and spiral inward to its demise.

Death by red giant in 5.5 billion years.

If the Sun doesn’t consume the Earth then we’ll have a long, cold future ahead of us. The Sun will shrink down to a white dwarf and begin cooling down to the background temperature of the Universe. The Earth and the rest of the surviving planets will continue orbiting the dying Sun for potentially trillions of years.

Planet orbiting a dead star. Credit: NASA
Planet orbiting a dead star. Credit: NASA
If we’re exceedingly lucky, the Sun will get too close to another star, and the gravitational interactions will capture Earth in orbit, giving our planet a second chance for life. If not, the Earth will continue following the dying Sun around and around the Milky Way for an incomprehensible amount of time.

At this point, the main risk to the planet is a collision. Or maybe it’ll spiral inward over vast periods of time to be destroyed by the Sun, or collide with another planet. Or perhaps the entire Solar System will slowly make its way into the supermassive black hole at the center of the Milky Way.

One last possibility. Physicists think that protons – the building blocks of atoms – might eventually decay, becoming smaller particles and pure energy. After an undecillion years – a 1 followed by 36 zeros – half of the Earth will have just melted away into energy.

But if protons don’t decay, the Earth could theoretically last forever.

The bottom line, the Earth was built to last.

These Are Really, Really Big Sunspots Facing Earth Right Now

Sunspot regions 1785 and 1787, with Earth shown to scale. Credit: Guillermo Abramson

Do you feel like you’re in the firing gallery? These sunspots are practically square-on to Earth right now. Although they haven’t shown much sign of erupting, if they did our planet would be right in the line of fire if a flare or stream of solar particles erupted.

These groups (known as 1785 and 1787) are so big that they are easily visible in amateur telescopes. 1785 alone is more than 11 Earth-diameters across, according to SpaceWeather.com! Just make sure you have the proper solar filters in place before you gaze at these dark smudges.

A black-and-white view of the string of sunspots facing Earth right now. Credit: Paul M. Hutchinson
A black-and-white view of the string of sunspots facing Earth right now. Credit: Paul M. Hutchinson

“Sunspots” — so called because they appear as dark smudges on the face of the sun — are areas of intense magnetic activity on the sun (thousands of times stronger than that of Earth’s magnetic field.)

At times, these regions can get so intense that the energy builds up and releases in the form of a flare and/or a coronal mass ejection — a burst of gas and magnetism that hurls solar material away from the sun.

If these flares hit the area of the Earth, a bunch of things can happen. Particles can flow along Earth’s magnetic lines and lead to the creation of aurora, or Northern/Southern lights. (Here’s an aurora that happened in June.) More severe storms can short out satellites or disable power lines.

“Could it be the calm before the storm?” SpaceWeather.com asked on its homepage, before giving forecasts of strong types of flares: “NOAA forecasters estimate a 55% chance of M-flares and a 10% chance of X-flares on July 8.”

The question has more pertinence given that 2013 is supposed to be the peak of the current 11-year sunspot cycle, but so far it’s been quieter than astronomers expected. Scientists are still trying to figure out how the cycle works.

We’ll keep our eyes peeled and let you know if something interesting happens. In the meantime, these pictures came from Universe Today readers, and we’d love to see your images, too! Feel free to add your snapshots to our Flickr page.

Update, 2:39 EDT: Among the pictures in our Flickr pool is this new stunner below from Ron Cottrell of Oro Valley, Arizona. “These sunspots are so magnificent that I get striking detail with my small 40mm Hydrogen-alpha telescope,” he wrote us.

A large sunspot group taken in July 2013 with a 40mm Hydrogen-alpha telescope. Credit: Ron Cottrell
A large sunspot group taken in July 2013 with a 40mm Hydrogen-alpha telescope. Credit: Ron Cottrell

Update, 2:50 p.m. EDT: On Twitter, Daniel Fischer pointed out that the sunspot group is even visible using a simple camera and eclipse glasses.

The sunspot group visible using a simple camera and eclipse glasses. Credit: Daniel Fischer
The July 2013 sunspot group visible using a simple camera and eclipse glasses. Credit: Daniel Fischer

Incredible Astrophoto: The Youngest Possible New Moon by Thierry Legault

This image shows the tiny lunar crescent at the precise moment of the New Moon, in full daylight at 7h14min UTC on July 8 2013. Credit and copyright: Thierry Legault.

It’s always striking to see a tiny sliver of the New Moon. But you’ve probably never seen a sliver this tiny or a Moon this “new” before. This brand new image by astrophotographer extraordinaire Thierry Legault was taken this morning and is the youngest possible lunar crescent, with the “age” of the Moon at this instant being exactly zero — at the precise moment of the New Moon. The image was taken in full daylight at 07:14 UTC on July 8, 2013.

Normally it is just about impossible (and dangerous) to see this, as when the Moon is this “new,” the Moon is between the Earth and the Sun and it is so close to the Sun in our sky that it can’t be seen because of the Sun’s glare. Plus, the New Moon appears as an extremely thin crescent which is barely brighter than the blue sky. But Thierry has designed a special sunshade to prevent sunlight from entering the telescope (see it below).

Thierry says the irregularities and discontinuities seen in the edge of the crescent are caused by the relief at the edge of the lunar disk; i.e. mountains and craters on the Moon. Very cool!

The “New Moon” is defined as the instant when the Moon is at the same ecliptic longitude as the Sun. When we refer to the “age” of the Moon, it is the number of hours (or days) since New Moon.

From Thierry’s shooting site in Elancourt, France (a suburb of Paris), the angular separation between the Moon and the Sun was only 4.4° (nine solar diameters).

“At this very small separation, the crescent is extremely thin (a few arc seconds at maximum) and, above all, it is drowned in the solar glare, the blue sky being about 400 times brighter than the crescent itself in infrared (and probably more than 1000 times in visible light),” Thierry writes on his website. “In order to reduce the glare, the images have been taken in close infrared and a pierced screen, placed just in front of the telescope, prevents the sunlight from entering directly in the telescope.”

Thierry Legault with his special telescope filter for blocking the Sun's rays. Image courtesy Thierry Legault.
Thierry Legault with his special telescope filter for blocking the Sun’s rays. Image courtesy Thierry Legault.

Thierry cautions anyone trying to see this with the naked eye. Basically, don’t try it.

“The very thin crescent of the New Moon cannot be observed visually whatever the instrument (naked eye, binoculars, telescope, etc),” he said. “Moreover, pointing a celestial object that close to the Sun is dangerous for the observer and his equipment if it is not performed under the control of an experienced astronomer and with the proper equipment.”

See more information at Thierry’s website. He also took another image of the New Moon at the exact moment back in 2010.

If you want to keep track of what the Moon will look like each night (or day!), Universe Today has a great app for that, our Phases of the Moon app, available for iOS or Android.

Faces And Animals On Mars? Pure Pareidolia!

Seeing familiar shapes in clouds is easy especially when you've got a handy reference. Credit: Andrew Kirk

As kids, my friends and I would stare at clouds on lazy summer afternoons and point out faces and animals we saw in their folds and domes. When the light was right, some of them looked as detailed and real as if chiseled by a meteorological Michelangelo. Later, with kids of our own, we often revisit this simple pleasure.

image of the "Virgin Mary" appears in the glass of a Tampa, Florida office building on Christmas Day 1996. Credit: Wikipedia
image of the “Virgin Mary” appears in the glass of a Tampa, Florida office building on Christmas Day 1996. Credit: Wikipedia

Patterns can materialize anywhere – old men with scraggly beards in carpeting, blocky visages in road cuts and even Jesus on toast. Here are 50 more fun examples. Our instinctive ability to find patterns in the often random mish-mash of nature is called pareidolia (pair-eye-DOLE-ya).

The late planetary scientist and astronomy popularizer Carl Sagan believed pattern-recognition was part of our evolutionary heritage:

“As soon as the infant can see, it recognizes faces, and we now know that this skill is hardwired in our brains,” wrote Sagan. “Those infants who a million years ago were unable to recognize a face smiled back less, were less likely to win the hearts of their parents, and less likely to prosper.”

Maybe it’s simpler than that. Face-recognition is critical because we ultimately need each other for survival not to mention keeping track of the kids in the grocery store. Pattern recognition also helped us find food back in the days of hunting and gathering. The ability to distinguish a particular plant or animal against the background noise meant the difference between a full belly or starvation.

The infamous Mars Face (left) photographed in comparatively low resolution by the Viking orbiter in 1976 and a much higher resolution view made by current Mars Reconnaissance Orbiter. Credit: NASA
The infamous Mars Face (left) photographed in comparatively low resolution by the Viking orbiter in 1976 and a much higher resolution view made by current Mars Reconnaissance Orbiter. Credit: NASA

Pareidolia also works its magic across the cosmos. To narrow the scope, I’ve selected images taken of Mars, the most fertile planet for imaginary faces around. Who doesn’t remember all the hubbub over the “Face of Mars”? Old Viking spacecraft images from the mid-1970s taken at low resolution in slanted lighting seemed to show a face carved of rock staring back at Earth.

Since pareidolia works best when the stimulus is vague or the object unclear the “face” was perfect. Our brains are more than happy to fill in fictional details. Later photos taken at much lower altitude with higher resolution cameras made the face disappear; in its place we clearly see an eroded mesa. Then there’s the so-called “Bigfoot on Mars,” (an extremely very tiny Bigfoot) and later someone zoomed in on a small rock and said there was a gorilla on Mars. Information equals identity, lack of detail opens the door to anything we might imagine.

Here are 10 examples of imaginary faces and creatures on Mars. The inspiration to write about the topic came from a series of recent “art” images taken with the THEMIS camera on board the Mars Odyssey spacecraft. The probe orbits Mars every 2 hours and carries three science instruments; the camera combines images shot in 5 wavelengths or colors of visual light and 9 in the infrared or heat-emitting part of the spectrum. Others were snapped by the Mars Reconnaissance Orbiter. All are NASA images, and I’ve taken the liberty to colorize several of the black and whites to approximate the appearance of the color images.

Enjoy!

 

1. My Happy Martian

Those Martians obviously have a sense of humor. This 2-mile-wide (3 km) unnamed crater was photographed in 2008 by the Mars Reconnaissance Orbiter.
Martians obviously have a sense of humor. This 2-mile-wide (3 km) unnamed crater was photographed in 2008 by the Mars Reconnaissance Orbiter.

2. That Buzzing Sound

This crater chain with its wispy "wings" of impact debris resembles a wasp. The feature was most likely created when a meteorite coming it at a very low angle broke into pieces just before impact.
This crater chain with its wispy “wings” of impact debris resembles a wasp. The feature was most likely created when a meteorite arriving it at a very low angle broke into pieces just before impact.

3. The Mammoth Still Lives

Lava flows in Mars' Elysium Planitia region have left a rather good likeness of a woolly mammoth or elephant. The region is known for some of the planet's youngest lavas - this one may formed in the past 100 million years.
Lava flows in Mars’ Elysium Planitia region have left a rather good likeness of a woolly mammoth or elephant. The region is known for some of the planet’s youngest lavas – this one may have formed as recently as the past 100 million years.

4. Have A Heart (or two)

I love these two little hearts. The one on the left is a mesa top outlined by frost about the size of a football stadium. On the right, a small impact crater near the tip of the heart blew away dark surface material exposing lighter soil beneath. Some of the material appears to have flowed downslope to create the heart.
I love these two little hearts. The one on the left is a mesa top outlined by frost about the size of a football stadium. On the right, a small impact crater near the tip of the heart blew away dark surface material exposing lighter soil beneath. Some of the material appears to have flowed downslope to create the heart.

5. Rare Sighting Of A Dust-Covered Hummingbird

5. Rare sighting of the dust-coated hummingbird
The head and long beak of a hummingbird is easy to imagine in this scene. I can’t say for sure how these features formed but wind and erosion no doubt played a part.

6. Hitchcockian Horror

A Martian bird of prey? Watch out, that beak looks sharp!
Martian bird of prey or just another wayward pigeon?

7. Get It In Gear

The eroded blankets of ejecta blasted out when these craters formed look like a series of interlocking gears.
The eroded blankets of ejecta blasted out when these craters formed look like a series of interlocking gears.

 8. Lone Wolf On The Martian Prairie

Dark sand dune deposits look eerily like a howling wolf.

9. Thumbs Up!

These dunes remind me of a Minnesota “Thank you” for jump starting your car on a cold winter morning.

10. To A “T”

Tectonic stretching of the Martian crust created this unusual right-angle fracture. I wonder how many other letters of the alphabet we might find on the Red Planet?
Tectonic stretching of the Martian crust created this unusual right-angle fracture. I wonder how many other letters of the alphabet we might find on the Red Planet?

 

Opportunity rover marks Magic Moment on 10th Year since Launch with Mountain Goal in View

Opportunity rover’s view across Botany Bay to Solander Point - her next destination - as NASA celebrates 10 Years since blastoff for Mars on July 7, 2003. The rover will climb up Solander Point because it which may harbor clay minerals indicative of a past Martian habitable environment. This pancam mosaic was assembled from raw images taken on Sol 3348 (June 24, 2013. Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer (kenkremer.com)

Opportunity rover’s view across Botany Bay to Solander Point – her next destination – as NASA celebrates 10 Years since blastoff for Mars on July 7, 2003. The rover will climb up Solander Point because it which may harbor clay minerals indicative of a past Martian habitable environment. This pancam mosaic was assembled from raw images taken on Sol 3348 (June 24, 2013.
Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer (kenkremer.com)[/caption]

Today, NASA’s Opportunity rover marks a magical moment celebrating 10 years since launching to Mars on July 7, 2003 and with her impending Mountain destination filling the camera’s eye view.

The now legendary robot has vastly exceeded everyone’s expectations. Back in 2003 the science team promised us a mere 90 day ‘warranty’ following the suspenseful airbag landing on Jan. 24, 2004 at Meridiani Planum.

Today is Martian Day (or Sol) 3360. That amounts to a life expectancy and exploration ‘bonus’ of more than 37 times beyond the design lifetime.

Launch of NASA’s 2nd Mars Exploration Rover, Opportunity, aboard a Delta II Heavy rocket to Mars on July 7, 2003 at 11:18 p.m. EDT from Pad 17-B at Cape Canaveral Air Force Station, Fla.  Credit: NASA
Launch of NASA’s 2nd Mars Exploration Rover, Opportunity, aboard a Delta II Heavy rocket to Mars on July 7, 2003 at 11:18 p.m. EDT from Pad 17-B at Cape Canaveral Air Force Station, Fla. Credit: NASA

Opportunity’s twin sister Spirit blasted off three weeks earlier in June 2003 and continued functioning until 2010.

“I never thought we’d achieve nine months!” Principal Investigator Prof. Steve Squyres of Cornell University told me recently on the occasion of the rovers 9th anniversary on Mars in January 2013.

As you read this, the now decade old rover Opportunity is blazing a trail toward’s the oldest geological deposits she has ever explored – at a place called Solander Point, a raised ridge along the eroded rim of huge Endeavour Crater.

Opportunity has surpassed the halfway point in the traverse from the rim segment she has explored the past 22 months at ‘Cape York’ to her next rim segment destination at Solander.

From tip to tip, Cape York and Solander Point lie 1.2-mile (2-kilometer) apart along the western rim of Endeavour Crater. Both are raised portions of 14-mile-wide (22-kilometer-wide) Endeavour.

The rover has less than half a mile (800 meters) to go to finish the Martian dash from one rim segment to the next across an area called ‘Botany Bay’.

This view from July 2, 2013 (Sol 3355) shows the terrain that NASA's Mars Exploration Rover Opportunity is crossing  in a flat area called "Botany Bay" on the way toward "Solander Point," which is visible on the horizon. Credit: NASA/JPL-Caltech
This view from July 2, 2013 (Sol 3355) shows the terrain that NASA’s Mars Exploration Rover Opportunity is crossing in a flat area called “Botany Bay” on the way toward “Solander Point,” which is visible on the horizon. Credit: NASA/JPL-Caltech

“We are making very good progress crossing ‘Botany Bay,’ said John Callas of NASA’s Jet Propulsion Laboratory, Pasadena, Calif., who is project manager for the mission now entering its 2nd decade.

The flat terrain of fractured, light-toned bedrock is devoid of treacherous dunes and is easy to drive across, almost like a highway, which simplifies the daily planning by the rovers Earthly handlers.

“The surface that Opportunity is driving across in Botany Bay is polygonally fractured outcrop that is remarkably good for driving,” said Brad Joliff, an Opportunity science team member and long-term planner at Washington University in St. Louis. “The plates of outcrop, like a tiled mosaic pavement, have a thin covering of soil, not enough to form the wind-blown ripples we’ve had to deal with during some other long treks. The outcrop plates are light-toned, and the cracks between them are filled with dark, basaltic soil and our old friends the ‘blueberries.”

The “blueberries” are hematite-rich, erosion-resistant concretions about the size of BB’s that Opportunity discovered when she first opened her eyes at her Eagle crater landing site. During the multi year crater hopping tour that ensued, the rover continued finding patches of blueberries all the way to Endeavour crater.

1st color panorama taken by Opportunity after landing inside Eagle Crater on Jan. 24, 2004. Credit:  NASA/JPL/Cornell
1st color panorama taken by Opportunity after landing inside Eagle Crater on Jan. 24, 2004. Credit: NASA/JPL/Cornell

Opportunity is expected to arrive at Solander’s foothills sometime in August – before the onset of the next southern hemisphere Martian winter, her 6th altogether.

Opportunity will scale Solander to continue the science quest in search of additional evidence of habitable environments with the chemical ingredients necessary to sustain Martian microbial life.

“Right now the rover team is discussing the best way to approach and drive up Solander,” Ray Arvidson told Universe Today. Arvidson is the mission’s deputy principal scientific investigator from Washington University in St. Louis, Mo.

‘Solander Point’ offers roughly about a 10 times taller stack of geological layering compared to ‘Cape York.’

Solander also offers north facing slopes where Opportunity’s solar wings can more effectively soak up the sun’s rays to generate life giving electrical power.

The robot remains in excellent health.

The total driving distance exceeds 23 miles (37 kilometers). She has snapped over 181,000 images.

Meanwhile on the opposite side of Mars at Gale Crater, Opportunity’s younger sister rover Curiosity also discovered a habitable environment originating from a time when the Red Planet was far warmer and wetter billions of years ago.

And like Opportunity, Curiosity is also trekking towards a mountain rich in sedimentary layers, hoping to unveil the mysteries of Mars past.

Ken Kremer

Opportunity captures spectacular panoramic view ahead to her upcoming mountain climbing goal, the raised rim of “Solander Point” at right, located along the western edge of Endeavour Crater. It may harbor clay minerals indicative of a habitable zone.  The rise at left is "Nobbys Head" which the rover just passed on its southward drive to Solander Point from Cape York.  This pancam photo mosaic was taken on Sol 3335, June 11, 2013 shows vast expanse of the central crater mound and distant Endeavour crater rim.   Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer (kenkremer.com) See full panoramic scene below
Opportunity captures spectacular panoramic view ahead to her upcoming mountain climbing goal, the raised rim of “Solander Point” at right, located along the western edge of Endeavour Crater. It may harbor clay minerals indicative of a habitable zone. The rise at left is “Nobbys Head” which the rover just passed on its southward drive to Solander Point from Cape York. This pancam photo mosaic was taken on Sol 3335, June 11, 2013 shows vast expanse of the central crater mound and distant Endeavour crater rim. Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer (kenkremer.com)
Traverse Map for NASA’s Opportunity rover from 2004 to 2013.  This map shows the entire path the rover has driven during more than 9 years and over 3360 Sols, or Martian days, since landing inside Eagle Crater on Jan 24, 2004 to current location heading south to Solander Point from  Cape York ridge at the western rim of Endeavour Crater.  Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer
Traverse Map for NASA’s Opportunity rover from 2004 to 2013
This map shows the entire path the rover has driven during more than 9 years and over 3360 Sols, or Martian days, since landing inside Eagle Crater on Jan 24, 2004 to current location heading south to Solander Point from Cape York ridge at the western rim of Endeavour Crater. Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer